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Abstract: Artificial Neural Networks (ANNs) have been used in a wide range of applications
for complex datasets with their flexible mathematical architecture. The flexibility is favored
by the introduction of a higher number of connections and variables, in general. However,
over-parameterization of the ANN equations and the existence of redundant input variables usually
result in poor test performance. This paper proposes a superstructure-based mixed-integer nonlinear
programming method for optimal structural design including neuron number selection, pruning,
and input selection for multilayer perceptron (MLP) ANNs. In addition, this method uses statistical
measures such as the parameter covariance matrix in order to increase the test performance while
permitting reduced training performance. The suggested approach was implemented on two public
hyperspectral datasets (with 10% and 50% sampling ratios), namely Indian Pines and Pavia University,
for the classification problem. The test results revealed promising performances compared to the
standard fully connected neural networks in terms of the estimated overall and individual class
accuracies. With the application of the proposed superstructural optimization, fully connected
networks were pruned by over 60% in terms of the total number of connections, resulting in an
increase of 4% for the 10% sampling ratio and a 1% decrease for the 50% sampling ratio. Moreover,
over 20% of the spectral bands in the Indian Pines data and 30% in the Pavia University data
were found statistically insignificant, and they were thus removed from the MLP networks. As a
result, the proposed method was found effective in optimizing the architectural design with high
generalization capabilities, particularly for fewer numbers of samples. The analysis of the eliminated
spectral bands revealed that the proposed algorithm mostly removed the bands adjacent to the
pre-eliminated noisy bands and highly correlated bands carrying similar information.

Keywords: artificial neural networks; classification; superstructure optimization; mixed-inter
nonlinear programming; hyperspectral images

1. Introduction

Since the introduction of perceptron by Rosenblatt in 1958 [1], numerous studies in almost all
scientific fields have been conducted to apply neural network models and test their performances.
Starting with the first pioneering study of Benediktsson et al. [2], artificial neural networks (ANNs)
have been extensively used in remote sensing fields, frequently for the supervised classification
of remotely sensed images in the production of thematic maps [3–6]. Historical development
reveals that ANNs were initially applied for comparative studies with conventional classifiers (e.g.,
maximum likelihood classifier), and later with other machine learning algorithms (e.g., support vector
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machines, random forest) for a wide range of problems [7–11]. In the last decade, new and advanced
satellite sensors were launched, producing a vast amount of data repeatedly, at a higher number
of bands. Both spatial and spectral resolutions of the sensors have increased; thus, the selection of
the most appropriate data as inputs, known as feature selection, has become a more critical issue,
particularly for neural networks. For this purpose, the pruning of neural networks has been suggested
as an alternative to existing statistical methods [12–15].

The topology of Multi-Layer Perceptron (MLP) networks includes three types of layers called
input, hidden, and output layers, each consisting of fully interconnected processing nodes, except that
there are no interconnections between the nodes within the same layer. These networks typically have
one input layer, one or more hidden layers, and one output layer. The input layer nodes correspond
to individual data sources, which can be either spectral bands or other sources of data. The output
nodes correspond to the desired classes of information, such as land use/land cover (LULC) classes in
classification. Hidden layers are required for computational purposes. The values at each node are
estimated through the summation of the multiplications between previous node values and weights of
the links connected to that node. Since the nodes on input and output layers are usually pre-defined,
except for the feature selection case where some irrelevant or highly correlated inputs are eliminated,
the number of hidden layers and their nodes are the unknown hyper-parameters in the network,
the choice of which directly affects the performance and generalization capabilities of the network.
Several heuristics and formulations have been suggested in literature to estimate the optimal size for
the hidden layer(s), but there is no universally accepted method that exists for estimating the optimal
number of hidden layer nodes for a particular problem [16–19]. The use of ANNs in remote sensing
has been reviewed by several studies, including [17,19–21]. Furthermore, the limitations and crucial
issues in the application of neural networks have been discussed in [17,19,21,22].

Several approaches or methods exist in literature for the construction of optimal network
architecture in addition to the heuristics mentioned above. These methods can be categorized as
exhaustive search algorithms, also known as brute-force, constructive, pruning, and a combination
of these methods. In the brute-force approach, after many small network architectures are formed
and trained, the best smallest architecture producing the lowest error level or the highest accuracy
for the dataset is selected. This approach is computationally expensive since many networks must be
trained to obtain a solution [22,23]. Constructive methods start with a small network and add new
hidden nodes to the network after each epoch if the training error or the proposed accuracy is not at
the acceptable level. On the other hand, pruning methods work opposite to the constructive methods,
in that a large network is selected and unimportant or ineffective links and/or hidden layer nodes are
removed. Thus, overfitting to the training data can be avoided. These methods have the advantages of
both small and large networks. For a start, the user has to determine the initial large network structure
for the problem and the stopping criterion to end the training process. It was reported that training
a large network and then pruning it is advantageous and favorable compared to that of training a
small network [17,24]. There are also hybrid methods, also known as growing and pruning methods,
that can both add and remove hidden layer units [25–28]. These methods are less popular due to the
training of small networks suffering from the noisy fitness evaluation problem, and they are likely to
be stuck into a local minimum together with a longer training time requirement.

