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Abstract: The anthropogenic nighttime light (NTL) data that are acquired by satellites can characterize
the intensity of human activities on the ground. It has been widely used in urban development
assessment, socioeconomic estimate, and other applications. However, currently, the two main sensors,
Defense Meteorological Satellite Program’s Operational Linescan System (DMSP-OLS) and Suomi
National Polar-orbiting Partnership Satellite’s Visible Infrared Imaging Radiometer Suite (NPP-VIIRS),
provide inconsistent data. Hence, the application of NTL for long-term analysis is hampered. This
study constructed a new inter-calibration method for DMSP-OLS and NPP-VIIRS nighttime light to
solve this problem. First, NTL data were processed to obtain vicarious site across China. By comparing
different candidate models, it is discovered the Biphasic Dose Response (BiDoseResp) model, which
is a weighted combination of sigmoid functions, can best perform the regression between DMSP-OLS
and logarithmically transformed NPP-VIIRS. The coefficient of determination of BiDoseResp model
reaches 0.967. It’s residual sum of squares is 6.136 × 105, which is less than 6.199 × 105 of Logistic
function. After obtaining the BiDoseResp-calibrated VIIRS (BDRVIIRS), we smoothed it by a filter
with optimal parameters to maximize the consistency. The result shows that the consistency of NTL
data is greatly enhanced after calibration. In 2013, the correlation coefficient between DMSP-OLS and
original NPP-VIIRS data in the China region is only 0.621, while that reaches to 0.949 after calibration.
Finally, a consistent NTL dataset of China from 1992 to 2018 was produced. When compared with the
existing methods, our method is applicable to the full dynamic range of DMSP-OLS. Besides, it is
more suitable for country or larger scale areas. It is expected that this method can greatly facilitate
the development of research that is based on the historical NTL archive.
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1. Introduction

Human activities are gradually increasing, which have significantly affected the human environment.
The nighttime light (NTL) retrieved by satellite provides a great opportunity to detect human activities
on a wide scale and for a long period. Currently, the widely used NTL data is mainly obtained by
Defense Meteorological Satellite Program’s Operational Linescan System (DMSP-OLS) and the National
Polar-orbiting Partnership Satellite’s Visible Infrared Imaging Radiometer Suite (NPP-VIIRS). National
Oceanic and Atmospheric Administration (NOAA) released the DMSP-OLS annual NTL mean product
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from 1992 to 2013, and the NPP-VIIRS monthly NTL mean product from April 2012 to the present.
The NTL data that were retrieved through these two sensors have been widely used in multiple
research areas, which characterize human activities from different perspectives. The Evaluation
of socioeconomic indices based on NTL can cross administrative boundary and provide reference
for the areas without census data [1–3]. Urban mapping and impervious surface identifying are
boosted by NTL due to its nature of portrayal of urban structure [4–7]. In addition, NTL provides a
new opportunity for estimating energy consumption and greenhouse gas emissions [8–11]. It also
promotes research on the distribution of light pollution and its impact on human health and protected
areas [12–14].

Despite the wide applications of NTL, only the data of single sensor are used in most existing
studies. Few works connect the two sensors. The main barriers include 1) the lack of on-board
calibration for DMSP-OLS, 2) the difference in overpass time, and 3) the significant overglow effect
of DMSP-OLS [15–17]. However, the longer-term analysis and application of NTL can be deeply
facilitated by connecting the two sensors. Accordingly, the inter-calibration between these two sensors
is now one of the most eagerly awaited researches [18–20].

