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Abstract: Seasonal changes control the development of salt crust over the Salar de Aguas Calientes
Sur located in Andes Highlands, Chile. Precipitations throughout the Altiplanic winter (December to
March) and austral winter (June to September) caused ponds to enlarge and surface salt crusts to
dissolve driving roughness and dielectric features of the salar surface change over time. A four-year
time series backscattering coefficient analysis, obtained by Sentinel 1 and ALOS-2/PALSAR-2 with
10 m of spatial resolution, demonstrated the capability of microwaves to discriminate seasonal
patterns illustrated in this paper. Both sensors showed to be sensitive to changes in the surface
crust due to weather conditions. Backscattered power gradually increased during the driest months
as the rough salt crusts develop and decreased rapidly due to precipitations or flooding events,
which lead to a smoothing appearance to radar. The high temporal frequency of acquisition in
Sentinel 1 (5–13 scenes/month) allowed the discrimination among climate and annual seasonality
and episodic events in the C-band backscatter coefficient. On the other hand, ALOS-2/PALSAR-2
showed subsurface changes at L-band since the salinity of the brine in the soil reduces the penetration
depth of backscattered power for shorter wavelengths. Results might be useful to monitor salars with
geographic and weather conditions similar to Salar de Aguas Calientes Sur.
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1. Introduction

The term “salar” refers to sediments with a detritical and evaporitic origin and whose sedimentation
takes place in the most depressing part of a closed basin, where arid or semi-arid conditions
develop [1]. In the case of the Salar de Aguas Calientes Sur, located in the Antofagasta region,
Chile, these detrital-evaporitic sediments indicate that the development environment is a playa lake
type, and its salt crusts are classified into two types [2]. The first is a hard and perennial crust,
permanently dry or infrequently flooded where the minerals precipitate in nodular, rough, or granular
form by evaporation of brines or by the migration of water by capillarity and subsequent evaporation.
The second crust is perennial or ephemeral and is considered soft because of its moisture, either due
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to the presence of a surface or underground water. Surface water might appear in the form of rivers
or ponds.

Salar de Aguas Calientes Sur has a special climatic and geographical feature. Located 4000
m.a.s.l. at the Andes Highlands, it has an active tectonic influence together with extreme weather
conditions given by high annual evaporations rates, snowfalls, and rainfall during austral winter
(June to September) and Altiplanic winter in summer (December to March). Strong solar radiation
and wind speeds that reach up to 70 km/h controls the evaporites minerals formation. Unlike rocks,
evaporitic minerals in the salar are sensitive to changes by wind, ponds sedimentation and evaporation
followed by chemical precipitation. Besides, evaporites are also sensitive to climatic changes because
the salts are dissolved either by precipitation or the rise of groundwater. In the absence of these,
the evaporation processes trigger changes in the salar surface, affecting its roughness and dielectric
properties due to the crystallization of evaporite minerals [3]. A recent study with multispectral sensors
on the Salar de Aguas Calientes Sur reports partially seasonal changes in its ponds. However, the cause
of this phenomenon remains unknown [4]. The overall information points out evident dynamics
within this detritical and evaporitic sedimentary environment, where the salt crusts have a seasonal
component not yet determined.

Applying Synthetic Aperture Radar (SAR) data in the study of salars allows capturing information
at different depths due to its ability to penetrate dry soil layers according to the wavelength of operation.
Likewise, the backscattering coefficient (σ0) is a function of the roughness of the surface (relative to the
wavelength) and the dielectric constant, the latter influenced by soil moisture content and its salinity [5].
Furthermore, as long as the sensitivity of the SAR backscattered power to the physicochemical changes
appears in salars, previous investigations demonstrate that the dielectric constant of saline soils plays
a key role in the radar backscatter. In C-band, the approach is monitoring changes over evaporitic
surfaces with ERS-1 SAR images on the Chott el Djerid (dry Salt Lake), Tunisia, at 20 m.a.s.l [6].
The authors present that backscattering power increases during dry seasons with precipitation of halite
crystals. In the same sector, the researchers [7] model the response of the SAR backscattered signal
based on the development of saline crust and detect that the control in the backscattered signal is
due to the development of saline crust where the moisture given by brines exerts secondary control
depending on the evaporation rate [8].

On the other hand, and in parallel, several experimental studies show the relation between the
complex dielectric constant and salt content in the soil [9,10]. Using the RADARSAT-2 satellite over the
Chott El Djerid [3] to monitor a spatiotemporal evaporitic process combining scatterometers and SAR
for the monitoring of sedimentation processes. A complete wet-to-dry cycle and observed the temporal
evolution of the copolarized phase difference is presented in [11]. Responses in the C-band and L-band
radar signal (AIRSAR, PALSAR) are used simultaneously to study the salinity effects of evaporitic
geological materials from Death Valley, USA (−86 m.a.s.l) on complex permittivity in magnitude of
the backscatter coefficient [12] and subsequently, using SIR-C / X-SAR [13], proposes a backscattering
coefficient of copolarization and phase difference for soil indicator affected by salinity and humidity.