The design of a neural network is not a simple task. The number of nodes in the hidden layer(s)
should be large enough for the correct representation of the problem, but at the same time low enough
to have adequate generalization capabilities [29]. The optimum number of hidden layer nodes depends
on various factors including the numbers of input and output units, the number of training cases, the
complexity of the classification to be learned, the level of noise in the data, the network architecture,
the nature of the hidden unit activation function, the training algorithm, and regularization [30]. It is
impractical to state that neural network topology is minimal and optimal since the optimality criteria
actually varies for each problem under consideration [31]. If the network is too small, it cannot learn
from the data, resulting in a high training error, which is a characteristic of underfitting. Small networks
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can have better generalization capabilities, but there is a risk of not learning the problem under
consideration due to the insufficient number of processing elements [23,32]. On the other hand, if the
network is too large, a well-known overfitting problem occurs. In other words, it becomes over-specific
to the training data and likely to fail with the test data, producing lower classification accuracies.
However, large networks have better fault tolerance [33]. Ideally, a close correspondence between
training and testing errors is desired [34]. From the above argument, it can be concluded that a large
network should be preferred to a small one since underfitting is a more serious issue than overfitting
as it can be avoided using training strategies and pruning techniques by downsizing the network
wisely. The optimum structure for a neural network should be large enough to learn the underlying
characteristics of the problem and small enough to generalize for other datasets [17,32]. The motivation
in this study is to not only remove some interconnections or eliminate some hidden layer neurons to
improve generalization capabilities, but also to reduce the dimension of the input layer by eliminating
the least effective and correlated spectral bands, and thus achieve improved performance. This is
particularly important for the processing of hyperspectral images that comprise many correlated and
sometimes irrelevant spectral bands for the problem under consideration.

Sildir and Aydin [35] suggested using a mixed-integer programming method in order to
optimally and simultaneously design and train ANNs via superstructure optimization and parameter
identifiability. In this study, a similar superstructure-based optimization technique is proposed for the
classification of two benchmark hyperspectral images. The first essential part of the suggested method
is to set up the superstructure formulation where inputs, number of neurons, and connections between
inputs, hidden neurons, and outputs are all binary decision variables. At the same time, standard ANN
parameters, e.g., connection weights, can take continuous values. This strong formulation brings about
a mixed-integer program, usually, a nonlinear one (MINLP), which has to be solved with respect to a
certain design metric. As a result, ‘redundant’ input variables, neurons, and connections for larger
datasets are eliminated automatically.

In addition to the superstructure formulation, we also suggest integrating the use of statistical
measures, namely parameter uncertainty for the purpose of enhancing the prediction performance of
ANNs. This statistical approach takes the covariance of ANN parameters into account and integrates
the measure with the objective function of the training algorithm. To the best of authors’ knowledge,
this paper is the first application of such an optimal and robust ANN algorithm addressing the
classification of remotely sensed imagery. In addition to this novel application concept, extra linking
constraints are added to this newer formulation that forces the optimization algorithm not to iterate for
the continuous variables when certain binary variables are equal to zero, which in turn decreases the
computational load of the resulting mixed-integer type ANN related problems significantly.

2. Test Sites and Datasets

For the experiments, aimed to show the effectiveness of the proposed optimization algorithm,
two well-known hyperspectral datasets that are widely used in literature to test new algorithms and
approaches were employed in this study. The effectiveness of the proposed method was investigated
with different sampling ratios using 10% and 50% of the ground reference data.

2.1. The Indian Pines Dataset

The Indian Pines scene recorded by the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS)
sensor on June 12, 1992, was used in this study. The image and its ground reference data are made
available by Purdue University (https://purr.purdue.edu/publications/1947/1). The dataset, covering a
2.9 by 2.9 km (145 by 145 pixels) agriculture dominated land in Tippecanoe County of Indiana, USA,
has 220 spectral bands at 20 m spatial resolution (Figure 1). Twenty spectral bands (104–108, 150–163,
220) comprising the region of water absorption were removed from the dataset. The ground reference
dataset including 16 LULC classes was collected through a field study in June 1992 [36]. The Indian
Pines dataset has been employed in many publications to test and compare the performances of various
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algorithms [37,38]. The dataset is regarded as a challenging one for classification problems because of
three major reasons. Firstly, the crops in the study site (mainly corn and soybeans) were very early in
their growth cycle (about 5% canopy cover). Secondly, the imagery has a moderate spatial resolution
of 20 m, resulting in a high number of mixed pixels. Lastly, the number of reference samples for the 16
LULC classes varies greatly among the classes, ranging from 20 samples to 2,455, which is regarded as
an imbalanced dataset. Because of the availability of the limited number of samples for each LULC
class, many researchers either combined the particular class types into a single one or avoid using some
of the classes (e.g., oats, alfalfa, stone-steel towers). Considering that 20 pixels of the oats class must
be divided into training and testing in the application that makes the learning process theoretically
challenging, this class is left out in further processes. Thus, the Indian Pines dataset with 15 LULC
classes, which are shown in Table 1, was considered in this study.
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Figure 1. (a) Three-band color composite of Indian Pines Airborne Visible/Infrared Imaging Spectrometer
(AVIRIS) hyperspectral image, and (b) ground reference data.

