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Abstract: Oil spill detection plays an important role in marine environment protection.
Quad-polarimetric Synthetic Aperture Radar (SAR) has been proved to have great potential for this
task, and different SAR polarimetric features have the advantages to recognize oil spill areas from
other look-alikes. In this paper we proposed an oil spill detection method based on convolutional
neural network (CNN) and Simple Linear Iterative Clustering (SLIC) superpixel. Experiments were
conducted on three Single Look Complex (SLC) quad-polarimetric SAR images obtained by
Radarsat-2 and Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR).
Several groups of polarized parameters, including H/A/Alpha decomposition, Single-Bounce
Eigenvalue Relative Difference (SERD), correlation coefficients, conformity coefficients, Freeman
3-component decomposition, Yamaguchi 4-component decomposition were extracted as feature sets.
Among all considered polarimetric features, Yamaguchi parameters achieved the highest performance
with total Mean Intersection over Union (MIoU) of 90.5%. It is proved that the SLIC superpixel
method significantly improved the oil spill classification accuracy on all the polarimetric feature sets.
The classification accuracy of all kinds of targets types were improved, and the largest increase on
mean MIoU of all features sets was on emulsions by 21.9%.

Keywords: oil spill; Synthetic Aperture Radar; polarimetric decomposition; superpixel; convolutional
neural networks

1. Introduction

Marine environment plays a crucial part in global ecosystems. Oil spill is one of the main marine
pollution, which will cause serious damage to ocean ecology and resources. In 2010, the accident of
the Gulf of Mexico oil spill lasted for about three months. Beaches and wetlands in many states of
the United States were destroyed and local marine organism was devastated [1]. Thus it is necessary
to monitor sea surface and detect oil spill. Remote sensing plays a crucial role in achieving this goal,
and relevant methods have been effectively applied to oil spill detection.

Space-borne Synthetic Aperture Radar (SAR) is widely applied for oil spill detection due to its
all-weather and all-time ability and wide area coverage. Full polarization SAR data provides four
channels according to the transmit and receive mode of radar signal and they are HH, HV, VH and VV
channels. The clean sea can be regarded as a rough surface, while the smooth oil spill layer usually
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floats on the water surface, existing as dark spots since it dampens capillary waves, short gravity waves
and Bragg scattering [2]. The general steps for oil spill detection are divided into:(1) spot extraction,
(2) feature extraction, (3) classification [3]. Early researches mainly focused on textual information of
dark spots area. Several textual features including first invariant planar moment and power-to-mean
ratio were extracted from SAR data, supplemented by statistical model or machine learning, to perform
oil spill detection [4,5]. Some experiments were carried out to perform oil spill detection on different
band SAR images [6,7]. Yongcun Cheng et al. used VV channel data acquired by COSMO-SkyMed to
monitor oil spill and simulate a model [8]. M. Migliaccio et al. proposed a multi-frequency polarimetric
SAR processing chain to detect oil spill in the Gulf of Mexico, and has been applied successfully [1].
These methods could successfully distinguish oil spill area from sea surface, and they are known as
mature classification algorithms.

However, several environmental factors including low-speed winds, internal wave and biogenic
films also appear as dark spots in SAR images [9], and they are called look-alikes. The most challenging
thing of oil spill detection from SAR images is to distinguish the oil spill area from these look-alikes.
That is the main obstacle of the early researches of texture analysis focused on single pol-SAR data.
Oil spill area may experience complex deformation on the sea surface, which is easy to be confused
with look-alikes. Moreover, a large amount of data are required for texture analysis. These problems
become major hindrances for high-accuracy oil spill detection. With the new development of SAR
satellites in recent years, the research focus of oil spill detection began to incline to dual-pol or quad-pol
SAR image, and the derived compact SAR [10], which not only retain texture characteristics of dark
spots area, but also provide a lot of polarized information. Polarimetric decomposition essentially
reflects the scattering modes of microwave on the sea surface, which highlights the subtle differences
of different ocean objects [11]. Many polarized parameters extracted from different SAR channels
has been proved to have great ability to perform high accuracy oil spill detection [12–15]. On the
perspective of polarized feature, S. Skrunes used k-means classification method to detect oil spill area on
several polarized parameters [16]. With the rise of machine learning algorithms in recent years, neural
networks have also been applied into oil spill detection. Yu Li et al. performed several comparative
experiments between different machine learning classifiers based on multi polarized parameters [17],
and the differences between fully and compact polarimetric SAR images [18] were explored.

Meanwhile, as a classical feedforward neural network, convolutional neural network (CNN)
is widely used in image classification and recognition. Since it was proposed in 1989, CNN has
experienced many improvements and changes, and derived several classic network structures such as
Inception, Resnet and Cliquenet [19–21]. Min Lin et al. used the global average pooling (GAP) layer to
replace the fully connection layer to reduce the parameter amount in 2014 [22]; Andrew Howard et al.
put forward the depthwise separable convolution in MobileNet [23,24], which can maintain high
accuracy even when the amount of parameters and calculation is reduced.

In 2015, Jonathan Long et al. proposed a fully convolutional network (FCN) with transposed
convolution for image semantic segmentation [25]. The end-to-end operation is implemented with
an encoder-decoder structure, and the classification prediction is given for each pixel on the image.
The concept of dilated convolution into semantic segmentation in 2016, and it greatly improved
classification accuracy [26]. Follow by that, advanced models have been developed for high precision
segmentation, and they are Unet, Linknet and Deeplab series [27,28]. The encoder-decoder structure of
semantic segmentation model based on CNN has been used in oil spill detection in recent studies [29,30],
and achieved high accuracy. With the application of TerraSAR-X and other SAR satellites, dual-polarized
SAR images are also introduced into oil spill detection. Daeseong Kim et al. extracted polarized
parameters from dual-pol TerraSAR-X images, successfully mapped oil spill area with artificial neural
networks [31].

The concept of superpixel is an image segmentation technology proposed in 2003 [32]. It refers to
an irregular pixel block with certain visual significance. It is composed of adjacent pixels with similar
texture, color brightness and other characteristics. The similarity of features between pixels are used to
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form a group of pixels, and image are expressed by a small number of superpixels. Superpixel greatly
reduces the complexity of image post-processing, and it is used as a pre-processing step for image
segmentation algorithm. Simple Linear Iterative Clustering (SLIC) is a widely used superpixel
segmentation method [33], and has been introduced into some SAR scenes. Some researchers also use
multi-chromatic analysis to perform target detection and analysis on SAR images [34,35].