Research by L-band in the Nop Nur Lake basin (780 m.a.s.l), in China [14] uses RADARSAT-2
and ALOS-PALSAR images to interpret the surface and coastline of the lacustrine tank using single
band and polarimetry. Furthermore, the detection of subsurface deposits are analyzed to understand
the evolution of the lake, establishing an empirical relation between the results of polarimetric
decomposition and surface salinity [15]. Subsequently, comparing terrain information with polarimetry
results for two ALOS PALSAR images [16], they managed to determine two layers, each with
different dispersion, roughness, humidity, and salinity. Then [17] demonstrated the penetration
capacity of the L band of the ALOS PALSAR sensor in saline soil, by detecting the presence of
a subsurface brine layer using polarimetric decomposition. Finally, types of salt crusts are differentiated
using the surface roughness parameters [18], extracted thanks to the polarimetry in ALOS PALSAR
images. Notwithstanding, the research using L-band SAR in the study of salars is mainly focused on
backscattering mechanisms rather than spatiotemporal monitoring.
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Although previous investigations are exhaustive, it remains unexplored how the backscattered
signal in C- and L-bands behaves over the salars placed in the Andes Highlands where geographical
and climatic conditions are distinctive.

The main goal of this paper is to determine the seasonality in the response of the SAR backscattered
power over the salar, through a four-year multitemporal analysis (2014–2018) with Sentinel 1 (C-band)
and ALOS-2/PALSAR-2 (L-band) in order to qualitatively estimate the salar dynamics related to either
climatic, annual or eventual weather influences.

Here we reveal that the salt pans do not appear to be stable over the time analyzed.
Likewise, the backscattering coefficient seasonality also showed that surface properties could
qualitatively determine the surface roughness under certain climate conditions. Based on the hypotheses
of the salar surface evolution and the drying-up cycles, the dynamic processes of the Salar de Aguas
Calientes Sur is being discussed.

2. Materials and Methods

2.1. Study Area

The study area is in the Andean high plateau, Antofagasta Region, Chile, at approximately
4000 m.a.s.l. southeast of the Salar de Atacama. Access to the area is from San Pedro de Atacama
village taking the CH-23 route towards the International Sico Pass 148 km away. The Salar de Aguas
Calientes Sur has an approximate area of 476 km2, and it is located within the Salar de Talar and the
Purisunchi Sub-basin, between Salar de Capur to the west and Laguna Tuyajto to the east (Figure 1).
The type of basin is endorheic and intra-volcanic.
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To the north and center of the salar are some ignimbritic deposits (Patao Ignimbrite) considered
as host rock of the salar from the Pliocene age [19]. In general, the pan crust surface in the center of
the salar has no vegetation, whereas the northern, southern, and salar margins are sparsely covered
with patchy bushes and spring-feed vegetation related to shallow lakes. The most abundant evaporitic
minerals found in the salt flat are gypsum and halite.

2.2. Methodological Flowchart

As seen in Figure 2 the methodological flowchart included the collection and analysis of
meteorological information, download and pre-processing of the Sentinel 1 and ALOS-2/PALSAR-2
images, analysis of the geology and selection of regions of interest. The overall process is detailed below.

1 
 

 

 Figure 2. Methodological flowchart for the four-year data sets. 1 Digital Model Elevation.

Sentinel 1A and B (C-band, 5.55 cm) and ALOS-2/PALSAR-2 (L-band, 23.4 cm) sensors provided
the SAR imagery for this study. The former acquired in Interferometric Wide Swath (IW) mode, level 1
processing, and Ground Range Detected (GRD) with a spatial resolution of 20× 22 m (range by azimuth)
and a swath width of 250 km. The latter in StripMap (SM) Fine (10 m) mode through a project with
the Japan Aerospace Exploration Agency (JAXA). The spatial resolution is 10 m with a 70 km-swath.
The four-year Sentinel 1 dataset encompasses a total of 319 images from October 2014 to December 2018,
mostly available in VV-VH polarization in ascending and descending orbits. The four-year Sentinel
1 dataset encompasses a total of 319 images from October 2014 to December 2018, mostly available
in co-polarized vertical-vertical (VV) and cross-polarized vertical-horizontal (VH) polarizations in
ascending and descending orbits. In the same four-year period, the ALOS-2/PALSAR-2 dataset has 16
images in horizontal-horizontal (HH) and horizontal-vertical (HV) polarizations in ascending orbit. In
the same four-year period, the ALOS-2/PALSAR-2 dataset has 16 images in HH-HV polarizations in
ascending orbit. The temporal coverage of these images is shown in Table 1.
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Table 1. Temporal distribution of the Sentinel 1A-1B and ALOS-2/PALSAR-2 images analyzed 1.

Dates

2014 2015 2016 2017 2018

O N
D J F M A M J J A S O N D J F M A M J J A S O N D J F M A M J J A S O N D J F M A M J J A S O N D

Sentinel 1A

Sentinel 1B

ALOS-2/PALSAR-2

1. In total 335 images from 2014 to 2018. Polarizations
HH-HV VV VV-VH



Remote Sens. 2020, 12, 941 6 of 21

Overall, the Sentinel 1A data have some gaps during January, March, and June 2017 over the
salar. Among 2014 and 2017, data availability was between 3 to 4 scenes/month, further increased to
5–13 scenes/month after the release of Sentinel 1B with data available from September 2016.