Table 1. Descriptions of the classes for Indian Pines data.

Index Description Number of
Samples

O1 Alfalfa 54
O2 Corn-notill 1434
O3 Corn-min 834
O4 Corn 234
O5 Grass-pasture 497
O6 Grass-trees 747
O7 Grass-pasture-mowed 26
O8 Hay-windrowed 489
O9 Soybean-notill 968
O10 Soybean-min 2468
O11 Soybean-clean 614
O12 Wheat 212
O13 Woods 1294
O14 Buildings-Grass-Trees-Drives 380
O15 Stone-Steel towers 95

2.2. The Pavia University Dataset

The Pavia University hyperspectral image was acquired with a Reflective Optics Spectrographic
Image System (ROSIS) sensor during a flight campaign over Pavia, northern Italy. The ROSIS optical
sensor provides images at a spectral range from 0.43 to 0.86µm with 115 bands. Twelve bands that
were noisy or impacted by water absorption were removed from the dataset and the remaining 103
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bands were employed in this study. The dataset captured over the Engineering School of the Pavia
University has 610 × 340 pixels with a spatial resolution of 1.3 m. The Pavia University dataset has
ground truth maps of 9 classes and 42,776 labeled samples. The image and the ground reference data
are shown in Figure 2 and details about the samples of all classes are given in Table 2.Remote Sens. 2020, 11, x FOR PEER REVIEW 5 of 19 
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Figure 2. (a) Three-band color composite of University of Pavia Reflective Optics Spectrographic Image
System (ROSIS) hyperspectral image, and (b) ground reference data.

Table 2. Descriptions of the classes for Pavia University data.

Index Description Number of
Samples

O1 Asphalt 6631
O2 Meadows 18,649
O3 Gravel 2099
O4 Trees 3064
O5 Painted metal sheets 1345
O6 Bare soil 5029
O7 Bitumen 1330
O8 Self-blocking bricks 3682
O9 Shadows 947

3. Optimal ANN Structure Detection and Training Methodology

Typical ANN structures usually contain a single hidden layer in addition to input and output
layers containing identity activation functions. All those layers are fully connected in a traditional
sense. The expression for a typical fully connected ANN (FC-ANN) is given by:

y = f1(A · f2(B · u + C) + D) (1)

where A, B, C, and D are continuous weights with proper dimensions; f1 and f2 are output and hidden
layer activation functions, respectively. For classification problems, the selected output activation
function usually used for normalization. The softmax function is a typical example among other
alternatives [39]. Note that the output activation function also calculates the individual probabilities
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for the classification problems, whereas the hidden layer activation function is not necessarily limited
to normalization.

For an FC-ANN, the weights are traditionally assigned as non-zero in order to represent the
connections among the neural network variables and layers. Those weights are estimated in the
training by nonlinear optimization through the solution of:

MinA,B,C,D

N∑
i=1

‖ f1(A · f2(B · ui + C) + D) − yi‖ (2)

where N is the number of training samples; yi is the ith sample vector; ui is the ith input vector. Note that
Equation (2) might also include additional box constraints to either reduce the search space for the
training of ANNs or for specifically tailoring the training formulation.

As mentioned above, the solution of Equation (2) is usually obtained via programming a
non-linear optimization problem (NLP). This solution delivers the FC-ANN weights (continuous
variables), which minimize the training error without considering parameter identifiability issues,
architecture orientation, and overfitting. In theory, as the number of decision variables and connections
increases, the ANN training formulation should generate more flexibility, which in turn enhances
the representative nature of ANNs on more complex datasets. The numbers of outputs, inputs, and
hidden layer neurons together represent the number of decision variables. Traditionally, the structural
hyper-parameters including the number of neurons, contained layers with the neurons, and the
activation functions are manually tuned after trial and error. In addition to the structural parameters,
the selection of proper input variables is another vital decision that is not included in (2) explicitly.
However, it should be noted that complex and large datasets contain a significant amount of correlation
and redundancy, especially in the big data era. On the other hand, it should be mentioned that deep
neural networks including dropout layers can easily deal with the overfitting issues in a sequential
manner. Yet, using deep neural nets is not in the scope of this paper. The integration of the proposed
novel structure detection and training algorithm with the deep neural networks, which can be carried
out without a loss of generality, is left for a future study.

Once the number of neurons lifts up, the dimension of continuous variables increases
proportionally, and more connections are introduced in FC-ANNs. As a result, FC-ANN architecture
becomes more challenging to train. Moreover, the optimal estimation of those parameters suffers from
identifiability issues when the ANN architecture is poorly designed, or the training data do not contain
statistically significant information [40–43].