Many current oil spill detection methods only divided images into oil or non-oil areas, which may
cause false alarm and cannot recognize every target on the sea surface. The classification method
combining neural networks also could not distinguish oil spill and look-alikes well, while the flexible
structure of CNN provides the possibility to solve these problems. It allows a variety of parameters input,
can simultaneously take into account the task of dark spots extraction and classification and identify
every target on the sea surface. In this paper we proposed an oil spill detection method using SLIC
superpixel and semantic segmentation algorithm based on CNN, combining several convolution kernels
including dilated and depthwise separable convolution. It allows multiple-parameters input and realize
pixel-level oil spill area classification, which finally realize further accuracy improvement. We carried
out experiments on five groups of polarized parameters extracted from SLC quad-polarimetric SAR
data of Radarsat2 and Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar(SIR-C/X-SAR),
and evaluated the classification results of superpixel segmentation combined with polarized parameters.
The experiments results show that our method could effectively extract and classify dark spots on a SAR
image. SLIC superpixel could further improve classification accuracy of oil spill area, and Yamaguchi
4-component decomposition combined with SLIC superpixel classification is considered the most
suitable parameters for oil spill detection in our case.

2. Materials and Methods

2.1. Overall Framework

The flowchart of our oil spill detection method is illustrated as Figure 1. The four channels data
was processed by Lee refined filter firstly, and different polarized parameters were then extracted
from these four channels. All polarized parameters used in our experiments are divided into five
groups according to different scattering principles and calculation methods. For monostatic SAR
system, reciprocity always holds, which means that the complex scattering coefficient obeys HV = VH.
For this reason, HV is considered for cross polarization channel in the analysis. Three channel data
should be used to generate image in CIElab color space for SLIC superpixel model. We choose data of
HH, HV and VV channel to do it, since co-polarized channels (HH/VV) data contains more polarized
information than cross-polarized channels (VH/HV) [36]. The HH, HV and VV data were also used
to calculate SLIC superpixels. Sections 2.2 and 2.3 explains the method used to extract polarized
parameters and they are both set as the input of neural network models. The neural network is
composed of an encoder and a decoder section. The output of the neural network is segmentation
results of oil spill detection.

We designed a semantic segmentation model based on CNN as the classifier, as shown in Figure 2.
The dims in the diagram represents the number of polarization parameters, since multiple polarization
modes are applied in our work, the network parameters will be adjusted according to the parameter of
dims. The depthwise separable convolution and dilated convolution was used in several layers in the
bottom parts. The subsequent encode task is completed by standard convolution layer. Green blocks
represent a skip connection structure similar to residual learning [19], in order to make top layers
accessible to the information from bottom layers and help train the network easier. The feature maps
extracted by encoder is decoded by progressive transposed convolution layers, and skip connection
is also applied to absorb more features. The specific principle and implementation of network are
explained in Section 2.4 in detail.

The different polarized parameters groups and superpixel segmentation results will be combined
to input into the neural networks for training. The output is the result of oil spill detection. Finally,
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Mean Intersection over Union (MIoU) was calculated between segmentation result and annotation
images to evaluate the accuracy.Remote Sens. 2019, 11, x FOR PEER REVIEW 4 of 28 
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Figure 2. Structure of neural networks in our segmentation method. Blue and green blocks donate
encoder parts, which consist of multi convolution layers, here we used depthwise separable convolution,
dilated convolution and standard convolution as filter kernel, respectively. Purple-red blocks constitute
the decoder part, it outputs a classification map with the same size as original image.
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2.2. Polarimetric Decomposition

The whole process of extracting polarimetric parameters is shown in Figure 3. The boxes are
different polarized parameter combinations for classification. This section will explain the calculation
method of different polarized parameters in the followings.
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Figure 3. Polarized parameters extraction. We extracted 13 polarized parameters in total. They are
divided into five groups as the position of the box in the figure, each group was input into neural
network for classification.

2.2.1. H/A/Alpha Decomposition

The scattering matrix of a fully polarimetric SAR image can be expressed as

S =

 SHH SHV

SVH SVV

 =  |SHH |e j∅HH
|SHV |e j∅HV

|SVH |e j∅VH
|SVV |e j∅VV

, (1)

where |SXX| and ∅XX represent the amplitudes and phases of the complex scattering coefficients, each
complex element donates a polarization component. The two crossed-polarized terms are identical in
Radarsat-2, i.e., SHV = SVH.

Polarization covariance matrix C and coherency matrix T contain abundant physical information of
polarization characteristics of ocean objects. Cloude and Pottier outlined a scheme for parameterizing
polarimetric scattering problems based on matrix T in 1997, the covariance matrix can be derived by

C3 =


〈S2

HH〉 〈
√

2SHHS∗HV〉 〈SHHS∗VV〉

〈
√

2SHVS∗HH〉 〈2S2
HV〉 〈

√
2SHVS∗VV〉

〈SVVS∗HH〉 〈
√

2SVVS∗HV〉 〈S2
VV〉

, (2)

where ∗ represents conjugate, 〈 〉 stands for multilook with an average window (we set the window
size to 3, the same is true in later equations). The expression of matrix T is listed as follow:

T3 = 1
√

2


〈|SHH + SVV |

2
〉 〈(SHH + SVV)(SHH + SVV)

∗
〉 〈(SHH + SVV)(2SHV)

∗
〉

〈(SHH + SVV)
∗(SHH + SVV)〉 〈|SHH + SVV |

2
〉 〈(SHH − SVV)(2SHV)

∗
〉

〈(SHH + SVV)
∗(2SHV)〉 〈(SHH + SVV)

∗(2SHV)〉 〈

∣∣∣(2SVV)
∣∣∣2〉

, (3)

T3 can be transformed into C3 according to formula C = ATTA, A = 1
√

2


1 0 1
1 0 −1
0
√

2 0

, it can also be

expressed in another form

T3 = U3


λ1

λ2

λ3

UH
3 , (4)
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where H donates transpose conjugate, and the formula of U3 is

U3 =


cos(α1)e j∅1 cos(α2)e j∅2 cos(α3)e j∅3

cos(α1) cos(β1)e jδ1 sin(α2) cos(β2)e jδ2 sin(α3) cos(β3)e jδ3

sin(α1) sin(β1)e jγ1 sin(α2) sin(β2)e jγ2 sin(α3) cos(β3)e jγ3

. (5)

The column vectors
→
u1,

→
u2 and

→
u3 of U3 are the eigenvectors of matrix T3, corresponding to

eigenvectors λ1, λ2 and λ3. Cloude decomposition regards the scattering behaviors of targets as the
superposition of three independent scattering behaviors, and the probability of three eigenvectors,
which represents the weights of each basic scattering can be calculated by

Pi =
λi∑3

j=1 λ j
. (6)

The polarimetric entropy describes the randomness of the scattering mechanisms and is defined by

H = −
3∑

i=1

Pi log3(Pi). (7)

The formula of anisotropy is

A =
(P2 − P3)

(P2 + P3)
, (8)

and the mean scattering angle is
α = α1P1 + α2P2 + α3P3, (9)

where αi = arccos(ν j), ν j donates the eigenvalue of T3.

