
remote sensing  

Article

A Multi-Level Attention Model for Remote Sensing
Image Captions

Yangyang Li *, Shuangkang Fang, Licheng Jiao, Ruijiao Liu and Ronghua Shang

Key Laboratory of Intelligent Perception and Image Understanding of Ministry of Education, International
Research Center for Intelligent Perception and Computation, Joint International Research Laboratory of
Intelligent Perception and Computation, School of Artificial Intelligence, Xidian University, Xi’an 710071, China;
skfang@stu.xidian.edu.cn (S.F.); lchjiao@mail.xidian.edu.cn (L.J.); rj_liu@stu.xidian.edu.cn (R.L.);
rhshang@mail.xidian.edu.cn (R.S.)
* Correspondence: yyli@xidian.edu.cn

Received: 11 February 2020; Accepted: 10 March 2020; Published: 13 March 2020
����������
�������

Abstract: The task of image captioning involves the generation of a sentence that can describe an
image appropriately, which is the intersection of computer vision and natural language. Although
the research on remote sensing image captions has just started, it has great significance. The attention
mechanism is inspired by the way humans think, which is widely used in remote sensing image
caption tasks. However, the attention mechanism currently used in this task is mainly aimed at
images, which is too simple to express such a complex task well. Therefore, in this paper, we propose
a multi-level attention model, which is a closer imitation of attention mechanisms of human beings.
This model contains three attention structures, which represent the attention to different areas of the
image, the attention to different words, and the attention to vision and semantics. Experiments show
that our model has achieved better results than before, which is currently state-of-the-art. In addition,
the existing datasets for remote sensing image captioning contain a large number of errors. Therefore,
in this paper, a lot of work has been done to modify the existing datasets in order to promote the
research of remote sensing image captioning.
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1. Introduction

Transforming vision into language for human beings is a common scene in daily life. For example,
when someone asks you, “what are you looking at?”, you might say, “I saw a bird flying over my
head”. Certainly, for human beings, the conversion from vision to language is very simple, but it is
necessary because many dialogues in our lives are related to vision. In recent years, the development
of intelligent dialogue systems and intelligent robots has been rapid. However, the dialogue between
human and intelligent systems is still at the level of pure language. Taking a robot as an example,
it is difficult for a robot to discuss with us a scene that is in front of us. If we ask a robot, “how many
cups are there on the table in front of you?”, it is very difficult for the robot to answer the question
because it not only needs to understand our problems but also needs to find the corresponding answers
from the visual information, which is a very challenging task. Research for image caption and video
question answer (VQA) is trying to solve this problem. The task of image captioning is to study how to
generate a sentence that can describe an image appropriately, and VQA is the study of how to make an
intelligent machine answer questions about a video, after the machine has watched a video. Both tasks
study the translation of vision into language. And this paper focuses on the image caption task.

At present, the research on remote sensing images mostly focuses on image classification, target
detection and segmentation, etc., [1–8] and has made significant progress. In essence, across all of the
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above studies, the purpose is to better automatically acquire and understand the information of remote
sensing images. Language, as the most commonly used means of information exchange, can cover
abundant information with concise words and is an important information carrier. Therefore, how to
transform a remote sensing image into language information is worth exploring. However, image
captioning is not a single classification or detection problem, it is more complicated as there is a need to
know multiple targets in the image and also to know the high-level relationship between them [9–11],
which is a more consistent expression of human advanced cognitive behavior. The study of image
caption can help us to further understand remote sensing images, and then it can be used to design
more humanized remote sensing image intelligent processing systems, such as military information
generation in wartime, remote sensing image retrieval and so on [12].

Both remote sensing image captions and natural image captions are essentially visual-to-language
(V2L) problems, which research on how to transform visual information into language information.
Remote sensing image caption methods are mostly evolved from natural image caption methods;
natural image caption has been developed in recent years. Especially after the emergence of the encoder
to decoder models [9,13,14], research has developed rapidly. Prior to this, image caption algorithms
mostly used a template-based method [15–17]. This method usually first detects some targets of an
image which are used as a candidate word, and finally combined with the designed language template
to generate sentences. For example, when a “bridge” is detected, the statement “there is a bridge” is
obtained by using the template, “there is a *”. The statements generated by this method depend on the
design of templates and lack diversity.

The real rapid development of image captioning benefits from the application of deep learning
technology. Deep neural networks complete the automatic caption process and eliminate the artificial
participation in the design. The idea of an encoder-decoder for image caption can be seen as a problem
of “translation”. Just similar to translating French into English, image caption translates pictures into
English or other languages. Therefore, those methods first use convolutional neural networks (CNN)
to encode the image, then use recurrent neural networks (RNN) to translate or decode the encoding to
achieve the image caption [9,10,13,18–20].

When observing an image, human beings will not notice every detail but will consciously transfer
their attention when necessary. Inspired by the attention mechanism of human vision, the image
caption algorithm based on attention mechanism has developed rapidly. Xu et al. [10] propose
two attention mechanisms, a stochastic hard attention mechanism and a deterministic soft attention
mechanism. The hard attention mechanism is to pay attention to or omit an area of the image, while
the soft attention mechanism is the weight of the degree of attention given to an area of the image.