Until now, just a few studies have tried to make the inter-calibration between DMSP-OLS and
VPP-VIIRS. In the earliest study, taking some NPP-VIIRS radiance values as reference, a power function
was used to calibrate the DMSP-OLS data [21]. However, they used daily data and their method was
not suitable for temporally average product. In the following researches, the calibration of temporally
average NTL data has been focused on. Jeswani used a logarithm and linear function to perform the
inter-calibration [22], yet the overglow effect of DMSP-OLS [23,24] was not considered in their work. In
the study of the Syrian Civil War, a power function combined with Gaussian low pass filter was used
to make an inter-calibration between monthly average NTL data [25], while the dynamic range after
calibration is incomplete (0 to 50). Wu et al. [26] adopted a similar method to correct the annual NTL
data of Beijing region, while their result has similar problems with that of Li et al. [25]. The city-scale
NPP-VIIRS data were converted into DMSP-like data from 1996 to 2017 by a residuals-corrected
geographically weighted regression model [27], while the time range of NTL was not completely
expanded [20]. All of these works have promoted the applications of NTL, but these functions still have
some limitations in different aspects. A more robust function is expected to achieve better calibration.

The objective of this study is to construct a better calibration function to improve the performances
in terms of spatial scale, dynamic range, time range, and simplicity of application, etc. The study area
(the whole region of China) and NTL data are introduced in Section 2. Subsequently, the methods
of calibration, including a flexible function—BiDoseResp model and the way to find the optimal
parameters for smoothing NPP-VIIRS are given in Section 3. Subsequently, Section 4 shows the results
of calibration. Finally, in Section 5, calibration performance and the differences between existing
methods are evaluated and discussed in detail.

2. Study Areas and Datasets

The whole region of China is taken as the research area. Since the 1980s, China has experienced
rapid economic development and urban expansion every year. Studies have shown that NTL in China
have significantly changed since 1992 [28–30]. Therefore, it is particularly important to establish a
better calibration function for DMSP-OLS and NPP-VIIRS nighttime light of China region.

DMSP-OLS was originally designed to detect the presence of night clouds, so it is not equipped
with on-board calibration. When the sky is cloudless, city illumination can be captured and recorded
by the sensor. However, it keeps changing gain coefficients according to the dynamic scene luminosity.
So, the gain coefficients are not recorded systematically [31]. Furthermore, due to its large footprint,
there is an obvious overglow effect which causes the lit area in the data larger than actual light
source area. The annual DMSP-OLS stable light product used in this study was downloaded from the
website of Earth Observation Group (EOG) affiliated with NOAA (https://ngdc.noaa.gov/eog/dmsp/

downloadV4composites.html). It is available from 1992 to 2013, with a spatial resolution of 30 arc
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seconds. The pixel values of DMSP-OLS are unitless Digital Number (DN). Its quantization ability is
six bits. The overpass time of the satellite is between 19:30 and 21:30.

On the other hand, the NPP-VIIRS Day/Night Band (DNB) is dedicated to acquiring NTL data
on the ground. It adopts a solar diffuser for on-board calibration. Three different gains stages are
used to record the ground illumination under different bright conditions. In the processing phase,
according to known coefficients, raw data are converted into radiance. In addition, the overglow
effect in the NPP-VIIRS data is effectively reduced by aggregating and deleting stretched pixels [32].
The NPP-VIIRS monthly product from April 2012 to the present is also available on the website of EOG
(https://ngdc.noaa.gov/eog/viirs/download_dnb_composites.html). It records the radiance of ground
illumination. Its unit is nanoWatts/cm2/Sr. The spatial resolution is 15 arc seconds, the quantization
ability is 14 bits for high gain stage (HGS) and 13 bits for medium/low gain stage (MGS/LGS).
The overpass time is 1:30 [33]. In this study, the NTL data of these two sensors in the overlapping year
of 2013 were used to construct the calibration function. Table 1 shows the properties of DMSP-OLS
and NPP-VIIRS.

Table 1. Properties of Defense Meteorological Satellite Program’s Operational Linescan System (DMSP-OLS)
and National Polar-orbiting Partnership Satellite’s Visible Infrared Imaging Radiometer Suite (NPP-VIIRS).