2.2.2. Single-Bounce Eigenvalue Relative Difference

Allain et al. proposed Single-Bounce Eigenvalue Relative Difference (SERD) based on Cloude
decomposition in 2004. The correlation between co-polarized and cross-polarized channels is almost
equal to 0 for sea surface microwave scattering, so the matrix T3 can be simplified as

T3 = K · K∗T =
1
2


〈|SHH + SVV |

2
〉 〈(SHH + SVV)(SHH − SVV)

∗
〉 0

〈(SHH − SVV)(SHH + SVV)
∗
〉 〈|SHH − SVV |

2
〉 0

0 0 〈

∣∣∣(2SHV)
∣∣∣2〉

, (10)

and the eigenvalue of matrix T3 can be calculated by

λ1nos =
1
2

{
〈|S2

HH |〉+ 〈
∣∣∣S2

VV

∣∣∣〉 + √(
〈

∣∣∣S2
HH

∣∣∣〉 − 〈∣∣∣S2
VV

∣∣∣〉 )+ 4|〈SHHSVV〉|
2
}
, (11a)

λ2nos =
1
2

{
〈|S2

HH |〉+ 〈
∣∣∣S2

VV

∣∣∣〉 − √(
〈

∣∣∣S2
HH

∣∣∣〉 − 〈∣∣∣S2
VV

∣∣∣ 〉)+ 4|〈SHHSVV〉|
2
}
, (11b)

λ3nos = 2〈
∣∣∣(SHV)

∣∣∣2〉. (11c)

The first two eigenvalues are related to the co-polarized backscatter coefficient, and the third one is
related to the cross-polarized channel and multiple scattering. Calculate the value of scattering angle
αi according to the eigenvectors corresponding to eigenvalues λ1nos and λ2nos to distinguish the type
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of scattering mechanisms: the eigenvalue corresponds to a single scattering when αi ≤
π
4 , and it is a

double scattering when αi ≥
π
4 . The SERD is defined as

SERD =
λs − λ3nos

λs + λ3nos
, (12)

λs = λ1nos when α1 ≤
π
4 or α2 ≥

π
4 , and λs = λ2nos when α1 ≥

π
4 or α2 ≤

π
4 .

SERD is very sensitive to the surface roughness. A large value of SERD indicates a strong single
scattering in the scattering process of the target, while the small SERD value indicates weak single
scattering. For the high entropy scattering area of oil spill surface, the scattering is composed of many
kinds of scattering mechanisms. Single scattering is not dominant, that is, the SERD value at oil film is
relatively small, and then it can be used for oil spill detection.

2.2.3. Co- and Cross- Polarized Decomposition

This section will introduce two parameters based on the scattering matrix: co-polarized correlation
coefficients and conformity coefficients. Correlation coefficients can be expressed as

ρHH/VV =

∣∣∣∣∣∣∣ 〈SHHSVV
∗
〉

〈S2
HH〉〈S

2
VV〉

∣∣∣∣∣∣∣. (13)

The conformity coefficients were firstly introduced into compact polarimetric SAR to estimate soil
moisture by Freeman et al. [18]. Extending the conformity coefficients to quad-polarimetric SAR, it can
be expressed as

µ =
2(Re(SHHSVV

∗))

|SHH |
2 + 2

∣∣∣(SHV)
∣∣∣2 + |SVV |

2
. (14)

2.2.4. Freeman 3-Component Decomposition

Freeman and Durden [11] proposed a three-component scattering model for polarimetric SAR
data in 1998, and it includes three simple scattering mechanisms: volume (or canopy) scattering,
double-bounce scattering and rough surface scattering. Assuming those three scatter components are
uncorrelated, the scattering process of radar wave on the sea surface can be regarded as the composition
of these three mechanisms, so the model for total backscatter is

〈|SHH |
2
〉 = fs

∣∣∣β∣∣∣2 + fd|α|
2 + fv, (15a)

〈|SVV |
2
〉 = fs + fd + fv, (15b)

〈SHHSVV
∗
〉 = fsβ+ fdα+ fv/3, (15c)

〈|SHV |
2
〉 = fv/3, (15d)

〈SHHSHV
∗
〉 = 〈SHVSVV

∗
〉 = 0, (15e)

where fs, fd and fv are the contribution of surface, double-bounce and volume scattering to the VV
cross section. Once fs, fd and fv are estimated, we can also get contributions of three scatter to HH, HV
and VH channels. α in the formula is defined by

α = e j2(γh−γv)

(RghRth

RgvRtv

)
, (16)

Rth and Rtv donate the reflection coefficients of vertical surface for H and V polarizations, while Rgh
and Rgv are the Fresnel reflection coefficients of horizontal surface. The propagation factors e j2γh and
e j2γv are used to make the model more general, γ represents any attenuation and phase change of the V



Remote Sens. 2020, 12, 944 8 of 26

and H polarized waves when they propagate from the radar to the ground and back again. α = −1
when Re(SHHSVV

∗) is positive, if Re(SHHSVV
∗) is negative, β = 1.

The volume scattering contribution can be calculated directly from Equation (15d). We can
estimate the contribution of each scattering mechanism to the span P

P = Ps + Pd + Pv ≡ (|SHH |
2 + 2|SHV |

2 + |SVV |
2), (17)

with
Ps = fs(1 +

∣∣∣β∣∣∣2), (18a)

Pd = fd(1 + |α|
2), (18b)

Pv = 8 fv/3. (18c)

Then we can use Equations (15)–(18) to calculate the scattering power of three mechanisms: Ps, Pd and
Pv. They are the result of Freeman decomposition.

2.2.5. Yamaguchi 4-Component Decomposition

In 2005, Yamaguchi et al. [12] proposed a four component decomposition method based on
Freeman decomposition, included the helix scattering power as the fourth term for a more general
model, which is essentially caused by the scattering matrix of helices and is mainly used in urban
areas. What is more, Yamaguchi decomposition modify the volume scattering matrix according to the
relative backscattering magnitudes of 〈|SHH |

2
〉 versus 〈|SVV |

2
〉.