The covariance matrix of the continuous ANN parameters have been adopted as a measure
of identifiability in previous studies ([44]) and is used as a statistical metric in this study, for the
elimination of the ANN variables including the number of neurons, connections, and input variables.
Once the sum of the elements of the covariance matrix has a higher numerical value, the accompanying
uncertainty in that estimated parameter leads to much larger prediction bounds due to the prorogation
of uncertainty ([45]). In addition, a significant amount of computational power might be required
for the training of ANNs, since there are many combinations of parameter values resulting in similar
training performances.

Sildir and Aydin ([35]) proposed an MINLP formulation that realizes the optimal training of
ANNs via superstructure modifications and parameter identifiability. They showed the contribution of
the proposed formulation on regression problems. Results showed that the suggested method increases
the predictive capabilities of ANNs with a significant reduction in the ANN superstructure compared
to FC-ANNs. The MINLP formulation introduces additional binary variables to the traditional ANN
equations in order to detect the optimal ANN architecture and to favor the optimal determination
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of input variables, hidden neurons, and connections for larger datasets among a maximum ANN
structure. The modified one hidden layer ANN output equation is given as follows:

y = f1
((

A ◦Abinary
)
· diag

(
Nbinary

)
· f2

((
B ◦ Bbinary

)
· diag

(
Ubinary

)
· u + C

)
+ D

)
(3)

where ◦ is the Hadamard product operator; Abinary and Bbinary are matrices with binary values
representing the existence of connections. The existence of a particular connection is defined by the
binary variable Abinary,i j. Aij is the continuous weight parameter of the connection between the jth

neuron and the ith output and can be non-zero only if the connection is decided to exist after solving
the training optimization problem. Similarly, Bij represents the connection between the input and
corresponding neurons. In practice, once a particular column of Bij is zero, then the jth input does not
deliver information to the hidden layer and thus to the outputs as a result of feed-forward design.
Nbinary and Ubinary are the binary vectors defining the existence of the neuron and input, respectively.
For instance, if a particular element of Ubinary is zero, it makes the corresponding column of Bbinary zero,
eliminating all the connections from the particular input; thus, the corresponding input is eliminated.
These rules are realized via the introduction of extra linking constraints to the formulation, and the
resulting problem exhibits a strong mixed-integer program formulation. The training optimization
problem is given by:

MinA,Abinary,B,Bbinary,C,D,Nbinary,Ubinaryγ
∑

diag
(
covp

)
+ F

s.t.

F =
N∑

i=1
‖ f1

((
A ◦Abinary

)
· diag

(
Nbinary

)
· f2

((
B ◦ Bbinary

)
· diag

(
Ubinary

)
· ui + C

)
+ D

)
− yi‖

Abinary,i j ≤ Nbinary, j
Bbinary,i j ≤ Ubinary, j

−ALB ×Abinary, j ≤ Ai, j ≤ AUB ×Abinary, j
−BLB × Bbinary, j ≤ Bi, j ≤ BUB × Bbinary, j
Abinary, Bbinary, Nbinary, Ubinary ∈ {0, 1}

(4)

where γ is the tuning parameter for the multi-objective optimization; ALB and AUB are lower and
upper bounds on A respectively; BLB and BUB are lower and upper bounds on B respectively ([35]).
covp, which is a measure of parameter identifiability in this formulation, is the covariance matrix
of the estimated ANN weights. Intuitively, diagonal elements of this refer to the variances of the
corresponding weight. In theory, those values would increase significantly when overfitting occurs.

The problem given in Equation (4) is a relatively large scale and non-convex MINLP, which is quite
challenging to solve to the global optimum. There are various efficient commercial solvers utilizing
branch and bound ([46]), generalized benders decomposition ([47]), and outer approximation methods
([48]) for solving convex MINLPs. Nevertheless, solving non-convex MINLPs to global optimality is
still an open research area and is not in the scope of this study. We should also mention that both the
training and testing performances of the ANNs can be increased dramatically when a global solution
algorithm is implemented to solve the problem given in Equation (4).

In this work, the adaptive, hybrid evolutionary algorithm suggested in [35] is used to solve
the non-convex MINLP program given by (4). This method decomposes the original MINLP into
integer programming (IP) and nonlinear programming (NLP) problems ([49–51]). IPs only include
integer (or binary) decision variables that can be adjusted during optimization, whereas NLPs only
involve continuous decision variables. For detailed information about the aforementioned optimization
problems and their solution methods, we refer the reader to [52]. The IP stands on the outer loop and
is solved via the genetic algorithm-based IP solver of Matlab while the inner loop NLP is solved by an
interior point-based open source nonlinear programming solver IPOPT ([53]). Two problems are solved
sequentially until the tolerance value of the original problem objective value or the maximum wall clock
time is reached. This quasi decomposition feature is usually beneficial for solving large-scale problems.
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It should be noted that all the experiments in this study were carried out using our in-house programs
in Matlab software (v.2019b). The fully connected network (FC) was trained using the Matlab Neural
Net Toolbox, implementing a standard back-propagation algorithm for training. A pseudo-algorithm
for the mentioned optimal ANN structure detection and training approach is shown in Table 3. Also,
a simplified diagram of the problem solution is shown in Figure 3.