Attention mechanisms have been continuously improved. Lu et al. [11] proposed an adaptive
attention mechanism, which can automatically choose whether to focus on images or on sentences
when generating sentences. For example, when there is “mobile” in a sentence, it is very likely that
“phone” will appear next, that is, there is no need to refer to the image information when predicting
the word “phone”. In addition, there are many other methods applied to image caption, such as
literature [21], which uses faster region convolutional neural network (R-CNN) to propose a bottom-up
and top-down attention for image caption and [22] achieves a good image caption effect by using a
template combined with target detection and an encoder-decoder model.

In the last two years, research on remote sensing image captioning has also started [1,2,12], and
the research is difficult because there are many differences between remote sensing images and natural
images. Remote sensing images usually have a higher angle of view [23], so that the image usually
contains a wide range of scenes and numerous targets, which causes difficulty in generating more
realistic captions. A good caption requires algorithms to interpret the high-level relations between
objects from the perspective of “overlooking”. Qu et al. [1] propose a deep multimodal neural network
model for semantic understanding. They use the convolution neural network to extract the image
feature, which is then combined with the text captions of the images by RNN or LSTM. Qu’s other
contribution is to open up two datasets, UCM and Sydney. Shi et al. [12] use a convolutional network
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to design a remote sensing image caption framework. Although this framework does not require
labels, it only adds a fixed language template on the basis of target detection. Therefore, the sentences
are relatively rigid, such as “there is one large airplane in this picture” and “there are several big
airplanes”. Lu et al. [2] create a new dataset: RSICD, and the best method in their experiment was the
encoder-decoder model based on the attention mechanism.

The attention mechanism is inspired by the way humans think when they observe things. However,
the attention mechanism currently used in remote sensing image captioning is mainly aimed at images,
which is still too simple to express such complex tasks as image captioning. In fact, when humans
describe an image, they not only pay attention to the image, but also to the description language. When
humans try to describe an image, they will first focus on the most important areas in the image and
extract important information. Then when describing it, the next word is mainly related to the image
and the words that have been said, and the degree of correlation with the image and the words is not
the same. In order to simulate such an attention mechanism, we propose a multi-level attention model.

Another difficulty of remote sensing image captioning is the lack of high-quality datasets. Unlike
natural image captions, which have high-quality datasets like COCO [24], remote sensing image
description datasets are relatively few. Some work [1,2] has been devoted to the construction of remote
sensing image description datasets. Three data sets have been created following the caption format
of the COCO dataset [24]: UCM [1], Sydney [1] and RSICD [2]. Although the RSICD dataset is large,
there are many errors, which have a lot of adverse effects on experimental results. Learning the wrong
caption is not of practical value.

In view of the above problems, this paper carried out research and the contributions of this paper
are as follows:

(1). We revise a lot of errors in UCM, Sydney and RSICD datasets. We fix a series of problems in
these datasets, such as word errors, grammatical errors and inappropriate captions. The modified
datasets can be obtained from https://github.com/120343/modified.

(2). We propose a multi-level attention model to mimic the thinking process of human beings when
describing an image, thereby improving the performance of the model in a remote sensing image
captioning task. This model contains three attention structures, which represent the attention
to different areas of the image, the attention to different words, and the attention to vision and
semantics. It is a closer imitation of the mechanism of people describing an image and can learn
useful visual and semantic features more effectively.

(3). Our experiments verify the validity of the modified datasets and the superiority of our proposed
models. Through experiments, we find that this attention mechanism has a significant positive
benefit for image captioning tasks. Our model can automatically choose whether to focus on the
image or the language, as well as which words in the language and which areas in the image.

(4). Our method has achieved better results than other methods, which is state-of-the-art on the three
datasets: Sydney, UCM and RSICD.

2. Proposed Method

In this section, we introduce the multi-level model that we proposed in detail. General attention
is part of our method, so we first describe the general attention model in Section 2.1, and then our
method in Section 2.2.

2.1. Attention Model

At present, the basic architecture of all attention-based models is encoder-decoder
architecture [9,10,13,18,19]. In this framework, the encoder is responsible for extracting image
information, while the decoder is responsible for decoding the extracted information and generating
the caption. Usually, the encoder uses convolutional neural networks, such as VGG [25], ResNet [26]
and so on. The decoder uses an RNN (recurrent neural network), like GRU (gated recurrent unit) [27]

https://github.com/120343/modified
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and LSTM (long-short term memory) [28]. LSTM is one of the most commonly used decoders in image
captioning [1,2,10,11,21,22,29–31]. In this paper, we also use LSTM as the decoder and its working
principle is as follows:

Γu = σ(Wuxxt + Wuhht−1 + bu) (1)

Γ f = σ(W f xxt + W f hht−1 + b f ) (2)

Γo = σ(Woxxt + Wohht−1 + bo) (3)

c̃t = tanh(Wc̃xxt + Wc̃hht−1 + b̃c) (4)

ct = Γu ◦ c̃t + Γ f ◦ ct−1 (5)

ht = Γo ◦ tanhct (6)

where Γu, Γ f , Γo, c̃t, ct, ht are the update gate, forget gate, output gate, candidate memory cell, memory
cell and hidden state of the LSTM, respectively. W∗ and b∗ are parameters to be learned. σ is a sigmoid
activation function. xt is the network input at t time. The operator ◦ denotes the Hadamard product
(pointwise product).