Assume the magnitude of the helix scattering power fc, the corresponding magnitude of 〈SHVSVV
∗
〉

becomes fc/4, and the power relation becomes

fc
4

=
1
2

∣∣∣Im(〈SHHSHV
∗
〉+ 〈SHVSVV

∗
〉)

∣∣∣, (19)

and we can get the following five equationsα, β, fs, fd, fv, fc by comparing the covariance matrix element:

〈|SHH |
2
〉 = fs

∣∣∣β∣∣∣2 + fd|α|
2 +

8
15

fv +
fc
4

, (20a)

〈|SHV |
2
〉 =

2
15

fv +
fc
4

, (20b)

〈|SVV |
2
〉 = fs + fd +

3
15

fv +
fc
4

, (20c)

〈SHHSVV
∗
〉 = fsβ+ fdα+

2
15

fv −
fc
4

, (20d)

1
2

Im{〈SHHSHV
∗
〉+ 〈SHVSVV

∗
〉} =

fc
4

. (20e)

fc can be measured directly. The volume scattering coefficient fv is calculated by

fv =
15
2

(
〈|SHV |

2
〉 −

fc
4

)
, (21)

α and β is calculated as the same way as Freeman decomposition, so we can get contribution of four
mechanisms: fs, fd, fv and fc. The scattering powers Ps, Pd, Pv and Pc corresponding to surface, double
bounce, volume and helix scattering contributions can be obtained by

Ps = fs(1 +
∣∣∣β∣∣∣2), (22a)

Pd = fd(1 + |α|
2), (22b)
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Pv = fv, (22c)

Pc = fc, (22d)

P = Ps + Pd + Pv + Pc ≡ (|SHH |
2 + 2|SHV |

2 + |SVV |
2), (23)

Ps, Pd, Pv and Pc are the results of Yamaguchi decomposition.

2.3. SLIC Superpixel

The superpixel algorithm was first proposed in 2003 by Xiaofeng Ren et al. [32]. Adjacent pixels
with the same attribute are divided in one region (one superpixel) and then the whole image can be
indicated by a certain number of superpixels, which allows better performance for subsequent image
processing. SLIC adopted k-means algorithm to generate superpixels. The algorithm limited the
search space to a region proportional to the size of superpixels, and reduced the number of distance
calculation in optimization and the linear complexity of pixels.

The SLIC segmentation result relies only on the number of superpixels k. Each superpixel has
approximately the same size. These k initial cluster centers are sampled on a regular grid with S pixel

intervals. S can be calculated by S =
√

N
k , where N is the number of pixels.

Each pixel i is assigned with the nearest clustering center if their search area could overlap its
position, then SLIC allows faster clustering than traditional k-means does. The distance measurement
D′ determines the closest clustering center Ck for each pixel i. The expected spatial range of the
superpixel is an area of approximate size S× S. A similar pixel search is performed in the area 2S× 2S
around the center of the superpixel.

SLIC realizes the above steps based on labxy color image plane space. The value of the pixel is
expressed as [l a b]T in CIELab color space. However, the position [x y]T of the pixel changes with the
size of the image. In order to combine them into a single measurement, we need to standardize the
color proximity and spatial proximity by their maximum distances Nc and Ns in the cluster. Then D′

can be calculated by

dc =

√(
l j − li

)2
+

(
a j − ai

)2
+

(
b j − bi

)2
, (24a)

ds =

√(
x j − xi

)2
+

(
y j − yi

)2
, (24b)

D′ =
√
(dc/Nc)

2 + (ds/Ns)
2, (24c)

where Ns = S =
√

N
k . When Nc is fixed as a constant m, the Equation (24c) can be listed as the

following:

D′ =
√
(dc/m)2 + (ds/S)2, (25)

where dc =

√(
l j − li

)2
in gray-scale. m allows us to balance the relative importance between Nc and Ns.

When m increases, the superpixel result depends more on the degree of spatial proximity.
Once each pixel has been associated with the nearest cluster center, the update step adjusts the

cluster center to the average vector of all pixel. L2 norm is used to calculate the residual error E between
the new and the previous cluster center position. The allocation and iterative process ends when E is
less than the setting threshold. In our experiments, we transform the HH, HV and VV channel SAR
data to labxy color space for superpixel calculation.

2.4. Semantic Segmentation Algorithm

We constructed a refined segmentation method based on CNN to perform oil spill detection.
The structure used in our network will be described in details in the followings.
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2.4.1. Convolutional Layer and Dilated Convolution

CNN has been widely used in image classification and object detection for its good generation
ability. Compared with traditional neural networks, CNN imitates the human visual nerve and allows
automatic feature extraction. Two main processes in the training of CNN are forward propagation and
backward propagation. Forward propagation expresses the transmission of characteristic information,
while backward propagation mainly uses error information to correct model parameters.

Convolutional layer is the core component of CNN. In forward propagation, it sets up a filter
kernel to slide on the input tensor and obtain image features, the number of layers of these kernels
equals to the input tensor. Convolution operations can be expressed as

yi j = f
(∑m

i=1

∑n

j=1
xi jθk + bk

)
, (26)

θk and bk are weights and biases that need to be trained in neural networks, while f (∗) represents
the activation function, herein Rectified Linear Units(ReLU) function and tanh() function were used,
and their equations are

f (x) = max(0, x), (27)

tanh(x) =
sinh(x)
cosh(x)

=
ex
− e−x

ex + e−x . (28)

The backward propagation process of neural networks depends on the backward derivation of
the output layer (loss function) and the calculation of errors. The parameter adjustment is further
optimized by the error function, and Adam optimizer was adopted in this paper. It adjusts the value of
weights and biases iteratively, which allows little error of the output of neural networks. The gradient
of output layer transfer between convolutional layers can be expressed as

δl =
∂J(W, b)
∂zl

=
∂J(W, b)
∂al

� σ′
(
zl
)
, (29)

where al donates the output tensor of layer l and zl = Wlal−1 + bl, and σ
(
zl
)

is the formula of

convolution. � donates the Hadamard product. If matrix A = [a1, a2, · · · , an]
T and B = [b1, b2, · · · , bn]

T,
A� B = [a1b1, a2b2, · · · , anbn]

T. J(W, b) is the loss function between output tensor and ground truth.
In our case we used the cross entropy, which is described by

H(p, q) = −
n∑

i=1

p(xi) log(q(xi)), (30)

p(xi) and q(xi) donate the probability of xi classification of the output and ground truth.
The recurrence relation between layer l and layer l− 1 is

zl = al−1
∗Wl + bl = σ

(
zl−1

)
∗Wl + bl. (31)