The SAR Sentinel 1 and ALOS-2/PALSAR-2 datasets were pre-processed in the Sentinel Application
Platform (SNAP). For Sentinel 1A-B, the chain process started with orbit correction, thermal noise
removal, and radiometric calibration. Subsequently, a Refined Lee filter pixel window of 7 × 7 was used
to improve the radiometric quality of the images. Finally, the geometric terrain correction was applied
by assigning the digital elevation model SRTM 1Sec HTG and bilinear interpolation, resulting in an
image with a nominal pixel size of 10 m × 10 m. As a final product, output bands of backscattering
coefficients (σ0) for Sentinel 1 (VV, VV-VH), for ALOS-2/PALSAR-2 (HH-HV), and the Local Incidence
Angle bands were generated.

2.3. Ground and Geological Data

Field observations, morphological analysis, and geological data over the Salar de Aguas Calientes
Sur were conducted on 3 April 2018. Salt crust and brine samples were collected jointly with Centro de
Información de Recursos Naturales and Servicio Nacional de Geología y Minería [4] for geochemistry
characterization. The geochemistry of water and salt crusts was not extensively measured but is
generally known from other contemporary measurements [20]. Morphological and mineralogical
features were extensive over the surface of the salar. Field observations showed highly heterogeneous
pan crust environments that could be grouped into three different crust types (Figures 3 and 4). 

2 

 Figure 3. Distribution of the salt pan crusts modified from a technical report together with Centro
de Información de Recursos Naturales [4] and the corresponding author. The map is an original
contribution of this paper. Red boxes indicate regions of interest.
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Figure 4. Types of salt crust observed in the field on 3 April 2018. (a) Upper panel: Hard-pan crust 1,
mixture of salts and sediments (rough surface), (b) Center panel: Hard-pan crust 2 (gypsum and halite),
(c) Bottom panel: Soft pan crust with contents of organic matter and thrust polygons by interaction
with water.

The first is a hard crust, Hard-pan crust 1, Figure 4a formed primarily by gypsum, halite and
detrital particles. It is characterized by an irregular concave shape, uplifted rims, and salt enrichments
crystalized as granular forms and thin sheets covering the gypsum pan over the borders indicating
that most of the time remains not flooded [21]. These salts with granular form, indicate that they were
formed from evaporation and rise of brines by capillarity [8]. Blowouts wind erosion on this crust is
reflected by the development of wind deposits on the margins of the salars, also, deflation surfaces are
characterized by low roughness and undulations similar to sabkhas formation. In an advanced stage
of corrosion, by windblown surface in the presence of water, the remnants of the former crust being
characterized by rounded cuspate forms described as pseudobarchans [2].

The second crust type is referred to as Hard-pan crust 2, and it is distributed along the east edge
of the salt flat, formed by gypsum and halite containing cavities that indicate dissolution of salts due
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to infiltration and percolation of water causing loss of stiffness. The surface is somewhat soft, as can be
noted from the footprint tracks leftover as seen in Figure 4b.

In the west, a salt crust with soft consistency is distributed Figure 4c. Almost flat with mud-crack
polygons that contain a mixture of humid salts, primary halite, and less gypsum. The polygons indicate
water loss after flooding events [22]. Field observations indicated that because of the soft and flat crust
remained flooded, its elevation is lesser than the other salt pan crusts.

Towards the north and south of the salt flat, perennial ponds have been observed. The permanent
inflow prevents the dry out entirely by evaporation. On the other hand, the water dissolves solutes,
old evaporites, and clastic sediments. Salar pools appear to concentrate following structural patterns
within the salar with northeast and north-south orientation and have been carved out as blowouts
by wind erosion, and later filled with water as either shallow saline, thermal-spring or groundwater
seeped upward from below. The deposition of halite and gypsum crystals through evaporation on the
surface of the salt flat, together with the movement of surface water and the effect of sandstorm activity,
plays an essential role in the temporal variability of the backscattered power on the surface of the salar.

For the selection of the regions of interest (ROIs) and backscattering coefficients (σ0) retrieval,
thirteen regions of interest were chosen (Table 2), being distributed over three types of salt crusts
considered representative over the surface of the salar (Figure 3). Since each crust type was also
distributed along with clusters over the salar area, the selection of the 13 sites also aimed at covering
them. Each ROI has a 10x10 pixels size box. The rationale behind the ROI size selection was to include
enough pixels so that its equivalent number of looks (mean2/std2) would be about 50, thus resulting in
an uncertainty in backscattering coefficients (σ0) from residual speckle noise less than 1 dB as follows
from the known gamma distribution for SAR data. In the case of ALOS-2/PALSAR-2, since its time
series is sparse, the 25th/75th confidence levels will also be shown.

Table 2. Regions of interest (ROIs) surface distribution and basic stats.