Table 3. Pseudo algorithm adopted in this study for superstructure optimization.

Begin
Start with an initial guess and calculate the objective function
While (t<Maximum Wall Cock Time) or (Stopping Criterion)

Assign binary decision variables
Update linking constraints
While (Iteration number < Criterion) or (Stopping Criterion)

Update continuous decision variables
End While
Calculate the covariance matrix of parameters
Calculate the objective function
If (Objective function is improved)

Update binary decision variables (e.g., the ANN structure)
End If

End While
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There are efficient duality-based decomposition algorithms, which have proven to be very
powerful for solving non-convex MINLP problems to global optimality. Nevertheless, these methods
often require the NLP to be solved to global optimality, which is a challenging task for highly nonlinear
relations (e.g., the tanh function of ANNs), and they demand high computational power. Unless the
NLP converges to global optima, the decomposition algorithm may converge to an infeasible point
or even diverge. On the other hand, these requirements do not usually apply to adaptive black-box
optimization methods, with the possible drawback of converging to local optima. As mentioned above,
the solution of the suggested ANN training problem to global optimality is not in the scope of this
work and is left to a future study.

4. Results

The optimization problem given in Equation (4) was solved for the two public datasets considered
in this study. The ANN architecture obtained from Equation (4) is called the optimal superstructure
ANN (designated as OS hereafter) whose performance is compared to the fully connected ANN
(designated as FC hereafter) to show the contribution of the current approach. Unlike FC, OS contains
a significantly smaller number of neurons and connections, produced by eliminating the least effective
or redundant hidden neurons, interconnections, and input variables. In order to test the effect of
sample sizes used in the training process, 10% and 50% samples of the whole dataset were employed
in the processing of FC and OS neural networks. For the Indian Pines dataset, 1082 training samples
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for the 10% sampling ratio and 5173 training samples for the 50% sampling ratio using 200 spectral
bands as inputs were considered for the prediction of 15 LULC classes.

Figure 4 represents the remaining connections within the network with the white color representing
a non-zero value, and thus existing connections, and the black color showing the removed connections
for the network trained with approximately 10% sampling ratio. Whilst Figure 4a shows the connections
between input and hidden layers, Figure 4b shows the connections between hidden and output layers.
It can be noticed easily that no hidden layer node was removed from the network; thus, only the
connections were removed by the proposed method. The final structure of the network was estimated
as 158-10-15, indicating that 42 inputs (i.e., spectral bands) that have no connection to any hidden
neuron were eliminated, represented by a black column in Figure 4a. On the other hand, 1271 of
2,150 connections, representing 61% of the total connections, were also removed from the network to
simplify the network and improve its generalization capabilities.
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For the 50% sampling ratio, an optimal network superstructure with dimensions of 147-9-15
was calculated through the proposed approach, resulting in a significant reduction compared to the
fully connected network of 200-10-15. The result of the process is given in Figure 5, showing the
ultimate connections in the network between input and hidden layers, and hidden and output
layers, respectively.
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Note that, due to the linking constraints in Equation (4), the connections to and from a neuron
are eliminated once a particular neuron is eliminated. In that case, the connection to and from the
hidden neuron nine was removed, shown as a black row in Figure 5a,b. Therefore, it can be said that
there is no information flow through the corresponding neuron. Similarly, 53 inputs that have no
connection to any hidden neuron were eliminated, represented by a black column in Figure 5a. As a
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result, a considerable number of connections were removed from the network. To be more specific,
1413 of 2150 connections (i.e., almost 66% of the total connections) were removed from the network.

In order to show the position of the eliminated inputs (i.e., spectral bands), mean spectral
signatures of 15 LULC classes in the Indian Pines dataset were extracted from the ground reference and
the eliminated 53 bands for the 50% sampling ratio were depicted on the figure with vertical lines for
further analysis (Figure 6). Perhaps the most striking result is that the proposed method removed the
spectral bands adjacent to the previously eliminated noisy bands from the original datasets. It was also
noticed that the algorithm detected some spectral ranges (e.g., 764–898 nm, 1004–1071 nm, 1205–1322
nm, 1591–1660 nm) as more beneficial compared to the others for discriminating the LULC classes.
However, the spectral bands at the ranges of 918–1004 nm and 1501–1591 nm that indicate similar
reflectance measures with the remaining ones were eliminated. Therefore, it can be concluded that the
proposed algorithm removed the bands carrying similar information by considering the change or
trend in the spectral curves. It is clear from the figure that most of the vegetation types have similar
spectral signatures, but they have a varying range of reflectances at blue, green, near-infrared, and
shortwave infrared (~1500–1700 nm) regions. The distinct spectral signature of stone-steel towers class
can be also noticed.
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For the analyses of the OS and FC networks using the test datasets, individual and overall
accuracy measures were calculated (Table 4). While the F-score measure indicating the harmonic
mean of user’s and producer’s accuracies was estimated for individual class accuracy assessment,
overall accuracy (OA), Kappa, and weighted Kappa coefficients were used to evaluate the accuracy of
the thematic maps. When the 10% sampling strategy was employed, the total number of connections in
the network decreased from 2,150 to 879, indicating a 61% shrinkage. Although the network was highly
compressed, the overall accuracy increased by about 4%, Kappa and weighted Kappa coefficients
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increased by about 5%. The performance of the FC network dropped, which is obviously a result
of the occurrence of overfitting (over 99% overall accuracy on the training data). In the case of OS,
the network was prevented from overfitting to training data. On the other hand, for the 50% sampling
case, the overall accuracy decreased from 83.80% to 82.72%, indicating only a 1% decrease in the
classification performance by decreasing the size of the network by about 66%. Similar results were
calculated for Kappa and weighted Kappa coefficients.