Sensors of NTL DMSP-OLS NPP-VIIRS DNB

Data Spatial Resolution 30 arc second 15 arc second
Data Temporary Resolution Annual Monthly

Available Time Interval 1992–2013 April 2012–Present
Overpass time Between 19:30 and 21:30 1:30

Quantization ability in A/D 6bit 14 bits for HGS;
13 bits for MGS and LGS

Unit Unitless DN nanoWatts/cm2/Sr
On-board Calibration Unequipped Equipped

3. Methodology

It is assumed that NPP-VIIRS data are the record of actual ground radiation. The variation of
gain coefficient and the overglow effect are regarded as DMSP satellite’s non-linear transformation
to actual ground radiation. Reconstructing the non-linear transformation can be divided into two
parts: (1) constructing a robust calibration function from NPP-VIIRS to DMSP-OLS, and (2) smoothing the
calibrated VIIRS to adapt to the overglow effect of DMSP-OLS. Figure 1 shows the flowchart of this study.
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3.1. Preprocessing

The NTL data of both sensors were re-projected to the Albers Equal Area Conic Projection.
An annual synthesis of NPP-VIIRS data was carried out since NPP-VIIRS data are monthly mean
product, while DMSP-OLS data are annual mean product. Subsequently, it was resampled to
1 km × 1 km to match the DMSP-OLS data. In addition, there are temporary illumination and
background noise in the NPP-VIIRS data; instead, only long-term and stable light exists in DMSP-OLS
data. A simple method that was proposed by Li et al. [34] was adopted to eliminate the temporary
illumination and background noise. After that, a small number of negative pixels were set to 0.
Finally, the method that was proposed by Elvidge et al. [35] was used to improve the continuity of the
DMSP-OLS data from 1992 to 2013.

A vicarious site is required in inter-calibration to provide samples [36–38]. However, there is no
special calibration site designed for NTL in the world. This study used the coefficient of variation (CV)
to select the calibration site to deal with this problem, referring to Jeswani [22]. It is assumed that the
small CV stands for the stable NTL radiation. First, the CVs of 3 × 3 windows of all pixels in DMSP-OLS
data and NPP-VIIRS data were computed, respectively. Subsequently, the pixels with values less than
20 were extracted, which represented the radiation-stable areas in the two datasets. Since there are
several hours’ difference between the overpass time of the two sensors, some of NTL on the ground is
changed during this period. An intersection operation was made between the radiation-stable areas of
DMSP-OLS and NPP-VIIRS to obtain the stable pixels both spatially and temporally. Finally, the pixels
in the intersection constituted the vicarious site. Figure 2 shows the distribution of the vicarious site
across China.
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3.2. Constructing Inter-calibration Function

As the dynamic range and the luminance distribution of DMSP-OLS and NPP-VIIRS are different,
it is necessary to narrow those differences before constructing a calibration function. Accordingly,
the NPP-VIIRS data underwent a logarithmic transformation, which cannot only compress its dynamic
range, but also made its luminance distribution more similar to that of the DMSP-OLS data [39].

A calibration function is the key to improve the consistency between DMSP-OLS and NPP-VIIRS.
First, the logarithmically transformed VIIRS and DMSP-OLS pixels within the vicarious site were
extracted. Afterwards, according to the characteristics of these pixel pairs in scatter plot, Sigmoid
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functions were used to build the relationship. A Logistic model and a BiDoseResp model were used as
the candidate functions in order to find a mathematical expression that can achieve the best regression.
Although both can show S-shaped growth trends, the two are different in details. The Logistic model
is subject to the characteristic of strict central symmetry, which might lead to its lack of flexibility in
regression. However, the BiDoseResp model is a weighted combination of two Logistic models (c1 and
c2). The combination can make it free of central symmetry [40]. Therefore, the BiDoseRsep model has
greater flexibility. The Logistic model is described as in Equation (1):

Y = Bottom +
(Top− Bottom)

1 + e(LogMean−Log[V])×h
, (1)

where Y denotes the calibrated value from NPP-VIIRS to DMSP-OLS; the Bottom denotes value of Y
for minimal curve asymptote; the Top denotes value of Y for maximal curve asymptote; independent
variable Log[V] is the logarithm of the NPP-VIIRS value; LogMean denotes the mean of independent
variable; h is the slop of the curve. The BiDoseResp model is defined as in Equation (2):

Y = Bottom +
w× (Top− Bottom)

1 + 10(LogMean1−Log[V])×h1
+

(1−w) × (Top− Bottom)

1 + 10(LogMean2−Log[V])×h2
, (2)

where w is the weight of one of the Logistic curves; LogMean1 and LogMean2 denote the mean of
independent variables of c1 and c2, respectively; h1 and h2 are the slops of c1 and c2 respectively.
The coefficient of determination (R2) and the residual sum of square (RSS) were taken as the evaluation
indicators. After comparing the regression results, the model with better performance was used to
process the NPP-VIIRS across China. In this way, the calibrated NPP-VIIRS was generated.