The key to LSTM is the ct, which can easily control the flow of information. Through structures
called gates, the LSTM can add or remove information to ct. There are three gates in LSTM, namely the
forget gate, update gate and output gate. As shown in Equations (1)–(3), each gate is composed of a
simple sigmoid neural network layer. The output value of the sigmoid function is 0–1, 0 means that all
information cannot pass this gate, 1 means that all information can pass this gate. The structure of
LSTM can also be represented by Figure 1:
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The first step in LSTM is to use the forget gate to decide how much information in ct−1 is thrown
away. The second step is to use update gate to decide how much new information in c̃t is added to ct.
Through the above two steps, ct can be obtained. Finally, by putting ct through the tanh function and
using output gate, we can get the output ht.

In a translation problem, a sentence is treated as a time series. A word is in the form of a vector,
first through a linear layer (embedding layer), and then input to LSTM for subsequent translation.
Essentially, the encoder-decoder model is a translation model in image caption, and the model translates
an image into a sentence. If the full connection layer extracted from CNN is used as the input of LSTM
at −1 time, then the NIC model [9] can be obtained, which is as follows:

x−1 = WeCNN(Img) (7)

where We are learning parameters and CNN encodes the image as a vector input to LSTM.
It should be noted that in the NIC model, the information of an image is input only once, and the

subsequent process generates sentences only by LSTM. Obviously, this method does not enable the
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network to make full use of the extracted image information, because the model only “looks” at the
image once. In the NIC model, the fully connected layer in CNN is used as image coding. Assuming
that the size of the final convolutional layer of the CNN is 7 × 7 × 512, and the fully connected layer is
an average pooling of the feature maps, that is, to average the values of 7 × 7 regions on each feature
map. Therefore, the NIC model treats these 49 regions equally without any differentiated view, which
is different from the way people describe an image.

The attention model has been improved for the NIC model and contains the input of image
information at every time step in the decoding process. The encoder extracts the convolution layer of
CNN (usually the last convolution layer of the network) rather than the fully connected layer. We also
assume that the size of the final convolutional layer of the CNN is 7 × 7 × 512, and the attention
model will first learn 7 × 7 weight values, indicating different attentions to different regions. Next,
it will perform pooling according to these weight values. Therefore, the attention model treats these
49 regions with different attentions.

The core of the attention model is that when using the extracted convolution layer, the attention
model does not necessarily pay attention to all areas of an image, and more likely it is only using the
information of some areas of the image. For example, when generating the word “airplane”, the model
only needs to focus on the area containing the airplane in the image, instead of observing the entire
image. This mechanism is consistent with human visual mechanisms. When a human observes an
image, the focus of vision only stays in some areas, not all areas.

Since LSTM inputs additional image information each time, the same changes need to be made to
Equations (1)–(4). Taking Equation (1) as an example, its new expression should be as follows:

Γu = σ(Wuxxt + Wuhht−1 + Wuzvt + bu) (8)

where vt is the encoding vector with attention. Its value is determined by the hidden layer of LSTM
and the whole image, which can be simply expressed as:

vt = gatte(I, ht−1) (9)

where gatte is an attention function. I = [i1, . . . , ik] is the convolution layer extracted by CNN, and k
is the size of the feature maps extracted by CNN, which is equal to the height of the feature maps
multiplied by the width of the feature maps, and i∗ ∈ RC (C is the number of feature maps). According
to the difference of gatte, attention mechanisms can be divided into two kinds, one is stochastic “hard”
attention, the other is deterministic “soft” attention [10].

Because the implementation of soft attention is relatively simple and is effectively equivalent to
hard attention, only soft attention is introduced here. Soft attention learns k weights at each time t, and
those weights represent the attention level of k areas in I, which can be expressed as follows:

qt = Wqtanh(WqII + (Wqhht−1)1T + b1) (10)

αt = so f tmax(qt) (11)

vt =
k∑

j=1

αt jit j (12)

where αt is the weight to be learned. W∗ and b1 are parameters to be learned. 1T is a matrix with all
elements set to 1, which is used to adjust the dimensions of the matrix. Since the sum of k weights is 1,
the softmax function is used. It can be seen that in the attention model, the representation of an image
is actually a region weighting of I. The model learns k weights at each time t, thus achieving an image
representation with attention.
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2.2. The Multi-Level Attention Model for Remote Sensing Image Caption

Single attention structure is insufficient to express visual and semantic features. Therefore, we
propose a model with three attention structures, which represent the attention to different areas of the
image, the attention to different words, and the attention to vision and semantics, as shown in Figure 2.
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Figure 2. The architecture of our multi-level attention model. Firstly, and image is resized into 224
pixels × 224 pixels, and then ResNet101 is used as the decoder to extract the convolution layer of the
image. In the decoder, h and c are firstly initialized using extracted feature maps and “Transform”
blocks. Arrows indicate the flow of data. The “attention1” gets the expression of attention to different
regions of the image, which is expressed by the vector vt. The “attention2” gets the expression of
attention to different words in a sentence that has been generated, which is expressed by the vector st.
The “attention3” refers to the attention to vt and st, which is expressed by the vector ẑt. The ẑt obtained
by attention is combined with the predicted yt−1 of the previous moment and input into the LSTM at
time t. These operations predict the word yt, and will continue until yi =< end >.

For the attention1 structure, it is similar to the general attention structure in Section 2.1, as shown
in Figure 3, but the difference between our attention1 structure and the general attention model lies in
the change of the function gatte. The input parameter ht−1 of gatte changes to ht. This means that the
model first calculates ht at time t and learns the visual expression according to it.
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Figure 3. The architecture of attention1. This structure can learn a set of weights, which represent the
degree of attention to different areas of the image.