Table 4. Classification accuracies obtained by different training sample sizes for the Indian Pines
hyperspectral dataset using fully connected (FC) and optimal superstructure (OS) networks.

Class
10% of Samples 50% of Samples

Train
Pixels

F-Score
(FC)

F-Score
(OS)

Train
Pixels

F-Score
(FC)

F-Score
(OS)

Alfalfa 22 48.48 64.10 27 77.55 87.27
Corn-notill 144 68.81 74.94 717 78.84 79.77
Corn-min 84 54.30 57.47 417 74.64 70.79

Corn 24 47.72 53.14 117 59.23 64.80
Grass-pasture 50 74.40 76.48 248 88.29 83.86

Grass–trees 75 88.08 87.03 373 92.95 91.72
Grass-pasture-mowed 19 9.92 40.00 13 81.48 92.31

Hay-windrowed 49 90.02 95.34 245 95.35 97.75
Soybean-notill 97 67.00 74.31 484 79.84 79.79
Soybean-min 247 74.84 76.08 1234 84.34 80.97

Soybean-clean 62 54.70 65.03 307 82.93 78.42
Wheat 22 82.90 85.86 106 93.90 92.73
Woods 130 88.54 89.72 647 92.03 92.73

Bldg–Grass–Trees–Drives 38 45.41 62.15 190 67.91 69.54
Stone-Steel towers 19 74.59 81.44 48 95.92 91.11
Overall Acc. (%) 71.98 76.37 83.80 82.72

Kappa 0.680 0.730 0.815 0.802
Weighted kappa 0.715 0.753 0.848 0.850

When individual class accuracies estimated for each class were analyzed, some important
results were obtained. Firstly, both FC and OS networks produced highly accurate results for
some classes, namely grass–trees, hay-windrowed, wheat, woods, and stone-steel towers. However,
networks performed poorly for two particular classes, namely corn, and building–grass–trees–drives.
The corn class was mostly confused with other corn related classes (i.e., corn-notill and corn-min).
The confusion was severe for the fully connected network, producing a 9.92% F-score value for
grass-pasture-mowed class, which clearly shows failure in the delineation of this particular cover
type. The negative effects of limited and imbalanced data can be easily seen from this class since
individual class accuracy varies by about 30% for the 10% sampling case and 11% for the 50% sampling
case. The building–grass–trees–drives class covering buildings and their surrounding pervious and
impervious features were mainly mixed with the woods class that resulted in a decrease in classification
accuracy. Thematic maps produced for the whole dataset using FC and OS networks trained with 50%
of whole samples are shown in Figure 7. Misclassified pixels, particularly for the corn related ones,
can be easily observed from the comparison of the thematic maps.
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Figure 7. Classification results using (a) FC and (b) OS networks with 50% of the samples for the Indian
Pines dataset.

For the Pavia University dataset, a fully connected network of 103-10-9 was optimized throughout
the training process to learn the characteristics of the nine LULC classes from 103 spectral bands,
and networks of 69-10-9 and 69-7-9 were found optimal in terms of its size and performance for the
10% and 50% sampling ratios, respectively. For the 10% sampling ratio, 697 of 1120 connections were
removed from the network, showing a 58% shrinkage. For the 50% sampling ratio, 718 of 1120 links
were removed from the network, indicating a 64% shrinkage in the network. For both sampling cases,
34 inputs were removed, indicating a feature selection rate of 33%. In other words, the fully connected
network was trimmed by an average of 61%, and 33% of the spectral bands were disregarded as
a result of the input selection process. The eliminated and remaining network connections for the
10% sampling ratio were shown in Figure 8. It can be noticed that a comparably smaller number of
connections were removed between hidden and output layers, and none of the hidden layer nodes
were removed by the proposed algorithm.
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Figure 8. Eliminated (black) and remaining connections (white) for Pavia University (a) between input
and hidden neurons, and (b) between hidden and output neurons for 10% sampling ratio.