3.3. Mitigating Spatial Variability

There is still a gap between DMSP-OLS and the calibrated NPP-VIIRS due to the obvious overglow
effect of DMSP-OLS. It is necessary to smooth the calibrated NPP-VIIRS to adapt to the overglow effect
in order to maximize the consistency between the two. Some studies have adopted Gaussian low
pass filter to smooth NPP-VIIRS, so that it can get similar to the DMSP-OLS [25]. However, how the
different parameters (σ, w) of the filter affect the consistency has not been clearly revealed. σ was
changed by iteration from 0.20 to 5.00 in steps of 0.01 and w was changed from 3 to 29 in steps of 2 to
generate 6734 parameter pairs to generate a better understanding of this. Each parameter pair was
taken as the input of Gaussian low pass filter to smooth the calibrated NPP-VIIRS. RSS was taken to
characterize the gap between DMSP-OLS and the calibrated NPP-VIIRS. The larger the RSS, the greater
the gap, and vice versa. With σ, w, and RSS as the axes of coordinates, the computing results were
plotted in a 3D space to clearly reveal the effect of different parameters on the consistency. After that,
the parameters corresponding to the lowest point were used as the input of the filter to smooth the
calibrated NPP-VIIRS, so that it can be consistent with the DMSP-OLS data to the greatest extent.

4. Results

4.1. Constructing Inter-Calibration Function

Figure 3a shows the original NPP-VIIRS and DMSP-OLS pixel pairs in the vicarious site. All of
the pixel pairs are concentrated along the y-axis; therefore, it is impossible to directly make a good
regression. However, after the logarithmic transformation of NPP-VIIRS, it is discovered that these
pixel pairs present a significant S-shaped distribution in the scatter plot of Figure 3b. Different from
the previous one, the S-shaped distribution shows the potential relationship between DMSP-OLS and
NPP-VIIRS, and allows for constructing a mathematical expression to achieve the inter-calibration.
Both the BiDoseResp model and the Logistic model achieve good regressions, with R2 reaching 0.967,
as shown in Table 2. However, the RSS (6.136 × 105) of the BiDoseResp model is significantly less
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than that (6.199 × 105) of the Logistic model. It indicates that the BiDoseResp model can bring less
residuals and higher calibration accuracy. This is due to the weighted combination, which gives the
BiDoseResp model more flexibility. In addition, the power and linear functions that are proposed
in the previous methods were also used to perform regression. It turns out that the power function
cannot converge, and the fitting of the linear function is not as good as the BiDoseResp model. Hence,
when compared with other models, the BiDoseResp model can achieve the best regression. The yellow
curve in Figure 3b stands for the regression curve of the BiDoseRsep model, and its parameters are
shown in Table 3. Finally, the BiDoseResp-calibrated VIIRS (BDRVIIRS) was obtained by applying the
model on the NPP-VIIRS data across China.   
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Table 2. Candidate models.

Model R2 RSS

BiDoseResp 0.967 6.136× 105

Logistic 0.967 6.199× 105

Linear 0.847 2.874× 106

Power - -

Table 3. The parameters of BiDoseResp function.