Surface Region of Interest (ROI) Total of Pixels

Hard-pan crust 1 S3; S5; S7; S10; S11; S13 600
Hard-pan crust 2 S4; S6; S12 300

Soft pan crust S1; S2; S8 300
Pond S9 100

The multitemporal analysis of σ0 (mean values) in dB was performed using MATLAB R2019a
software. Due to the angular variation of backscattering coefficient, only data acquired between 30◦

and 41◦ of local incidence angle were considered because it allows the analysis of data with a more
significant number of images and σ0 of a rough surface such as the one of the salar is not expected to
change significantly for this incidence angle range

2.4. Meteorological Data

The arid climatic conditions of the Salar de Aguas Calientes show an average of precipitations
varying between 150 and 200 mm/year [23], with 10% to 20% occurring in the form of snow. The annual
temperatures fluctuate between −30 ◦C to 10 ◦C, combined with strong winds leads to high evaporation
rates with an average of 1500 mm per year [24].

Since there is no meteorological station in the Salar de Talar and the Purisunchi Sub-basin study
area, information on daily precipitation for the period 2014–2018 was compiled from one ground
station inside the Salar de Atacama basin and two satellite resources. The ground station is in
Socaire village, 49.8 km away to the northwest of the Salar de Aguas Calientes Sur, downloaded from
the Agromet Home Page [25]. Accumulated precipitation was retrieved from Global Precipitation
Measurement (GPM) satellite constellation and Integrated Multi-satellitE GPM (IMERG). This product
involves late accumulated precipitation in millimeters, over one day at 10 × 10 km of spatial resolution
(Level 3, Version 05), downloaded from the NASA Earth Data Home Page [26]. Moreover, snow cover
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information over the salar was retrieved from a visual analysis of MODIS Terra Corrected Reflectance,
a true color product from NASA Worldview Home Page [27].

Precipitation events from Socaire ground station and IMERG data product and snow cover from
MODIS are shown in Figure 5. The satellite data over the salar recorded precipitation events on the same
dates that those of the ground station, despite its location. These precipitations events are indicative of
the general trend of water supply to the salar area. Three seasons seem to be driven by rainfall and
snowfall events: summer, autumn, and winter. Rainfall events were more often during the austral
summer from December to mid-March, with heavy rains, electrical storms, and cooling originated
eastward in the Amazon or La Plata basin which leads to the “Altiplanic Winter”. The highest rainfall
recorded over the salar was on 16 December 2018, with 7.28 mm documented by the IMERG data
product. From autumn to winter, snowfall events supply water to the salar. In the autumn of 2015,
an exceptional event happened on 24 March 2015, with heavy rains registered in Socaire (38.3 mm) and
9 mm snowfall over the salar registered by IMERG. Snowfalls were intensified throughout the Andean
region during La Niña events [24] (April 2017 to December 2018) with a 123-day (from 16 April to
7 September 2017) and a 64-day (10 June to 1 September 2018) period of snow covering the entire salar.
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Figure 5. Meteorological data of the station Socaire, GPM (IMERG) and snow cover between January
2015 and December 2018, where 0 is no cover, and 1 indicates snow cover.

Temperature data indicated average values of 12 ◦C for the winter months and 23 ◦C for summer,
with the highest temperatures recorded during January. Figure 6 shows relative humidity (RH) through
the study period. As for the relative humidity (RH), the Socaire station registered high values (38%)
during the Altiplanic winter months (December to March), and an average 21% in southern winter
(June to September). The wettest year was 2017 (25% average) coincident with the La Niña event and
the driest 2016 (19% average). Finally, the wind does not have a specific temporal pattern.
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The datasets were considered in the analysis of the results derived from the seasonality of
Sentinel-1 and ALOS-2/PALSAR-2 backscattering power over Salar de Aguas Calientes Sur.

2.5. Penetration Depth

When SAR microwaves reach the playa lake saline soil, the electromagnetic wave penetrates
through while interacts with the soil bulk constituents. Solid rock particles, air and brines scatter
the incoming power. The depth at which the SAR power transmitted and attenuated is referred to
as penetration depth (δp) and it is defined as the depth at which the power of a propagating wave is
equal to exp (−1) = 0.3679 of its power at the medium’s surface. If scattering losses are ignored, δp can
be calculated according to [28].

δp =
λ0
4π

ε′2
(1 + (

ε′′

ε′

)2
) 1

2

− 1



−1
2

(1)

where λ0 is the wavelength in free space and ε′ and ε” are the dielectric permittivity and loss,
respectively, for the medium. For soil particles typically ε”< 0.05 [29] and the losses are therefore
dominated by the salinity of the brines. If scattering losses are accounted for, the penetration depth is
even smaller. δp computed as in (1) is, therefore, an upper limit for wave penetration and subsurface
scattering. Simple dielectric mixing models compute ε′ and ε” using the dielectric values for dry soil
and saline water, each weighted by its respective proportion of the combined mixture, being the last
given by the soil porosity when soil is saturated. Figure 7 illustrates the δp for 5.55 cm (C-band),
and 23.4 cm (L-band) calculated using a soil porosity of 34% and a soil temperature of 20 ◦C based on
the measurements reported by [12] for a salar. Over the study area, subsurface brine salinity ranges
between 2 and 45 psu as reported in 2013 by [20]. A salinity of 66 psu was measured recently in the
northern lake near the site S2. The salinity has a significant impact on radar backscatter in terms of
microwave penetration depth. Power losses at C-band result in surface scattering as the dominant
backscattering mechanism, which implies a more considerable sensitivity to crust roughness than
L-band. Moreover, L-band might have some components from subsurface scattering.
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3. Results