In the attention2 structure, we mainly consider the guidance of the generated words to the
subsequent word generation. This is similar to the language model, but here it is not only to predict
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the next word according to the vector obtained by attention2, but to select the vector again through
attention3. The schematic diagram of attention2 is shown in Figure 4.
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Figure 4. The architecture of attention2. This structure can learn a set of weights, which represent the
degree of attention to different words that have been generated. At each time t, attention2 uses the
previously predicted word information.

In attention2, we use ct in LSTM to represent word information and add ht information at each
moment to learn a set of weights. Then, the weights act on ct to get the final expression for semantic
features, which is expressed by the vector st. This process can be expressed by the following equations:

st =
t∑

j=0

α jc j (13)

α j =
exp(W2 jtanh(

∑ j
m=1 W jmcm + Whhm + b2))∑t

j=0 exp(W2 jtanh(
∑ j

m=1 W jmcm + Whhm + b2))
(14)

where α is the weight used to express attention to words. W∗ and b2 are the parameters to be learned.
These weights act on c∗ to get the expression st for the semantic vector.

We achieve the attention representation for different regions of the image by attention1, and
the attention representation for different words by attention2. Next, we need to add the attention3
structure. This structure is mainly to consider some fixed sentence expressions, such as “be able to”,
that is to say, after “be able” appears, when predicting the next word, the attention to the image can
be small. On the contrary, when predicting words like “airplane”, the attention3 would pay more
attention to images than words. This attention structure can guide the model to automatically choose
whether to focus on image information or focus on sentence structure information when generating a
caption as shown in Figure 5.
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The structure of attention3 can be expressed by the following equations:

ẑt = α1vt + α2st (15)

α1 =
exp(W3vtanh(Wvvt + Whht + b3))∑

x∈(s,v) exp(W3xtanh(Wxxt + Whht + b3))
(16)

α2 =
exp(W3stanh(Wsst + Whht + b3))∑

x∈(s,v) exp(W3xtanh(Wxxt + Whht + b3))
(17)

where W∗ and b3 are the parameters to be learned. The range of α∗ is [0, 1], and α1 + α2 = 1. If α1 is 1, it
means that the model is completely dependent on the image information, and if its value is 0, it means
that the model is completely dependent on the sentence information. ẑt obtained by the multi-level
attention structure is used to predict the next word at time t.

In fact, the main difference between our model and the NIC model is that our model adds three
attention structures. And the equations involved in three attention structures are mainly the way of
obtaining attention weights, which is achieved by the combination of liner layers and a softmax function.
Assume that the size of the feature map extracted by CNN is 7 × 7 × 512, the hidden state dimension in
LSTM is 512, and the number of neurons in the attention network is 256. Taking Equations (10)–(12)
as an example, the process of getting attention weights based on these equations can be shown in
Figure 6; all three attention structures can be built like this.
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As we can see from Figure 6, from only using linear layer and softmax functions, attention structure
can be realized. The linear layer is for the transformation of dimensions, and the softmax function is to
get attention weights. W∗ and b∗ in equations are the parameters of the linear layer, which need to be
learned. Thanks to the application of the back propagation (BP) algorithm [32], we only need to build
a forward network including these three attention structures to learn these parameters.

3. Experiments

In this section, we first introduce the modified datasets and then introduce the implementation
details, results and analysis related to our experiments.

3.1. Modified Datasets

In the task of remote sensing image description, the three main data sets are Sydney [1], UCM [1],
and RSICD [2]. Here is a brief introduction to these datasets:

(1). The Sydney dataset has only 613 images, each image contains 5 captions, and the dataset has a
total of 237 words. The image pixel resolution is 0.5 m. Its caption is more appropriate, but the
amount of data is small.



Remote Sens. 2020, 12, 939 9 of 20

(2). The UCM dataset has 2100 images, each image contains 5 captions, and the dataset has a total of
368 words. The pixel resolution of the image is 0.3048 m. Its caption is relatively simple, and its
sentence pattern is rather rigid.

(3). The RSICD dataset has 10,921 images, each image contains 5 captions, and the dataset has a total
of 3325 words. The data are collected from Google Earth, Baidu Map, MapABC, Tianditu [2].

Although the contribution of Sydney, UCM and RSICD datasets to the remote sensing image
captions is enormous, their shortcomings are also obvious. According to what we have found, the
rates of error descriptions in Sydney, UCM, and RSICD datasets are at least 8.62%, 3.56% and 13.12%.
Learning the wrong data can only obtain incorrect captions, and the results are meaningless. The main
adverse effects of incorrect data are as follows:

(1). For the word “airplane” misspelled into “airplan”, although people can judge the error, it is
difficult for a computer to achieve this, because words in the computer are represented in vector
form, even “lot” and “lots” are different vectors.

(2). Word frequency refers to the number of times that a word appears in all descriptive sentences.
Generally, misspelled words tend to have a very low word frequency. Words with too low of a
word frequency are usually abandoned as uncommon words, which is a waste of data.

(3). If words are represented by a well-trained word embedding, then “lot” and “lots” will be very
close to each other in the vector space. But for misspelled words, the word embedding either
does not exist or does not correspond, which would affect the final result.