Bottom Top LogMean1 LogMean2 h1 h2 w

4.56804 61.02992 0.37684 0.40853 0.93649 2.3558 0.30823

4.2. Mitigating Spatial Variability

After the different Gaussian low pass filters processed BDRVIIRS, the RSS values between
BDRVIIRS and DMSP-OLS were obtained. Cast into a 3D space, these 6734 RSS values construct such
a surface, as shown in the Figure 4. For the first time, the surface makes it possible for us to clearly
understand how the different parameters of the filter affect the consistency. In the beginning, the RSS
is 9.238× 107 (as indicated by Point a). After the filter is performed, the RSS begins to change. As σ
increases, RSS dramatically decreases. When σ gets to 1.00, the filter becomes normally distributional
at this time, which significantly improves the consistency (as indicated by the blue line). However,
the current consistency has not reached its best. When σ becomes 1.51 and w becomes 15, the lowest
point of the surface is eventually reached (as indicated by Point b). The minimum RSS is 2.932× 107 and
the corresponding root mean squared error (RMSE) is 3.976. As parameters continue to change, RSS
turns to increase, and the consistency starts to decrease. This is because BDRVIIRS is over-smoothed
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at this time. Finally, the parameters corresponding to the lowest Point b was selected as the input of
the filter to process BDRVIIRS. In this way, it was smoothed to be consistent with DMSP-OLS to the
greatest extent.
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Figure 5a shows the scatter density plot of BDRVIIRS and DMSP-OLS of the whole China
region without a Gaussian low pass filter, which corresponds to Point a in Figure 4. The scatter
distribution is very discrete. This is due to the conflict between the overglow effect of DMSP-OLS
and the high-precision of unsmoothed BDRVIIRS. The Gaussian low pass filter (σ = 1.51, w = 15)
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time, it shows a significant positive correlation with DMSP-OLS where the correlation coefficient (r)
reaches 0.949.
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4.3. Trend of Calibrated NTL of China

Due to the lack of on-board calibration for DMSP-OLS sensors, there is the lack of continuity
between the original DMSP-OLS data from 1992 to 2013, so the total light value (TLV) between different
years and different satellites fluctuates severely, as shown in Figure 6a. A quadratic polynomial method
proposed by Elvidge et al. [35] was used to make an inter-calibration between the DMSP-OLS data of
different years and different satellites to solve these problems. As a result, the continuity of DMSP-OLS
data was enhanced after inter-calibration, and the fluctuation of TLV between different years and
different satellites was significantly alleviated. On the other hand, since the non-calibrated NPP-VIIRS
data is inconsistent with DMSP-OLS data, there is a big gap between the TLV of the two kinds of
sensors. Therefore, the annual NPP-VIIRS data from 2012 to 2018 was calibrated by the method that
was proposed in this paper. Eventually, as presented in Figure 6b, the TLV of the DMSP-OLS data and
that of the BDRVIIRS data show a good continuity. The TLV of China has been increasing from 1992 to
2018, which is consistent with the economic development of China during this period.
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Figure 7 shows the calibrated NTL images of China in some years from 1992 to 2018. Overall, with the
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radiates outward from the metropolis. The area with the biggest increase of NTL is eastern China.
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5. Discussion

5.1. Evaluating Image Texture

After the nationwide calibration, Beijing, Shanghai, and Hangzhou were selected to conduct a
detailed evaluation. Figure 8 presents images of DMSP-OLS, NPP-VIIRS, and BDRVIIRS in the three
cities. DMSP-OLS images show urban centers, intercity roads, and suburbs simultaneously. However,
the original NPP-VIIRS images only show urban centers, different from DMSP-OLS. Through the
inter-calibration, BDRVIIRS images can show urban centers, intercity roads and suburbs simultaneously
just like DMSP-OLS images. Therefore, it is concluded that the inter-calibration makes image textures
of BDRVIIRS data more similar to that of DMSP-OLS data.

  

 

 

Figure 8. DMSP-OLS images in the cities of Beijing, Hangzhou and Shanghai (a, b, and c); NPP-VIIRS 

images in the three cities (d, e, and f); BDRVIIRS images of the three cities (g, h, and i). 
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5.2. Evaluating Transect 

Figure 8. DMSP-OLS images in the cities of Beijing, Hangzhou and Shanghai (a, b, and c); NPP-VIIRS
images in the three cities (d, e, and f); BDRVIIRS images of the three cities (g, h, and i).