Then the gradient of layer l− 1 is

δl−1 =

(
∂zl

∂zl−1

)T

δl = δl
∗ rot180

(
Wl

)
� σ′

(
zl−1

)
, (32)

where rot180() means that the convolution kernel is rotated 180 degrees when the derivative is
calculated, and the gradients of all layers can be calculated. Assuming that the gradient after t iterations
is gt = δl(t), the exponential moving average of the gradient is calculated by

mt = β1mt−1 + (1− β1)gt, (33a)
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where β1 is the exponential decay rate. The exponential moving average of gradient square is

vt = β2vt−1 + (1− β2)gt
2. (33b)

Revised mt and vt as the formula
m̂ =

mt

1− β1
t , (33c)

v̂ =
vt

1− β2t . (33d)

Then the formula for updating parameters is

θt = θt−1 − α ∗
m̂
√

v̂ + ε
, (33e)

where α represents the learning rate.
In our paper, dilated convolution is applied to extract features from input layer, which adopts

inject holes into traditional convolutional kernels and it can increase the reception field. The difference
between standard kernel and dilated kernel is represented in Figure 4. The kernel will slide from left to
right, top to bottom on the image. As shown in Figure 4a, the red points are standard kernel. For dilated
kernel (see Figure 4b), several inject holes highlighted as blue or dark blue points were added. The values
at these points are set as 0. Only values at red points are calculated. Suppose k : Ωr → R, Ωr = [−r, r]2

is a discrete filter with the size of (2r + 1)2, the discrete convolution operator can be defined as

(F ∗ k)(p) =
∑

s+t=p
F(s)k(t). (34)

When l is a dilation factor, ∗l should be defined as

(F ∗l k)(p) =
∑

s+lt=p

F(s)k(t). (35)

That is the calculation formula of dilated convolution.
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Figure 4. Convolution kernels for (a) standard kernel, which has a receptive filed of 3× 3, and (b) dilated
kernel with dilation rate = 2, and its receptive field is 7× 7.

2.4.2. Depthwise Separable Convolution with Dilated Kernel

Suppose the size of input tensor is N ×H ×W ×C and there is a h ×w × k convolution kernel,
the output of this layer would be an N×H×W× k tensor when pad = 1 and stride = 1. The whole
process needs h×w× k×C parameters and h×w× k×C×H×W times multiplication.
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Depthwise separable convolution decomposes traditional convolution layer into a depthwise
convolution and a pointwise convolution. Depthwise process divides the N×H×W×C size input tensor
into C groups. A convolution operation with a h×w kernel is carried out on each group. This process
collects the spatial feature of each channel, i.e., depthwise features. The output N×H×W×C size
output tensor is operated by a traditional 1× 1× k convolution kernel, which extract the pointwise
feature from each channel. Its output is also a N×H×W× k. size tensor. Depthwise and pointwise
can be regarded as a convolution layer with much lower amount of computation. The two processes
need (H×W×C) × (k + h×w) times multiplication in total.

In order to combine the reception field of dilated convolution with the calculated performance of
depthwise separable convolution, we adopt the strategy of adding holes into depthwise convolution
kernel in several bottom layers of neural network.

2.4.3. Transposed Convolution

Transposed convolution, also known as deconvolution, is often used as decoder in neural networks.
In the semantic segmentation task, transposed convolution upsample the feature map extracted by
convolution layer. The final output is a fine classification map with the same size as the original
image. In fact, it transposes the convolution kernel in the ordinary convolution we used in the encoder
section and inverts the input and output. For example, Figure 5 shows a highly condensed feature map
extracted by multilayer network and how it is decoded by a transposed convolution layer. For example,
the 2 × 2 feature map padded with 2 × 2 border of zeros using 3 × 3 strides is convolved by a 3 × 3
kernel. Its output is a 6× 6 tensor when there is no padding in convolution process.
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The detailed parameters of each layer are listed in Table 1. The encoder section contains
10 convolution layers and 2 residual blocks. Convolution layers 1 and 3 adopted depthwise separable
convolution, and layer 5 was dilated convolution layer. The decoder section consisted of five
deconvolution (transposed convolution) layers, in which layer 1 and layer 2 are connected with
convolution layer 7 and layer 3, respectively.

Table 1. The detailed parameters of segmentation networks.

Layer 1 Filter Kernel Size Strides

Conv 1 depthwise 5× 5 1
Conv 2 Conv 6× 6 2
Conv 3 depthwise 4× 4 1
Conv 4 Conv 4× 4 2
Conv 5 dilated 2× 2 1
Conv 6 Conv 3× 3 2
Conv 7 Conv 2× 2 2
Conv 8 Conv 1× 1 1
Conv 9 Conv 3× 3 3

Conv 10 Conv 1× 1 1
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Table 1. Cont.

Layer 1 Filter Kernel Size Strides

Res 1 Conv 6× 6 4
Res 2 Conv 3× 3 4

Deconv 1 transposed 3× 3 1
Deconv 2 transposed 3× 3 8

Deconv 2_1 transposed 6× 6 4
Deconv 3 transposed 6× 6 2

Deconv 3_1 transposed 6× 6 2
1 Conv, Res and Deconv represent the blue, green and purple-red blocks, respectively.

2.4.4. Evaluation Method

MIoU is usually used as an index to measure the accuracy in semantic segmentation task, it is to
calculate the intersection between prediction and ground truth. MIoU can be expressed as

MIoU =
1

k + 1

∑k

i=0

pii∑k
j=0 pi j +

∑k
j=0 p ji − pii

, (36)

which is equivalent to

MIoU =
1

k + 1

∑k

i=0

TP
FN + FP + TP

. (37)

where TP is the abbreviation for true positive, which means the number of samples when real value and
model prediction are both positive. FN represents false negative, which means real value is positive
while model prediction is negative. FP represents false positive. k is the number of classifications.

3. Experiments and Results

3.1. SAR Data and Preprocessing

There are three images used in our experiments. Image 1 is a quad-pol oil spill image obtained by
C-band Radarsat-2 satellite over the North Sea of England in 2011 during the oil-on-water exercise
conducted by the Norwegian Clean Seas Association for Operating Companies (NOFO). The whole
image contains five parts in total: clean sea, ships, biogenic look-alike film, emulsion and crude oil
spill. The biogenic look-alike film was simulated by Radiagreen plant oil, while emulsion area was
composed of Oseberg blend crude oil mixed with 5% IFO380 (Intermediate Fuel Oil). The oil spill area
was the Balder crude oil. It was released 9h before SAR acquisition [16]. Emulsions are classified as
an independent class in this paper since they have different composition and polarimetric scattering
characteristics in SAR images. Image 2 and Image 3 are acquired by C-band SIR-C/X-SAR in 1994,
the dark spots contained in images are biogenic look-alike and oil spill, respectively. The biogenic
look-alike was composed of Oleyl Alcohol in the experiment [37]. The detailed information of SAR
acquisition is listed in Table 2.