Several wrong ways for descriptions are as follows:

a. The word is misspelled (no such word), such as “different” misspelled into “differenet”.
b. The word is misspelled (spelled into other words), such as “tree” misspelled into “tress”.
c. Singular and plural errors, such as “many building” should be “many buildings”.
d. Misuse of parts of speech, such as “arranged compact” should be “arranged compactly”.
e. Word connection errors, such as “parkinglot” should be “parking lot”.
f. Punctuation errors, such as “fense,” should be “fense”.
g. Grammatical errors, such as “makes” should be “making” in some cases.
h. Redundancy of some spaces and punctuation marks.
i. The sentence described is not appropriate.

We count the number of words and sentences modified, and the number of images involved in
the modification. Also, we count the percentage of modifications. The results are displayed in Table 1.

Table 1. The number of modifications for the three datasets. For example, we modify 38 words for the
Sydney dataset, and this dataset has a total of 237 words, so the percentage we modified is 38/237 =

16.03%.

Dataset Modified Number/Total Number (%)

Words Sentences Images

Sydney 38/237 (16.03) 160/1865 (8.62) 123/613 (20.07)
UCM 44/368 (11.96) 374/10500 (3.56) 319/2100 (15.19)

RSICD 498/3325(14.98) 7166/54,605(13.12) 2493/10,921(22.83)

In Table 1, if there are multiple errors in a sentence, we count the sentence only once, and if there
are multiple wrong sentences in an image, we count the image only once. From Table 1, we can see
that every dataset has many errors. By correcting these errors, the quality of these datasets can be
improved, which is more conducive to the study of remote sensing image captioning. In fact, the
number of modified words and related sentences can better reflect the cleanliness of the modified
datasets because the real label of an image is the sentence in the image caption.
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To further illustrate the differences between before and after data modification, we have counted
the changes in the number of words in different situations. The statistical results are shown in Table 2.

Table 2. Changes in the number of words before and after modifying the data.

Dataset Sydney UCM RSICD

Before After Before After Before After

Words in Training Dataset 224 196 349 318 2603 2077
Words in Validation Dataset 111 103 225 216 1168 1044

Words in Test Dataset 104 97 222 211 1562 1388
All Words 237 201 368 327 3325 2628

Word Frequency <2 31 12 36 14 1523 1029
Word Frequency <5 71 45 68 40 2070 1459

Word Frequency <10 97 65 103 67 2391 1743
Words Only in Validation

Dataset 10 4 11 7 310 247

Words Only in Test Dataset 6 3 11 3 433 323

In Table 2, it should be noted that “words in validation dataset” and “words only in validation
dataset” are different. “Words only in validation dataset” means that words appear only in the
validation dataset, not in the training dataset and the test dataset. Generally, if a word does not exist
in the training dataset, it is difficult to generate a caption containing the word in the test dataset
because this usually means the distribution of the training dataset is different from that of the test
dataset. Therefore, if the number of such words is too large, it will have a negative impact on the
results of the caption. The “all words” represents the number of words in the entire dataset, including
the training dataset, validation dataset, and test dataset. The number of “all words” affects the
one-hot representation of the word. If the number is too large, a larger vector will be needed for the
representation of a word, and the space of words will become sparse. However, if the number of “all
words” is too small, the description will be very simple and rigid. The “word frequency” has been
discussed before. If there are too many words with low word frequency, it will cause a waste of data.

As can be seen from Table 2, all the numbers have decreased after data modification, which
indicates that the modified datasets are better and more suitable for research.

In addition to the above modifications, we have also modified other unreasonable parts of the
caption file. The caption file is saved according to the COCO dataset style [24], which is as follows:

{‘dataset’ : ‘Sydney’,
‘images’ : [‘filename’ : ‘1.tif’,
‘raw’:’A residential area with houses arranged neatly.’,
‘sentid’:0,
‘tokens’ : [‘A’, ‘residential’, ‘area’, ‘with’, ‘houses’, ‘arranged’, ‘neatly’]
. . . }

Generally, ‘raw’ and ‘tokens’ are mainly used when using the caption file. According to our
observation, some of them do not correspond to each other. So, we have also repaired this part.

For the existing remote sensing image caption methods, the original data sets UCM, Sydney and
RSICD are used. We have said that these unmodified data sets contain a lot of errors, so the results are
not credible. But for the sake of explanation, we still designed a comparison experiment between the
old and the new data.

3.2. Evaluation Metrics

Since the scoring of image captions is only a comparison between the caption generated by the
model and the labels of manual captions, the evaluation metrics chosen in this paper are consistent with
the evaluation metrics used in natural image captions. They are BLEU [33], Meteor [34], ROUGE_L [35],
CIDEr [36], and SPICE [37]. BLEU includes bleu-1, bleu-2, bleu-3 and bleu-4.
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In addition to the quantitative evaluation metrics above, we also explored the issue of sentence
diversity in remote sensing image description for the first time. Generation diversity is an important
part of image description evaluation. In paper [9], “caption not present in the training set” is used as
the discussion index of generation diversity, but that discussion is superficial. In this paper, we will
analyze the generation diversity in more detail.

3.3. Training Details

In data preprocessing, we only retain the caption with a length less than 30 words, and because
these datasets are not particularly large, we choose to keep all words that appear more than two
times. In the LSTM, the hidden size is set to 512 and the embedding or liner size is also 512. CNN
uses pretrained resnet101 [26], and the original images are resized into 224 × 224. The size of feature
maps extracted by this method is 1024 × 14 × 14. Both the encoder and the decoder have chosen the
Adam optimizer.