Figure 9 shows the final network connections between the layers for the case of the 50% sampling
ratio. The removal of three hidden neurons, namely seven, eight, and nine can be easily noticed from
the figure (black horizontal lines). Similar to the results produced for the 10% sampling ratio, a smaller
number of connections were removed between hidden and output layers.
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For a clear explanation of the eliminated spectral bands, mean spectral signatures of the classes in
Pavia University data were obtained from the ground reference and the location of the eliminated 34
spectral bands for the 50% sampling ratio were shown on the same figure with vertical lines (Figure 10).
Similar results with the Indian Pines dataset were observed for the elimination of spectral bands as
the highly correlated neighboring bands introducing similar reflectance values were mostly removed
from the dataset. The method determines the spectral regions of 573–607, 704–742, and 793–822 nm
as discriminating ones for the delineation of the characteristics of the LULC classes. In addition,
it removed the spectral bands in the ranges of 468–527 and 607–653 nm. It can be observed that
green and red-edge bands were mainly selected for the modeling of the problem. Spectral signature
curves also revealed that there were high resemblances between bitumen and asphalt classes, also
between gravel and self-blocking bricks classes. Metal sheets and shadow classes had distinct spectral
reflectances compared to the other classes. On the other hand, a typical vegetation curve was observed
for trees and meadows.Remote Sens. 2020, 11, x FOR PEER REVIEW 14 of 19 
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After the training stage for the FC and OS networks, the test data including the rest of the
ground reference data for Pavia University were introduced to those networks, and corresponding
network performances were presented in Table 5. With the 10% sampling ratio, the overall accuracy
of 87.26%, and a Kappa coefficient of 0.830 were obtained with the optimal superstructure network
(OS) while overall accuracy of 84.63% and a Kappa coefficient of 0.796 was achieved by the fully
connected network (FC). This clearly shows the robustness of the proposed method, producing about
4% improvement in classification accuracy. With the 50% sampling ratio, the overall accuracy of 89.21%
and the Kappa coefficient of 0.856 was obtained with the optimal superstructure network (OS) while
the fully connected network (FC) achieved an overall accuracy of 90.76% and Kappa coefficient of
0.877. The accuracy decrease was about 1% for overall accuracy. From these results, it can be stated
that the proposed method performs well for a fewer number of samples.

Table 5. Classification accuracies obtained by different training sample sizes for the University of Pavia
hyperspectral dataset using FC and OS networks.

Class
10% of Samples 50% of Samples

Train
Pixels

F-Score
(FC)

F-Score
(OS)

Train
Pixels

F-Score
(FC)

F-Score
(OS)

Asphalt 668 80.24 86.84 3276 90.47 88.56
Meadows 1872 93.18 93.68 9366 95.38 95.07

Gravel 188 65.31 70.87 1032 78.57 72.31
Trees 306 90.28 91.00 1520 93.13 93.48

Painted metal sheets 135 99.34 98.84 670 99.12 99.34
Bare soil 513 75.28 76.47 2529 83.27 80.99
Bitumen 132 62.38 72.23 660 84.66 76.77

Self-blocking bricks 373 70.43 75.03 1860 80.94 77.32
Shadows 91 84.69 91.23 475 94.04 90.85

Overall Acc. (%) 84.63 87.26 90.76 89.21
Kappa 0.796 0.830 0.877 0.856

Weighted kappa 0.813 0.864 0.867 0.871

When the individual class accuracies measured by the F-score accuracy measure were analyzed,
it was noticed that the lowest accuracies were estimated for the gravel class that was mainly confused
with the self-blocking bricks for both FC and OS networks. Similarly, bitumen pixels were confused
with asphalt pixels. This is certainly related to the spectral similarity of the corresponding classes
that can be easily observed from the mean spectral reflectance curves (spectral signatures) given in
Figure 10. The highest individual class accuracy was achieved for the metal sheets class (over 99%),
which has a distinct spectral signature compared to the other classes. The trained networks using
the 50% sampling ratio were applied to the whole image to produce the thematic maps of the study,
which is presented in Figure 11. Confusion in the class definition for the above-mentioned classes
can be observed clearly from the figure. The mixture of gravel and self-blocking bricks pixels is quite
obvious in the thematic map produced with the OS network (Figure 11b). Moreover, misclassified
pixels within the meadows and asphalt fields are in the form of “salt-and-pepper” noise.

Performances of the FC and OS networks for both datasets were summarized in Table 6. For the
considered datasets, no hidden neuron was removed from the networks when limited training data
(only 10% of the whole datasets) were considered. When the 50% sampling ratio was employed in
the training phase, one hidden neuron was eliminated from the FC network for the Indian Pines
data and three hidden neurons were removed for the Pavia University data. Smaller networks were
found sufficient to learn the underlying characteristics of the LULC classes, and for both cases, the
initial networks were trimmed by about 60% in terms of the total number of links, which can be
regarded as a success of the proposed algorithm. In addition, a considerable number of inputs (i.e.,
spectral bands) were removed from the datasets, achieving even better classification performances
(about 4% overall accuracy difference). With the implementation of the proposed superstructure
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optimization, the networks avoided overfitting, thus producing higher classification accuracies for
the limited training data (i.e., 10% sampling ratio). It should be mentioned that the FC networks had
low generalization capabilities, producing very high accuracy for the training data but comparatively
lower accuracies for the test data. The obtained results are promising for the proposed algorithm,
being a good alternative to feature selection methods, especially the statistical ones. γ