Table 2. Details of Synthetic Aperture Radar (SAR) image acquisition.

Image ID 137348 PR11588 PR44327

Radar Sensor Radarsat-2 SIR-C/X-SAR SIR-C/X-SAR
SAR Band C C C

Pixel Spacing (m) 4.70× 4.80 12.50× 12.50 12.50× 12.50
Radar Center Frequency (Hz) 5.405× 109 5.298× 109 5.304× 109

Centre Incidence Angle (deg) 35.287144 23.600 45.878

The Single Look Complex (SLC) radar images experienced multi-look process and was filtered by
Refined Lee Filter. Figure 6 shows the image extract from coherence matrix T before and after filtering.
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It helped suppress speckle noise and enhance the edge of dark spots, and some early experiments have
proved that Refined Lee Filter could help increase oil spill detection accuracy.
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Figure 6. Three oil spill data used in the experiments. Left side shows the original image, and right
side are images processed by Refined Lee Filter. (a1,a2) Image 1 acquired by Radarsat-2, (b1,b2) Image
2 (PR11588) acquired by SIR-C/X-SAR and (c1,c2) Image 3 (PR44327) acquired by Spaceborne Imaging
Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR).

The filtered images were processed by different polarized decomposition methods according to
the steps listed in Section 2.2. Figure 7 lists the five groups of polarized parameters extracted from
Image 1 as an example: H/A/Alpha, H/A/Alpha/SERD, correlation/conformity coefficients, Freeman
decomposition and Yamaguchi decomposition, and characteristics of all these parameters are listed in
Table 3.
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Figure 7. All the polarized features extracted from Radarsat2 data. (a1–a3)H/A/Alpha decomposition, 
a1 for entropy, a2 for anisotropy, a3 for alpha. (b1–b4) H/A/Alpha decomposition and Single-Bounce 
Eigenvalue Relative Difference (SERD), b1 for entropy, b2 for anisotropy, b3 for alpha, b4 for SERD. 
(c1–c2) Scattering coefficients calculated from scattering matrix, c1 for co-polarized correlation 
coefficients, c2 for conformity coefficients. (d1–d3) Freeman 3-component decomposition, d1 for 
double-bounce scattering, d2 for rough surface scattering, d3 for volume scattering. (e1–e4) 
Yamaguchi 4-component decomposition, e1 for double-bounce scattering, e2 for helix scattering, e3 
for rough surface scattering, e4 for volume scattering.  

Figure 7. All the polarized features extracted from Radarsat2 data. (a1–a3) H/A/Alpha decomposition,
a1 for entropy, a2 for anisotropy, a3 for alpha. (b1–b4) H/A/Alpha decomposition and Single-Bounce
Eigenvalue Relative Difference (SERD), b1 for entropy, b2 for anisotropy, b3 for alpha, b4 for
SERD. (c1,c2) Scattering coefficients calculated from scattering matrix, c1 for co-polarized correlation
coefficients, c2 for conformity coefficients. (d1–d3) Freeman 3-component decomposition, d1 for
double-bounce scattering, d2 for rough surface scattering, d3 for volume scattering. (e1–e4) Yamaguchi
4-component decomposition, e1 for double-bounce scattering, e2 for helix scattering, e3 for rough
surface scattering, e4 for volume scattering.
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Table 3. Characteristics of polarized parameters in experiments.

Parameter Clean Sea Look alike Emulsion Oil Spill Ship

Entropy low high higher higher higher
Anisotropy low low low low low

Alpha low lower low low low
SERD high low lower lower lower

Correlation Coefficient high low lower lower lower
Conformity Coefficient high low lower lower lower

Freeman Double-Bounce high low low lower higher
Freeman Rough-Surface high low low low higher

Freeman Volume high lower lower low higher
Yamaguchi Double-Bounce high low low lower higher

Yamaguchi Helix low lower lower lower high
Yamaguchi Rough-Surface high low lower lower higher

Yamaguchi Volume high lower lower low higher

3.2. SLIC Superpixel Segmentation

The HH, HV and VV data was taken as input data to perform SLIC superpixel segmentation.
We used these three channels of SAR data to generate a new image, it was converted into CIElab
color spaces. Following the steps of SCIC superpixel method described in Section 2.3, the superpixel
segmentation results of SAR data are shown in Figure 8. The superpixel number of three images was
set to 250, 40, 40, respectively. They are another type of input besides polarized parameters for CNN
training. It can be seen from Figure 8 that SLIC superpixel divides the image into several independent
areas, and can initially locate dark spots, especially in Image 2 and Image 3.Remote Sens. 2019, 11, x FOR PEER REVIEW 18 of 28 
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Figure 8. Simple Linear Iterative Clustering (SLIC) superpixel segmentation results. (a) Image 1,
(b) Image 2 and (c) Image 3.

Polarimetric decomposition and superpixel images are divided into five groups as listed in
Figure 2. The three SAR images are divided into five categories pixel by pixel: clean sea background
(CS), emulsion (EM), biogenic look-alike (LA), oil spill (OS) and ships (SH). All the images are divided
into 48× 48 small pictures in the experiment. When multiple parameters are input into CNN, they are
stacked along the third axis of images to form a three-dimensional array. The original SAR images
only contained 5 ships, in order to increase the number of samples, especially ships, we sampled
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the same target area for multiple times. We extracted image of target areas from different positions,
and these images are divided into 48*48. Thus, we can get several sampling images on the same area.
We randomly selected training set and test set from sample images, the number of samples are listed
in Table 4. The MIoU was calculated on the test set. They are trained with the proposed network
described in Section 2.4 and the output segmentation results are verified with ground truth.

Table 4. Number of samples of each category.

Areas CS EM LA OS SH

Training set 80 75 82 88 31
Test set 27 25 28 30 12

3.3. Oil Spill Classification

In order to evaluate the influence of SLIC superpixel on segmentation results, we carried out
comparative experiments based on each group of polarized parameters with and without superpixel
segmentation. Figure 9 presents the segmentation results of five groups of polarized parameters on
five dark spots areas of three images. The oil spill area is marked with the dark spots and the light grey
means the biogenic look-alikes. The medium grey represents emulsion.