When training the decoder only, the batch size is set to 32, the learning rate is 10−4, and the
maximum epoch is 50. If the loss does not decrease after 2 epochs, the learning rate is multiplied by 0.8.
If the loss does not decrease after six epochs, stop training. Then to fine-tune the best results obtained
from the above training, the encoder is also trained. In this process, the learning rate of the encoder is
set to 5 × 10−5 and the learning rate of the decoder is set to 10−5. The strategy of epoch and learning
rate decay are the same. Note that because the encoder needs to be trained in the fine-tuning stage,
there are many parameters and the batch size needs to be reduced appropriately. We set the batch
size at the fine-tuning stage to 16. In all experiments, we use a beam size of three in the generation of
captions. On the largest dataset RSICD, our model training time is less than eight hours on a single
NVIDIA 1080 GPU.

3.4. Experimental Results

3.4.1. Quantitative Comparison of Different Methods

Firstly, we quantitatively verify the performance of our model. We design experiments on the
unmodified dataset and modified dataset. The best results in paper [1] and paper [2], as well as the
general attention model are compared. In Tables 3–5, “-“ indicates that the metric is not used and the
bold font indicates the best result. Att1 means that only attention1 is used. Att1 + att3 indicates that
attention1 and attention3 structures are used. And b1, b2, b3, b4, M, R, C and S represent bleu-1, bleu-2,
bleu-3, bleu-4, Meter, ROUGE_l, CIDEr and SPICE, respectively.

Table 3. The comparison of different methods on the unmodified and modified datasets of Sydney. The
bold value is the highest score.

Method Data Type b1 b2 b3 b4 M R C S

Paper [1] Unmodified 0.548 0.398 0.228 0.215 0.208 - 0.379 -

Paper [2] Unmodified 0.73216 0.66744 0.62226 0.58202 0.3942 0.71271 2.4993 -

Att1
Unmodified 0.75118 0.64778 0.57387 0.51456 0.45467 0.70552 1.95180 0.35200

Modified 0.77019 0.67906 0.60859 0.55239 0.45282 0.71850 2.00135 0.37566

Att1+Att3
Unmodified 0.77330 0.69392 0.63160 0.58224 0.46305 0.73323 2.33082 0.40551

Modified 0.79142 0.70824 0.64177 0.58117 0.47112 0.74657 2.11265 0.39583

Our Model
Unmodified 0.80572 0.71893 0.64480 0.58219 0.46647 0.74716 2.20283 0.40052

Modified 0.78996 0.71079 0.65172 0.60520 0.47414 0.73526 2.18108 0.40891

From the three tables, we can see that our models perform better on all three datasets. And “att1 +

att3” indicates that only attention1 structure and attention3 structure are used Compared with the
general attention model (att1) and “att1 + att3” model, our model can express sentence information
better, which means that our model with multiple attention structures has a better performance than
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the model with simple attention structures. Even on the unmodified data, our model can also achieve
the best results under almost all the evaluation metrics.

Table 4. The comparison of different methods on the unmodified and modified datasets of UCM. The
bold value is the highest score.

Method Data Type b1 b2 b3 b4 M R C S

Paper [1] Unmodified 0.638 0.536 0.377 0.219 0.206 - 0.451 -

Paper [2] Unmodified 0.83751 0.76217 0.70420 0.65624 0.44887 0.79621 3.2001 -

Att1
Unmodified 0.83402 0.75745 0.71527 0.66130 0.50997 0.79881 2.84515 0.43526

Modified 0.83204 0.76969 0.70989 0.67556 0.51827 0.79724 3.13923 0.46497

Att1 + Att3
Unmodified 0.86206 0.79049 0.74220 0.70128 0.52489 0.81642 3.16079 0.46066

Modified 0.86709 0.80147 0.75115 0.70003 0.52042 0.82348 3.15129 0.48121

Our Model
Unmodified 0.87536 0.82947 0.76925 0.70491 0.52785 0.81557 3.07900 0.46192

Modified 0.88638 0.82329 0.77351 0.72709 0.52215 0.84413 3.30735 0.50209

Table 5. The comparison of different methods on the unmodified and modified datasets of RSICD. The
bold value is the highest score.

Method Data Type b1 b2 b3 b4 M R C S

Paper [2] Unmodified 0.68813 0.54523 0.44701 0.3725 0.33224 0.62837 2.02145 -

Att1
Unmodified 0.73780 0.59109 0.48907 0.41375 0.45362 0.68657 2.23286 0.43563

Modified 0.76013 0.61871 0.51933 0.44330 0.45413 0.69307 2.35240 0.44110

Att1 + Att3
Unmodified 0.78849 0.66300 0.56828 0.48622 0.45590 0.708067 2.44261 0.45002

Modified 0.78921 0.66010 0.56674 0.49756 0.45587 0.71191 2.60420 0.45395

Our Model
Unmodified 0.79051 0.67824 0.57428 0.50305 0.46403 0.72466 2.63096 0.45478

Modified 0.80575 0.67778 0.58659 0.51626 0.47176 0.72372 2.77162 0.47862

Because the selection of image information is added, the effect of att1 + att3 is better than that
of att1. Further, adding attention to the semantic information makes the result of our model better.
Furthermore, almost all models perform better on modified datasets than on unmodified datasets. This
is due to the powerful expressive ability of LSTM. When the dataset is correct, LSTM can learn better
expression, so it has better performance on modified datasets. However, when there are many errors
in datasets, it is easy to learn some error information about the dataset, which leads to the general
performance on the unmodified dataset.