∑
diag

(
covp

)
values in the table indicate the level of overfitting that occurred in the training process. The computed
values were much higher for the fully connected networks, particularly the one calculated for the
Indian Pines data. Finally, it should be also mentioned that the multiply accumulates (MACS) are
directly proportional to the number of connections; therefore, they can be estimated from Table 6.
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networks were trimmed by about 60% in terms of the total number of links, which can be regarded 
as a success of the proposed algorithm. In addition, a considerable number of inputs (i.e., spectral 
bands) were removed from the datasets, achieving even better classification performances (about 4% 
overall accuracy difference). With the implementation of the proposed superstructure optimization, 
the networks avoided overfitting, thus producing higher classification accuracies for the limited 
training data (i.e., 10% sampling ratio). It should be mentioned that the FC networks had low 
generalization capabilities, producing very high accuracy for the training data but comparatively 
lower accuracies for the test data. The obtained results are promising for the proposed algorithm, 
being a good alternative to feature selection methods, especially the statistical ones. 𝛾∑𝑑𝑖𝑎𝑔 𝑐𝑜𝑣  
values in the table indicate the level of overfitting that occurred in the training process. The computed 
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Figure 11. Classification results using (a) FC and (b) OS networks with 50% of the samples for the
Pavia University dataset.

The comparison of the CPU times of different sampling ratios for the two datasets is given in
Table 7. All the results were obtained using an Intel Core i5-6400 CPU 2.7 GHz 4 core 16 Gb RAM
machine using a Linux operating system. It was observed that the CPU times of the proposed training
method were larger than the FCs because of the MINLP programs. MINLPs are known to be NP-hard
and cannot be solved in polynomial time, whereas standard training algorithms (NLPs) are P-only
types. Therefore, the required computational time can be much higher for the proposed method.
On the other hand, reduced and optimal ANN structures should result in faster CPU times since the
number of required multiplication operations is much lower, which might also be a beneficial feature
for testing larger ANNs, e.g., deep neural networks.
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Table 6. Performance comparison and network architecture for FC and OS for 10% and 50% samples.
Note that OA indicates overall accuracy.

Indian Pines Pavia University

10% Sample 50% Sample 10% Sample 50% Sample

FC OS FC OS FC OS FC OS

OA (training) 99.91 97.04 90.37 86.45 99.53 92.10 92.06 90.23
OA (test) 71.98 76.37 83.80 82.72 84.63 87.26 90.76 89.21

γ
∑

diag
(
covp

)
6.57 0.08 9.80 0.11 2.34 0.04 1.01 0.03

Number of hidden neurons 10 10 10 9 10 10 10 7
Number of inputs 200 158 200 147 103 69 103 69

Number of connections 2150 879 2150 737 1120 423 1120 402

Table 7. CPU time comparison for FC and OS for 10% and 50% sampling ratios.

Indian Pines Pavia University

10% Sampling 50% Sampling 10% Sampling 50% Sampling

FC OS FC OS FC OS FC OS

Training (s) 41.5 7213 65.3 10823 40.2 5418 63.7 9036

Test (s) 0.015 0.010 0.007 0.005 0.05 0.03 0.02 0.01

5. Conclusions

This study investigates the optimal training of multi-layer perceptrons through formulating
and solving a mixed-integer non-linear optimization problem, delivering a significant reduction
in the number of network connections, neurons, and input variables. It differs from the other
methods proposed in literature as it introduces both a strong and general mixed-integer programming
method for optimal structural design and allows automatic and simultaneous design and training.
This feature is particularly advantageous since the presence of redundant inputs and connections
decreases the prediction performance of the ANNs and increases the computational load for training.
Furthermore, classical input selection (i.e., feature selection) and pruning methods, including dropout
layers into deep neural networks, usually require many sequential iterations between design and
training instead of automatic and simultaneous design and training. Two classification case studies
with two sampling ratios (10% and 50% sampling ratios), namely Indian Pines and Pavia University
datasets, were considered as benchmark test sites, and the results showed that optimal ANN structures
contained a significantly lower number of inputs, connections, and neuron numbers. To be more
specific, although about 60% of the network connections and 25% of the inputs (i.e., spectral bands)
were removed by the proposed algorithm, superior classification performances (~4% in terms of overall
accuracy) were achieved with the estimated optimal superstructure for the case of limited training
samples (10% of the whole samples). It was observed that the method eliminated the least effective
and correlated spectral bands that have an insignificant or trivial contribution to the delineation of the
LULC characteristics. To the best of authors’ knowledge, this paper is the first application of such an
automatic and optimal design and training method for MLP type neural networks for classification
problems. Finally, the method presented in this work can be applied using global optimization
algorithms for further enhancement in terms of the prediction performance of ANNs. Moreover,
reduced and optimal ANN structures should result in faster CPU times, since the number of required
multiplication operations is much smaller, which could be a beneficial feature for testing larger ANNs,
e.g., deep neural networks.
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