3.1. Seasonality Analysis

In this section, averaged backscattering coefficients in dB from Sentinel 1 and ALOS-2/PALSAR-2
for sites S1, S6 and S10 as a function of acquisition date are shown in Figure 8 and Figure 13 to
the end of this section, respectively. The rest of the sites will be analyzed below. Each time series
have been collected with the same acquisition parameters such as wavelength, orbital pass, and
incidence angle. Due to the low penetration depth at C-band, as seen in Section 2.5, the annual
seasonality in the backscatter accounted for surface roughness changes. Growth of halite through
evaporation of standing water or rise of brines by capillarity leads to a high increase of the radar
power backscattered [8]. Thus, temporal changes in the time series were the result of salt crust
development and their time evolution. We choose three patterns of time signatures to describe this
behavior. The backscattered power from 2014 to 2018 has been explained in terms of climate and
annual seasonality, and episodic events, each one with their own dynamics. Although an almost
exclusively dry environment, wet conditions over extended periods in the salar are due to climate
patterns such as La Niña. Summer and Altiplanic winter, where water supply was available, alternate
to dry months on an annual basis. Finally, episodic events such as floods and strong winds resulted in
eventual, short-term, intense variations in the salar surface and therefore to the corresponding radar
backscattered power.
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Figure 8. Sentinel 1 temporal backscattering observed over the salt pan. Sentinel 1A (magenta) and
Sentinel 1B (blue) in ascending (full markers) and descending (empty markers) orbits. VV polarization
is indicated as triangles, and VH are circles. The vertical black dashed line indicated a field visit on
3 April 2018 (see Figure 4). (a) Soft pan crust (site S1), the local incidence angle is between 35.2◦–35.4◦

(ascending only), (b) Hard-pan crust 2 (S6), the local incidence angle is between 39.9◦–40.1◦ (ascending),
and 31.1◦–31.3◦ (descending), (c) Hard-pan crust 1 (S10), local incidence angle is between 39.2◦–39.3◦

(ascending), and 32.2◦–32.3◦ (descending). Sentinel 1A VH polarization is available from February
2017. The green circles indicate episodic events: on 26 May 2017 for site S1 and on 13 April 2015 for
sites S6 and S10. Daily accumulate rainfalls recorded at Socaire are in grey bars, and snowfall cover
also shown as black crosses.

3.2. Climate Seasonality

Winters including sporadic snowfall conditions from 2014 to January 2017 prevented σ0 from
significant variations. The almost constant trend shown in Figure 8 for sites S1, S6 and S10 accounted
for the lack of significant snowfalls over that period. The episodic event that occurred on 13 April 2015
will be described elsewhere. From January 2017, Salar de Aguas Calientes Sur underwent an increase
in the available water due to La Niña wet conditions through the two major snowfall events and some
heavy rainfalls mentioned in Section 2.4. The availability of water and the evaporation that follows has
driven the formation of crusts, and henceforth the change in surface roughness detected at C-band.
Over long dry periods, crust development occurred at a slow rate driven by capillarity, which resulted
in a small slope increase of VV-polarized σ0 from May 2015 to May 2016 for Site 6 as shown in Figure 8b
and from July 2016 to February 2017 for Site 10 in Figure 8c. Conversely, water incomes from rain or
snowfalls are related to marked σ0 variations over La-Niña-induced wet season from January 2017.

Figure 9a shows the dry salar over the thirteen regions of interest for 9 March 2015, with the higher
backscattering coefficients from Hard-pan crust 1 and 2 types. It is noteworthy that the homogeneous
texture in σ0 produced by long dry periods. Low-backscattering areas in the northern and southern
parts are related to the salar depocenters, where the groundwater remains close to the surface and
hence the halite crystals dissolved leading to a rather smooth.
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areas with a smoothened surface after salts dissolved. Intense southeast winds caused standing water 

Figure 9. (a) Sentinel 1A, VV polarization, descending orbit (9 March 2015). High backscattering
coefficient accounted for well-developed salt crusts formed by capillarity over dry periods before La
Niña, (b) Sentinel 1A, VV polarization, ascending orbit (13 April 2015). Extreme rainfall event left vast
areas with a smoothened surface after salts dissolved. Intense southeast winds caused standing water
to depart from flooded areas to dry areas. The opposite also occurred with loose soil particles from dry
areas to flooded ones.

3.3. Annual Seasonality

Humidity increase and water availability over the wet months are the main drivers to
an annual-basis dynamic of the crust development and therefore of the corresponding backscattering
coefficients. Changes in the backscattered power due to annual temporality showed different patterns
depending on the salt pan spatial distribution and composition.