3.4.2. Comparison of Unmodified Datasets and Modified Datasets

In order to further verify the difference in the effect of the model before and after data modification.
We calculated the ratio of increased scores for each model after the data correction, and thus obtained
Figure 7.

As can be seen from Figure 7, due to the correction of the descriptions, in most cases, the scores of
a model have increased on the modified datasets, and the maximum increase is about 7%. This result
mainly comes from the reduction of error data in the modified datasets. We have introduced the data
repair work in Section 3.1. Taking RSICD as an example, the proportion of sentences repaired is 13.12%.
The modified datasets make the model easier to learn, and the correct label makes the scores more
reasonable. In addition, it can be observed in Figure 7 that the score increase is not obvious on the
Sydney dataset. This is because Sydney is a small dataset with only 613 images and 217 words. Under
such data volume, it is difficult to measure the effect of a deep learning model. Moreover, a few repairs
of the Sydney dataset cannot achieve an obvious increase in scores.
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Figure 7. The ratio of model scores increased after datasets were modified. The figure is the result of
three models on three datasets, so there are nine sub-figures. Each sub-figure has eight evaluation
metrics on the x-axis, and the y-axis value is the ratio, which equals to: (score on modified dataset–score
on unmodified dataset) / (score on unmodified dataset). The upward point means that the model scores
higher on the modified dataset than the unmodified dataset.

We let our model train on the unmodified and modified datasets. On the unmodified dataset,
the model generates some wrong captions, while for the same images, the correct captions can be
generated if the model is trained on the modified dataset; Figure 8 shows examples of how the modified
datasets can effectively avoid the model learning the wrong captions. This is mainly due to the
correction of errors in the datasets.
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3.4.3. Comparison of Generation Diversity

We also explored the relationship between generation diversity and scores of a model. Generation
diversity is an important part of image description evaluation. In paper [9], “caption not present in the
training set” is used as the discussion index of generation diversity.

The higher the proportion of generated descriptions by a model in the training set, the lower the
generation diversity of the model. It should be noted that it is meaningful to evaluate the diversity
of models only when they have similar scores, because if the scores are very low, even if the models
have high diversity, the generated descriptions by these models are only wrong. We calculated the
proportion of generated descriptions in the training dataset for three models, and we formed Table 6.

From Table 6, we can see that our model not only guarantees the highest scores but also guarantees
the diversity of generated sentences. For all datasets, our model achieves four best results. What does
the “proportion” exactly mean? If the proportion is too small, it means that the model has not learned
the sentence expression of the training dataset. If the proportion is too large, the model cannot generate
sentences outside the training dataset, then the semantic diversity of the model is low. A model,
after receiving enough training, is more inclined to use the existing sentences of the training dataset
as the generated description, because it is easier to use the “example” directly. This is not in line
with the expression of intelligence, because human language is extremely rich, the same scene can
be expressed in a variety of different sentences. Therefore, when designing a model, the proportion
should be lowered as much as possible without decreasing its score, so that the model can generate
more sentences that do not exist in the training dataset.

Some sentences generated by our model not present in the training dataset are shown in
Figure 9. It can be seen that the new sentences are learned by our model and the images are
described appropriately.
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Table 6. The proportion of generated descriptions not in the training dataset of each model. The bold
value is the lowest proportion.

Dataset Data Type
Proportion

att1 att1+att3 Our Model

Sydney Unmodified 0.862 0.845 0.862
Modified 0.828 0.879 0.793

UCM
Unmodified 0.986 0.980 0.985

Modified 0.981 0.990 0.976

RSICD
Unmodified 0.931 0.953 0.899

Modified 0.974 0.931 0.917

4. Discussion

4.1. Effectiveness of Attention Structure

In order to verify the effectiveness of attention structure, we change the attention2 structure to the
normal liner layer, that is, we do not learn attention weights, and treat all words equally. In addition,
we used different numbers of words to predict the next word and formed Table 7.

Table 7. Performance of our model under different numbers of words. The bold value is the
highest score.

Dataset Number of Words b1 b2 b3 b4 M R C S

Sydney
2 0.789320 0.72472 0.63733 0.57971 0.46216 0.72588 2.18342 0.41236
3 0.77199 0.69064 0.62235 0.56755 0.44384 0.72755 2.11924 0.40177
4 0.72743 0.63837 0.56260 0.50244 0.40235 0.71541 1.77576 0.39908

UCM
2 0.87192 0.81005 0.76073 0.71980 0.50654 0.82675 3.23003 0.47934
3 0.85861 0.79545 0.74831 0.70795 0.51568 0.81883 3.25966 0.48122
4 0.80358 0.73616 0.68453 0.63829 0.46332 0.76923 2.92639 0.44737

RSICD
2 0.79346 0.66081 0.56159 0.49102 0.45976 0.71234 2.59256 0.46927
3 0.79959 0.65813 0.57955 0.49535 0.45324 0.70996 2.51141 0.45756
4 0.75799 0.60242 0.49857 0.42243 0.41767 0.67660 2.09859 0.42739

Comparing Table 7 with Tables 3–5, we can see that our multi-level attention model has the
best performance. This is because our attention2 structure has different attention for different words.
In Table 7, as the number of words increases, the performance of the model roughly begins to decline.
Especially when the number of words is four, the scores are reduced. This is mainly due to the reason
that even if all words are used, they cannot be fully utilized because the model treats all words equally.
If we use too many words, useless words will only bring a lot of noise and have a negative impact
on the model, which leads to a decline in performance. Therefore, the attention structure is effective,
which can automatically learn how to observe things with a focus just like humans.