As shown in Figure 9, the dark spots area can be extracted effectively and classified accurately
in each group. The classification result of oil spill area in Image 3 showed the best. Among all the
polarized decomposition parameters, the performance of Yamaguchi 4-component parameters was
the best, followed by Freeman 3-component parameters and H/A/SERD/Alpha. H/A/Alpha could
also distinguish each category in the images except ships. The parameter SERD effectively increased
the classification accuracy on the basis of H/A/Alpha decomposition. The segmentation result of
co-polarized correlation coefficients and conformity coefficients does not perform well nearly in all
categories, indicating they are not optimal polarized parameters for detecting oil spill areas.
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grey means the biogenic look-alikes. The medium grey represents emulsion. 
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Figure 9. The results of dark spots area verified by polarized parameters, 1-3 in each group represents 
emulsion, 2 for biogenic look-alike, 3 for oil-spill area of Image 1, 4 and 5 represent biogenic look alike 
and oil spill area of Image 2 and Image 3. (a1–a5) Ground truth, (b1–b5)H/A/Alpha, (c1-
c5)H/A/SERD/Alpha, (d1–d5) Scattering Coefficients, (e1–e5) Freeman 3-Component Decomposition, 
(f1–f5) Yamaguchi 4-Component Decomposition. 

As shown in Figure 9, the dark spots area can be extracted effectively and classified accurately 
in each group. The classification result of oil spill area in Image 3 showed the best. Among all the 
polarized decomposition parameters, the performance of Yamaguchi 4-component parameters was 
the best, followed by Freeman 3-component parameters and H/A/SERD/Alpha. H/A/Alpha could 

Figure 9. The results of dark spots area verified by polarized parameters, 1-3 in each group represents
emulsion, 2 for biogenic look-alike, 3 for oil-spill area of Image 1, 4 and 5 represent biogenic look alike and
oil spill area of Image 2 and Image 3. (a1–a5) Ground truth, (b1–b5) H/A/Alpha, (c1–c5) H/A/SERD/Alpha,
(d1–d5) Scattering Coefficients, (e1–e5) Freeman 3-Component Decomposition, (f1–f5) Yamaguchi
4-Component Decomposition.

Considering all categories, the classification results of clean sea (CS) is the best. Then it is followed
by oil spill (OS) areas, which is slightly better than look-alikes (LA). The classification accuracy of
the categories of emulsions (EM) and ship (SH) are the lowest. The false detection mostly occurred
in emulsions. A number of emulsion areas were misclassified into oil spill or look-alikes, especially
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in the experiments of H/A/Alpha, H/A/SERD/Alpha and co-polarized CC/conformity coefficients.
Compared with those results, Freeman 3-component and Yamaguchi 4-component decomposition
could distinguish most of these categories successfully. Moreover, the experiment results by applying
these two groups of polarized parameters could also detect ships with high reliability, which are almost
all misclassified as oil spill areas in other groups’ experimental results.

In the followings, we added the SLIC segmentation result from SAR data as another input
besides polarized parameters and inputted them together into neural network and repeated the above
experiments. The output results are represented in Figure 10. The classification results of each category
has been improved significantly, especially for emulsion areas. Compared with the segmentation
results without applying superpixel model results, the edge of different classes become more distinct.
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Figure 10. The results of dark spots area verified by polarized parameters combined with SLIC 
superpixel segmentation, 1-3 in each group represents emulsion, 2 for biogenic look-alike, 3 for oil-
spill area of Image 1. Images 4 and 5 represent biogenic look-alike and oil spill area of Image 2 and 
Image 3. (a1–a5) Ground truth, (b1–b5) H/A/Alpha, (c1–c5) H/A/SERD/Alpha, (d1–d5) Scattering 
Coefficients, (e1–e5) Freeman 3-Component Decomposition, (f1–f5) Yamaguchi 4-Component 
Decomposition. 
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decomposition achieved the highest MIoU by 90.5%, followed by Freeman parameters and 
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Figure 10. The results of dark spots area verified by polarized parameters combined with SLIC
superpixel segmentation, 1-3 in each group represents emulsion, 2 for biogenic look-alike, 3 for oil-spill
area of Image 1. Images 4 and 5 represent biogenic look-alike and oil spill area of Image 2 and Image 3.
(a1–a5) Ground truth, (b1–b5) H/A/Alpha, (c1–c5) H/A/SERD/Alpha, (d1–d5) Scattering Coefficients,
(e1–e5) Freeman 3-Component Decomposition, (f1–f5) Yamaguchi 4-Component Decomposition.

The numerical comparison was carried out by calculating the MIoU of each polarized parameter
group on the test set. The compared results with and without SLIC superpixel are listed in Table 5.
The accuracy of Yamaguchi and Freeman decomposition is significantly higher than other groups
of polarized parameters, and that of each classification category has been also improved by SLIC
superpixel to varying degree.

Table 5. Mean Intersection over Union (MIoU) result on each classification of polarized
parameters experiments.

Without SLIC Superpixel With SLIC Superpixel

Classification CS EM LA OS SH CS EM LA OS SH

H/A/Alpha 94.0% 70.8% 84.2% 85.7% 10.5% 95.6% 88.3% 89.7% 93.4% 39.7%
H/A/SERD/Alpha 94.5% 80.7% 84.9% 88.3% 11.7% 95.8% 91.0% 91.7% 95.1% 43.1%

Scattering coefficients 1 94.1% 27.3% 82.3% 80.2% 6.8% 94.7% 85.8% 84.2% 90.1% 41.5%
Freeman 95.8% 80.7% 82.4% 90.6% 60.7% 96.3% 91.1% 91.5% 95.1% 48.3%

Yamaguchi 96.1% 81.8% 85.4% 94.0% 75.0% 96.9% 94.1% 94.6% 96.8% 70.2%
1 scattering coefficient means the combination of correlation coefficients and conformity coefficients.
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For further analysis, Table 6 shows the total MIoU of different polarized parameters decomposition
methods. The average MIoU of each classification in all experiments is shown in Table 7. Both Tables 6
and 7 are calculated from the average value of Table 5. The overall accuracy of different polarimetric
parameters after combined with SLIC superpixel segmentation maintained the same trend in previous
analysis as illustrated in Tables 5 and 6. Yamaguchi 4-component decomposition achieved the highest
MIoU by 90.5%, followed by Freeman parameters and H/A/SERD/Alpha. Although SLIC superpixel
just provide a rough classification of dark spots area, it could also improve MIoU values of each
polarimetric parameters, increased by 12.3%, 11.3%, 21.2%, 2.5%, 4.0% relatively. Take Yamaguchi
parameters as example, the MIoU of OS area increased from 94.0% to 96.8%, and increased by 0.8%,
12.3% and 9.2% in CS, EM and LA area relatively. What’s more, the largest increase of MIoU occurred
in EM area, which increased by 21.9% in average in five groups of polarimetric parameters, as shown
in Table 8. CS and OS areas achieved the highest MIoU by 95.9% and 94.1% in all experiments with
and without SLIC superpixel, and SH was significantly lower than other parts.