For type 2 (S6) and type 1 (S10) hard crusts, Figure 8b,c, respectively, σ0 increase and decrease
pattern accounted for inter-annual wet and dry periods. This is more evident on the Hard-pan crust 1,
where VV-polarized backscattering coefficient had an 8.80-dB-increase between the flooded and the
well-developed crust surfaces in a four-month period between 17 September 2017 and 15 January 2018,
leading to a rate of 2.20 dB/month over the 120-day interval between the period mentioned. On the
other hand, for the Soft pan crust in S1, Figure 8a, annual seasonality had little impact on σ0. Note that
backscattering coefficients differences in S6 between descending (incidence angle at 31◦) and ascending
(40◦) pass demonstrated spatial heterogeneities in the crusts in the period from January to July 2018.
Due to its lower sensitivity to surface changes, cross-polarized σ0 wet-and-dry cycles appeared not so
marked in comparison to co-polarized ones. The two major snowfall events caused the backscattering
coefficient to decrease, as shown in Figures 8c and 10a from March to August 2017 and from June to
September 2018. Snow crystals have a dielectric constant around 4 with a negligible imaginary part [29],
therefore reducing the dielectric contrast in comparison to a brine-dry soil mixture. Moreover, the effect
of a snow cover on the backscattered power is to decrease co-polarized σ0 by smoothing the surface
roughness as seen in Figure 1a. As snow accumulated over the surface, volume scattering increased
in September 2017. Over the following dry period, VH increased in the hard crusts possibly due to
the rise of underground water that filled pore space within the crust. By the end of the time series,
VH-polarized σ0 remained more or less constant showing low sensitivity to weather conditions. When
the snow melted, flooded areas over the salar, as shown in Figure 1c, are subjected to episodic events
such as wind and freezing as shown in Figure 1b.
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Figure 6. (a) Sentinel 1-B, VV polarization, descending orbit (27 May 2017). The salar surface is fully 
covered by snow, (b) Sentinel 1-B, VV polarization, ascending orbit (11 September 2017). Flooding 
event following the snow melting with wind-generated roughness over the water beds. (c) Sentinel 1-
B, VV polarization, descending orbit (7 September 2018). No-wind condition: Low backscattered 
power from standing water over sites S1, S8, and S9. Note the similar flooding extents between (b) 
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Figure 10. (a) Sentinel 1-B, VV polarization, descending orbit (27 May 2017). The salar surface is fully
covered by snow, (b) Sentinel 1-B, VV polarization, ascending orbit (11 September 2017). Flooding event
following the snow melting with wind-generated roughness over the water beds. (c) Sentinel 1-B,
VV polarization, descending orbit (7 September 2018). No-wind condition: Low backscattered power
from standing water over sites S1, S8, and S9. Note the similar flooding extents between (b) and (c).

Other σ0 variations are summarized in Table 3 for those sites with monthly rates greater than
1.00 dB. Rates are computed as the ratio of the interval to month on a 30-day month basis. For sites 1,
10 and 6 a large growth rate is found over the dry period after the snowfall at the beginning of the time
series. When the water input is in the form of rainfall, as in February 2018, the halite growth rate that
followed drops by about one half on sites 1 and 10. On site 11 and 4, the influence of precipitation type
on the rate seemed not so marked. Thus, the effect of water droplets dissolving previously grown salt
aggregates has different impacts on σ0.
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Table 3. Monthly rate of increase of VV polarized backscattering coefficient σ0 during dry periods.

Site Range
(Start Date–End Date)

Interval
[day]

Variation
[dB]

Rate
[dB/month]

1
23 October 2017–28 December 2017 66 4.56 2.07

23 February 2018–27 April 2018 72 2.55 1.06

10
17 September 2017–15 January 2018 120 8.80 2.20

20 February 2018–08 June 2018 108 3.76 1.04
18 September 2018–23 December 2018 96 5.01 1.57

11
22 March 2018–14 June 2018 84 4.18 1.49

12 September 2018–29 December 2018 108 4.71 1.31

4
20 February 2018–21 May 2018 90 4.10 1.37

06 September 2018–29 December 2018 114 3.84 1.01

6 29 September 2017–28 December 2017 90 3.71 1.24

3.4. Episodic Events

Restricted episodic changes occurred in a short time period and over large spatial extents.
They account for marked variations in σ0, and some of them are indicated with green circles in the time
series shown in Figure 8, corresponding to an extreme rainfall event on 24 March 2015, and flooding
on 7 September 2018. Figure 9b showed the decrease of backscattered power over large extents on
the salar surface after the extreme event on 24 March 2015, when heavy rains were registered in
Socaire (38.3 mm) and a 9-mm-snowfall was measured by the IMERG data product. Flooded areas
were subjected to an intense southeast wind of up to 70 km/h as registered by Socaire station from
9 September 2017 to 13 September 2018 that left a smeared pattern onto dry areas, such as in the nearby
site S11. Conversely, loose material in dry areas deposited onto flooded ones such as to the north of
site S1.

Site 1 has the most significant fluctuations in σ0 over the period from July to October 2018,
as shown in Figure 8a. These are related to wind effects. When flooded, the radar backscatter is
subjected to wind-generated roughness, increasing its backscattered power σ0. When standing water
left, low backscattered power can be partially explained by the presence of wind-blown sands that
tend to fill between uneven spaces, thus causing the surface to smoothen [30].