5.2. Evaluating Transect

Figure 9 shows the transects of NTL data of the three cities. It is obvious that all of the transects in
the areas far away from urban centers are low and elevated toward urban centers. When the transects
pass through water body, the brightness suddenly decreases. By comparing NPP-VIIRS transects with
DMSP-OLS transects, it can be found that there is a significant difference between the two, although
both are based on the same spatial resolution. There are many dramatic variations in NPP-VIIRS
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transects, parts of which are towering peaks of brightness, while some other parts are narrow valleys.
Furthermore, the variations from peaks to valleys are almost vertical. However, in DMSP-OLS data,
the transects are much smoother due to the overglow effect. Similarly, the BDRVIIRS transects are also
smoother than the original NPP-VIIRS transects due to the Gaussian low pass filter. Overall, BDRVIIRS
transects and the DMSP-OLS transects are similar to each other.

  

 

 

Figure 9. Google Earth images and transects in Beijing(a), Hangzhou(b), Shanghai(c). Yellow curves 

represent the transects of BDRVIIRS data, green ones represent the transects of NPP-VIIRS data, and 
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Meanwhile, this also indicates that the underestimation of BDRVIIRS exists in areas where 
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Figure 9. Google Earth images and transects in Beijing (a), Hangzhou (b), Shanghai (c). Yellow
curves represent the transects of BDRVIIRS data, green ones represent the transects of NPP-VIIRS data,
and blue ones are representing the transects of DMSP-OLS data.

Besides, there are some other details worth noting. The changes in human activities during
this period lead to the variations in brightness in some areas because of the difference in overpass
time. Therefore, the transects of DMSP-OLS and BDRVIIRS are not exactly coincident. In addition,
a saturation effect exists in DMSP-OLS data, while there is no saturation effect in the BDRVIIRS data.
Accordingly, BDRVIIRS transects show more details than DMSP-OLS transects in the urban centers.
Meanwhile, this also indicates that the underestimation of BDRVIIRS exists in areas where DMSP-OLS
data are saturated.

5.3. Evaluating Pixel Relationship

Figure 10 shows the scatter plots and the histograms of DMSP-OLS and BDRVIIRS of the three cities.
These scatter plots indicate a strong correlation between DMSP-OLS and BDRVIIRS. The regression
analysis illustrates that the correlation coefficients of these scatter plots are greater than 0.97, RMSE
are less than 4.30, and the slopes of the regression lines are close to 1. In addition, the histograms
of BDRVIIRS and DMSP-OLS are consistent. This means that the distribution of the brightness of
BDRVIIRS and DMSP-OLS in the dynamic range is consistent. All of these indicate that the consistency
between BDRVIIRS and DMSP-OLS is strong.
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5.4. Comparison with Related Works

Several studies have attempted to make the inter-calibration between DMSP-OLS and NPP-VIIRS.
Table 4 shows the comparison with previous works. The differences of these studies are mainly reflected
in the data characteristics and calibration functions. In terms of data characteristics, early researches
used daily and monthly data [21,25], but those methods cannot be applied on annual data, so the
subsequent studies focused on annual data. In terms of calibration function, according to available
information, the BiDoseResp function in this study performs best, whose R2 is 0.967 and RMSE is 1.75.
In addition, the method that is proposed in this study has significant advantages in applicable scope,
accuracy, and efficiency.

One of the major advantages is applicable scope, including spatial area, dynamic range, and time
range. First, in spatial area, most of the studies are based on administrative units as research areas.
Li et al. [25] and Jeswani [22] selected Syria and India as research areas, respectively, while recent
studies narrow the research areas and focus on cities for better performance. However, the research
area of this study is larger than that of previous researches. Accordingly, this method is more suitable
for promotion in larger areas. Secondly, the dynamic range of these studies is incomplete [21,25,26].
In contrast, this study’s dynamic range is 0–63. Third, previous studies have not fully exploited the
potential of historical NTL archiving, as described in the recent review [20]. Instead, our method,
combined with Elvidge’s one [35], can maximize the time range of the annual NTL sequence. Finally,
the annual NTL sequence of China was produced from 1992 to 2018. Hence, this study is excellent in
spatial area, dynamic range, and time range.