4.2. Effectiveness of Our Multi-Level Attention Model that Mimics Humans for Image Caption

In Section 4.1, we can see the effectiveness of the attention mechanism, which is one of the reasons
why our model works well. However, the attention structure cannot be added to a model at will, and
how to adapt attention to image tasks is also the focus of research. At this point, we mainly refer to the
thinking process of human beings when describing an image. In order to verify the effectiveness of
this point, we visualize our multi-level attention structure when generating a caption of an image, and
two examples are obtained as Figures 10 and 11.
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Figure 10. Visualization of our multi-level attention structure when generating the description: “there
is a red airplane at the airport”. The figure above each word indicates the attention to the image, which
is the visualization of the attention1 structure. The brighter the area on the figure, the greater the
attention to that area. The blue bar graph indicates attention to the past words when generating the
current word, which is the visualization of the attention2 structure. “v” means “visual”, and “s” means
“semantic”. “v: 0.37, s:0.63” means that 37% of attention is visual and 63% of attention is semantic,
which is the visualization of the attention3 structure.
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Figure 11. Visualization of our multi-level attention structures when generating the description: “a
residential area with houses arranged neatly”. The figure above each word indicates attention to the
image, which is the visualization of the attention1 structure. And the brighter the area on the figure,
the greater the attention to that area. The blue bar graph indicates attention to the past words when
generating the current word, which is the visualization of the attention2 structure. “v” means “visual”,
and “s” means “semantic”. “v: 0.23, s: 0.77” means that 23% of attention is visual and 77% of attention
is semantic, which is the visualization of the attention3 structure.

When generating some objects that can be directly observed in the image, the attention1 structure
will focus on the area containing the object in the image. For example, in Figure 10, when generating
the word “airplane”, the attention1 structure mainly focuses on the area containing the airplane in
the image, and at this time, v = 0.83, that is, the attention3 structure will pay attention to the visual
information generated by the attention1. When generating the words “houses” and “area” in Figure 11,
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the attention1 structure is mainly focused on the area containing houses on the image. At the same
time, the attention3 structure will pay attention to the visual information generated by attention1.
When generating some words that are not nouns, such as “the” or “is”, there is no region corresponding
to these words in the image. Therefore, at this time, the attention1 structure is invalid. Due to our
multi-level attention model adding the attention2 and attention3 structures, it can automatically pay
more attention to the semantic information and can still generate the correct words when the attention1
structure is invalid. For example, in Figure 10, when generating the word “is”, s = 0.77, that is to
say, 77% of the attention is on the semantic information. Additionally, observing the visualization of
the attention2 structure, we can see that the generation of “is” mainly depends on the word: “there”,
which is obviously in line with common sense, because “there is . . . ” is a common sentence collocation.
In Figure 11, when generating the word: “with”, s = 0.69, that is to say, most of the attention is paid
to semantic information, while little attention is paid to image content. Moreover, from the blue bar
chart in Figures 10 and 11, it can be seen that there is little attention paid to the initial word “< start >“
when generating words. The current word mainly depends on several nearby words, which is also
consistent with our daily expression semantics, that is, in a sentence, a word has a greater relationship
with the adjacent words.

According to the above analysis, it can be seen that our method is effective in remote sensing
image description tasks. This is mainly due to the fact that our method is a closer imitation of attention
mechanism of human beings. The research of image description tasks cannot be separated from the
extraction of image information and sentence information. The extraction of information in human
life is efficient, and this kind of extraction is active, that is, people only pay attention to the useful
information, but ignore the useless information. Our method is a closer imitation of this mechanism of
human beings. We are not only imitating an “unequal” attention mechanism, but the thinking process
of humans when describing an image. This requires attention to the images, sentences, and between
vision and semantics. Therefore, the performance of our method is significantly improved.

5. Conclusions

In this paper, we do a lot of modification works on the existing remote sensing image caption
datasets and make the modified datasets public. The original datasets come from [1,2], but there are
a lot of errors in these original datasets, which cause the model to learn incorrect descriptions. By
training with the modified datasets, the results are more reliable.

Inspired by the attention mechanism widely used in image tasks, we propose a multi-level
attention model. Our model contains three effective attention structures. The first attention structure
mainly focuses on the image, which is used to simulate people’s observation behavior of an image. At
a certain time, it focuses on only some but not all areas in the image. The second attention structure
is focused on semantic information, which is similar to people’s attention to language. The form of
the next word in a sentence is related to some words that have appeared before. The third attention
structure is a re-selection of vision and semantics, which is similar to that when people describe an
image. Sometimes, it is necessary to focus on the image, and sometimes it is not necessary to focus on
the image. In order to verify the validity of our model, we conducted a lot of comparative experiments,
which confirmed that the multi-level attention model is effective and achieved state-of-the-art results.
We also quantitatively analyzed the diversity of the model. The model achieved good diversity and
was able to generate some sentences that did not exist in the training set.

We hope that the work of this article can be helpful for remote sensing image caption tasks and
we also hope that our models can be applied in other fields.
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