3.5. Seasonality of the Other Sites

For the other sites involved in the Sentinel 1 seasonality analysis, variations in both VH- and
VV-polarized backscattered power for the four years are shown in Figure 11 for Hard-pan crust 1 (S3,
S5, S7, S11, and S13), Hard-pan crust 2 (S4, S12) and Soft crusts (S2, S8, S9). Images were acquired at
local incidence angles ranging from 37◦ to 41◦ (ascending pass) and from 30◦ to 34◦ (descending pass).
In this section, seasonal, annual, and episodic temporalities were analyzed together.

As seen in Figure 8, for the other sites described in Figure 11, conditions from 2014 to January
2017 are also represented by σ0 constant trend due to the lack of significant rainfalls over that period.
The episodic event that occurred on 13 April 2015 is also highlighted here, with a second episodic event
registered on 20 April 2016, with a rapidly and isolated increase in σ0 for some sites. From January 2017,
La Niña wet conditions changed the surface roughness detected at C-band. Over long dry periods,
crust development occurred at a slow rate, which resulted in a small slope increase of VV-polarized σ0

from May 2015 to May 2016 for Sites S4 and S12 and from July 2016 to February 2017 for Sites S11 and
S13. The latest sites surround flooding grounds, which are influenced by salt dissolution and seem to
be influenced by those events decreasing σ0 during 2017–2018 springtime. Overall, the higher σ0 is
observed over Sites S3, S5 and S7 with smooth slopes over time. These sites are over elevated grounds
which prevented them from flooding and salt dissolution unless heavy rainfalls occurred.
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In general, Sites S2, S8, and S9 had similar σ0 patterns over the four years,
being affected by fluctuations in ponded water, increasing its backscattering power in presence
of wind-induced roughness.
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Figure 11. Sentinel 1 temporal backscattering observed over the salt pan for the remaining sites
considered in this study. Sentinel 1A (magenta) and Sentinel 1B (blue) in ascending (full markers)
and descending (empty markers) orbits. VV polarization is indicated as triangles, and VH are circles.
The green circles indicate episodic events: on 13 April 2015, for sites S4, S5, S7, S8, S9, and 20 April
2016, for site S8. Daily accumulate rainfalls recorded at Socaire are in grey bars, and snowfall cover
also shown as black crosses.

3.6. Seasonality as Seen by ALOS-2/PALSAR-2

The longer penetration depth at L-band in comparison to that of C-band allowed
interpreting ALOS-2/PALSAR-2 σ0 in terms of subsurface scattering rather than surface scattering.
For ALOS-2/PALSAR-2, variations in both HH- and HV-polarized backscattered power from 2014 to
2018 are shown in Figure 12 for type 2 Hard and Soft crusts, and Figure 13 for type 1 Hard crust.
Images were acquired on ascending passes only with local incidence angles ranging from 30◦ to 35◦.
In what follows, seasonal, annual, and episodic temporalities were analyzed together.
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Figure 12. ALOS-2/PALSAR-2 temporal backscattering observed over the salt pan. Sites corresponded
to Hard crust 2 (upper panel) and Soft crust (bottom panel). Ascending orbit. The local incidence angles
are indicated in degrees. Daily accumulate rainfalls recorded at Socaire are in grey bars, and snowfall
cover also shown as black crosses.
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Figure 13. The same as Figure 12 for sites corresponding to Hard crust 1. Ascending orbit. The local
incidence angles are indicated in degrees. Daily accumulate rainfalls recorded at Socaire are in grey
bars, and snowfall cover also shown as black crosses.

Overall, hard crust 2 (Figure 12, upper panel) showed a higher σ0 than soft crust (Figure 12 bottom
panel) because of the difference in surface roughness. The snowfall during the winter of 2017 and
its subsequent melting during the spring, contributed significantly to change the σ0 in several sites.
In some of them, it leads to a high backscatter coefficient (S12, S1, S8), which arises from the rise of the
brine layer, thus resulting in a moistened medium with high dielectric constant.

Sites distributed over hard crust 1 (Figure 13) had differences from each other. The higher σ0 are
observed over Sites S5 and S7. These sites are located over elevated grounds, which prevented them
from flooding and salt dissolution, except under heavy rains. On the other hand, σ0 decreased in S10
since its surface flooded and S11 surrounded flooding areas seemed to be influenced by those events
decreasing σ0 during 2017–2018 springtime.
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4. Discussion

Our investigation revealed that seasonality analysis of C-band Sentinel-1 and L-band
ALOS-2/PALSAR-2 allowed salar dynamics detection at different depths and salt pan-cover types.
The results achieved in the current study suggest that the dynamics of the salar during the four years is
the consequence of the development of temporal superficial saline crust affected by weather elements
such as wind, snow, and rain. The meteorological information partially showed a relation between
rain, snow events, and a decrease in the backscattered power. It is necessary to continue investigating
the physical causes of the observed phenomenon.