Table 6. Total MIoU results of each group of polarimetric parameters.

Parameters H/A/Alpha H/A/SERD/Alpha Scattering coefficients Freeman Yamaguchi

Without SLIC Superpixel 69.0% 72.0% 58.1% 82.0% 86.5%
With SLIC Superpixel 81.3% 83.3% 79.3% 84.5% 90.5%

Table 7. Average MIoU of each classification.

Areas CS EM LA OS SH

Without SLIC Superpixel 94.9% 68.2% 83.8% 87.8% 32.9%
With SLIC Superpixel 95.9% 90.1% 90.3% 94.1% 48.6%

Table 8. Total MIoU results of Yamaguchi parameters combined with different SLIC parameters.

Superpixels 150 200 250 300 350 400

Total MIoU 87.1% 88.5% 91.0% 90.3% 90.5% 86.6%

It is worth noting that the number of superpixels in SLIC superpixel segmentation will also
affect the final segmentation accuracy. We tested the number of superpixels from 150 to 400 with the
step of 50 on Image 1 alone. Figure 11 shows the SLIC segmentation results of different numbers of
superpixels. We carried out the comparison experiments with the use of the polarized parameter
group of Yamaguchi 4-component decomposition, since it achieved the highest MIoU in the previous
experiments. Table 10 lists the MIoU for oil spill segmentation accuracy under different superpixel
numbers. The highest accuracy is 91.0% when superpixel number was set to 250.

Finally, the classification results of the whole image without and with SLIC superpixel by
applying Yamaguchi parameters are represented in Figure 12. Each category on the sea surface
can be distinguished with high accuracy. SLIC superpixel helped further improve the accuracy of
each category, especially for emulsions. Biogenic look-alikes were also better classified with less
misclassification pieces inside. Emulsions can be well detected from oil spill and biogenic look-alike
areas, and the segmentation results of other categories also perform better. The improvement effect in
Image 1 was the most obvious, while SLIC superpixel mainly helped improve the accuracy of CS area
in Image 2 and Image 3.
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In order to evaluate the algorithm complexity, we calculate the calculation time of the superpixel
segmentation and CNN classification with different polarized parameters, the results are listed in
Table 9. Table 10 shows the memory usage of different neural network models. Due to the limitation
of experimental conditions, our experiments are carried out on a device without independence GPU.
It should be noted that the processing speed will be more than several tens of times faster on a device
with independence GPU, hence it will be no problem to achieve near-real time monitoring.

Table 9. Calculation time of each process (seconds).

Image 1 Image 2 Image 3

Pixel Number in Experiments 2350× 2450 1000× 480 1550× 600
Computer Configuration i5-8250u CPU 8GB

Superpixel Segmentation(s) 1742 576 482

CNN Classification with SLIC(s)

H/A/Alpha 1594 135 243
H/A/Alpha/SERD 2107 186 359

Scattering
Coefficients 1023 102 159

Freeman 1602 133 245
Yamaguchi 2115 192 361

Table 10. Memory Usage Condition of CNN.

Without SLIC With SLIC

H/A/Alpha 59.2 M 91.3 M
H/A/Alpha/SERD 91.3 M 130 M

Scattering Coefficients 33.9 M 59.2 M
Freeman 59.2 M 91.3 M

Yamaguchi 91.3 M 130 M

4. Discussion

In order to improve the reception field and reduce parameters, we used depthwise convolution and
dilated convolution in several bottom layers of our semantic segmentation model instead of traditional
convolution kernel. These strategies achieved high accuracy with small amount of parameters in
the experiments.

The emulsion marked in Image 1 we used is mixture of Oseberg oil, IFO380 and water, with
water content of approximately 69%. The emulsion has different polarimetric characteristics from
oil spill. Actually, they behave in between crude and clean sea surface on polarimetric SAR features.
In actual cases, it should be also recognized as a type of oil leakage that will cause damage to ocean
environment. The emulsions, biogenic look-alikes and oil spill area are independent of each other in
actual SAR images, but dark area in the same test image may be classified into two or more categories.
For example, many EM areas are classified into OS or LA as shown in Figure 9.

It was discovered that that parameters calculated from covariance matrix or correlation/conformity
coefficients could mistakenly detect the ship as oil spill area. Experiments proved that Yamaguchi
and Freeman decomposition parameters performed better in oil spill classification. Both of them are
scattering model-based decomposition method, while Yamaguchi decomposition could better deal
with the large cross-polarized component caused by complex ground target, which break the reflection
symmetry. Hence Yamaguchi decomposition could distinguish each area with relatively high accuracy,
especially on ship targets.

Moreover, SLIC can combine neighboring pixels together with special significance and associate
adjacent pixels, thus forming connected blocks and greatly improves the classification accuracy,
the MIoU of each group polarized parameters has been greatly improved in the demonstrated
experiment. Further experiments on Image 1 showed that when superpixel number was set to 250,
the recognition accuracy achieved the highest. In fact, the number of superpixels set strongly relies
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on the type and size of objects. That means that the SLIC superpixel numbers should be adjusted
depending on real conditions.

5. Conclusions

In this paper, we proposed an oil spill detection method combining SLIC superpixel model and
semantic segmentation algorithm based on CNN. The dilated convolution kernel and depthwise
separable convolution kernel was adopted for better computing performance and larger sensing area.
SLIC superpixel segmentation is set as an input for the CNN model for auxiliary classification.

The experiments were carried on a C-band fully polarized SAR data of Radarsat-2. We extracted
several polarized parameters according to different methods, and tested their performance in oil spill
classification based on the proposed method. The results showed that in each group of experiments,
this network structure can effectively distinguish the oil spill area and other areas. The highest MIoU
value appeared in Yamaguchi decomposition parameters experiment, followed by H/A/SERD/Alpha
and Freeman decomposition.

The introduction of SLIC superpixel greatly improved the recognition accuracy. The MIoU values
of each group are improved, and their numerical order of the polarimetric feature sets is almost the
same as in experiments without SLIC superpixel. Hence, it is suggested that Yamaguchi parameters
combined with superpixel segmentation is the most suitable method for oil spill detection.
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