Sentinel-1 seasonality analysis showed three patterns in the backscatter power retrieved from the
salt pan surfaces and better represented in VV polarization. The first one related to climate seasonalities
starting with winters including sporadic snowfall conditions from 2014 to 2017 with the development
of salt crust and backscattered power oscillating around 5 dB. Wet conditions given by La Niña
from 2017 to 2018 led to snowfalls followed by floodings and a decrease of the backscattering power
due to dilution of salts. Thus, VV-polarized σ0 reached variations up to 9 dB between dry and wet
cycles. This is more evident on the Hard-pan crust 1, where VV-polarized backscattering coefficient
had an 8.80-dB-increase between the flooded and the well-developed crust surfaces in a four-month
period between 17 September 2017 and 15 January 2018, leading to a rate of 2.20 dB/month over the
120-day interval between the period mentioned. The annual seasonality seemed to depend on the
humidity income given by either Altiplanic or southern winter through precipitations which resulted in
decreasing the backscattered power by smoothening the salt crust roughness. Finally, episodic events
occurred in a short time period and are principally triggered by wind blowing flooded areas increasing
the backscattering power due to wind-induced roughness.

Similar results were found at the Chott el Djerid Tunisia [6–8] in different climatic and geographic
conditions, located near sea level (15 m.a.s.l) with precipitations events mainly in winter, dry and
warm summer, and mean annual rainfall between 75–100 mm (almost the half of the amount for Salar
de Aguas Calientes, Chile) without snowfalls. The authors show a relation in C-band monitoring
changes over evaporitic surfaces and present that backscattering power increases where VV-polarized
σ0 markedly raised during the evaporation phase in summer, being stable while humidity lacks,
and either decreases rapidly due to precipitations in winter. In Figures 9 and 10, VV-polarized σ0 maps
showed the vast superficial extensions over the salt flat affected either by flooding or snowfall events.
In the case of flooding events, the areas are coincidental with previous studies for Salar de Aguas
Calientes [2,4].

Cross-polarized σ0 wet-and-dry cycles appeared not so marked in comparison to co-polarized
ones. Sentinel 1 instrument noise floor reduced sensitivity for low σ0 such as those measured at VH
polarization. Instrument performance for the IW mode has a marked dependence with the incidence
angle [31]. In effect, the noise floor is about −25 dB at 35◦ and marginally improves to about −27 dB at
angles between 39◦ and 40◦, which implied a precise VH-polarized returned power from the rougher
crusts solely.

ALOS-2/PALSAR-2 seasonality analysis showed subsurface scattering due to more extended
penetration of the signal. Compare with Sentinel-1 the backscattering power seems to be less influenced
by precipitations and more affected by flooding and wind blowing the water. Our analyses were
limited here since its time series contained fewer images for the study area. A seasonal-trend analysis
at L-band could, therefore, be useful in further studies when multiple years of ALOS-2/PALSAR-2 data
will be available.

The outcomes of the comparison between the σ0 mean values obtained by Sentinel-1 and
ALOS-2/PALSAR-2 time series showed that the qualitative analysis is adequate to describe surface and
subsurface salar dynamics over the Andes Highland areas. Lastly, the differences observed for the
same day at different sites were due to the large area of study, different altitude locations, and incidence
angles as presented before [3].



Remote Sens. 2020, 12, 941 19 of 21

It is important to highlight that there are significant limitations in comparing data retrieved by
weather and optical satellite sensors and Socaire ground weather station due to differences in spatial
and temporal resolutions.

5. Conclusions

The paper describes the dynamics of the highland Salar de Aguas Calientes Sur by means of
the backscattered power at C- and L-band derived remotely from Sentinel-1 and ALOS-2/PALSAR-2
orbiting sensors. The main aim was to determine the seasonality in the SAR response over the salar,
through a four-year multitemporal analysis (2014–2018) in order to qualitatively estimate the salar
dynamics and compare the results with weather conditions, in the perspective of data integration.

The analysis of the σ0 time series showed that the SAR signal can detect seasonality, with different
sensitivities for each pan crust type. Further studies should focus on modeling the backscattering
coefficient using two-layer scattering models and dielectric properties measurements retrieved over
the salar.

SAR data can be used to detect the dynamics in ponds and salt pan crust, with an accuracy
compatible with the temporal resolution of Sentinel-1 and ALOS-2/PALSAR-2 at 4000 m.a.s.l.

The dynamics of the salar during the four years are the result of the development of temporal
superficial saline crust affected by wind, snow and water activity episodes. The meteorological
information partially shows a relation between rain, snow events and decreases in the backscattered
power. It is necessary to continue investigating the physical causes of the observed phenomenon.
The lack of a permanent ground weather station inside the basin could lead to errors in the accuracy of
seasonality event detection, especially for wind and frozen events. For this reason, future studies should
be considered at a similar basin with ground weather station acquisitions to increase data consistency.

Unlike other salars studied worldwide, the roughness of the salt pan in Salar de Aguas Calientes
Sur is conditioned by two winter episodes through a year with precipitations events that can dilute the
salt crust, thus driving salar-wide dynamics.

Nevertheless, the presence of constant winds and high geographic altitude could contribute to the
fast evaporation and development of salts.

The relevance of this work lies in its potential as a low-cost tool to explore different
evaporitic environments for research purposes, monitoring of water contributions to the system,
mining exploration projects, among others. It can also help to a better understanding of environmental
changes in arid regions and global climate change.
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