Another advantage lies in accuracy. To make a comparison with Wu et al. [26] and Zheng et al. [27],
the calibrated NTL in the same areas was extracted. With the help of available information, it is found
that the r and RMSE in this study are both superior to the studies of Li et al. [25] and Wu et al. [26].
In addition, r values of Zheng et al. [27] in Hangzhou and Beijing (0.993 and 0.995) are slightly higher
than the values (0.983 and 0.975) of this study in the corresponding regions. While their r value in
Shanghai (0.966) is lower than 0.986 of this study. Therefore, the accuracy of this study is superior to
Li et al. [25] and Wu et al. [26], and close to Zheng et al. [27].

This study is better not only in applicable scope and accuracy, but also in efficiency. First,
the method that was proposed by Zheng et al. [27] requires input data to undergo a complex
preprocessing, while the preprocessing of this study is much simpler. Secondly, the functions used
in Zheng’s [27] and Wu’s [26] methods are just suitable for city-level applications. What is more,
these functions need to be reconstructed when they are shifted to other areas. On the contrary, this
method can achieve one-time calibration at the country level or even global, and then, the comparison
between multiple cities can be carried out directly. Therefore, the method of this study is simpler and
more efficient.



Remote Sens. 2020, 12, 937 12 of 15

Table 4. Available information about the related works.

Related Works

Shao et al.
(2014) Li et al. (2017) JESWANI (2017) Wu et al. (2019) Zheng et al. (2019) This Work

Data characteristics Daily,
not free

Monthly,
not free

Annual,
free

Annual,
free

annual,
free

annual,
free

Calibration
function

Function
name

Linear
function

Power function
& Convolution

Logarithm &
linear function

Power function
& Convolution GWRc BiDoseResp & Convolution

R2 - - 0.775 - - - - - 0.967
RMSE 4.05 - - - - 6.36 - - 1.75

Research
area

Name Dome C Syrian India Beijing Yiwu Hangzhou Beijing Shanghai China
Level Point Country Country City City City City City Country

Dynamic range 10–31 0–50 0–63 0–50 no upper limit 0–63

Evaluation
index of

result

r - 0.9158 - 0.945 0.963 0.993 0.995 0.966
Beijing Yiwu Hangzhou Shanghai
0.975 0.98 0.983 0.986

RMSE - 4.9967 - 9.387 7.687 - - - Beijing Yiwu Hangzhou Shanghai
4.268 3.649 3.356 3.157

Simplicity of algorithm Simple Simple Simple Simple Complex Simple

Product
Limited

application
range

The calibrated
monthly NTL of

Syrian from
March 2011 to
January 2017

The calibrated
NTL

of India
in 2013

The calibrated annual
NTL of Beijing and
Yiwu from 1992 to

2018

The calibrated annual NTL of
Hangzhou, Beijing and Shanghai

from 1996 to 2017

The calibrated annual NTL of China from 1992
to 2018
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When compared with the existing studies, this one has produced the calibrated NTL sequence with
the vastest research area, longest time range, and complete dynamic range. In addition, the evaluation
indicators show that the calibration has high accuracy. Therefore, this method is efficient and worth
promoting. The products can be used as extended DMSP-OLS data.

6. Conclusions

In this study, a new inter-calibration method was designed to improve the consistency between
NPP-VIIRS and DMSP-OLS. The core of this method is the BiDoseResp model. Its coefficient of
determination reaches 0.967, and residual sum of squares is 6.136× 105, less than 6.199× 105 of Logistic
function. Subsequently, the Gaussian low pass filter with the optimal parameters promoted the
consistency further. After that, the correlation coefficient between DMSP-OLS and BDRVIIRS of the
whole China region reaches 0.949. Taking the results of Beijing, Hangzhou, and Shanghai for a detailed
analysis, it is found that the results perform well in image feature, transect, and pixel relationship.
Finally, the consistent NTL sequence of China from 1992 to 2018 is generated. The result shows that
the NTL in China have increased continuously and significantly during this period.

Although the method that is proposed in this study is better in many ways, there are also some
limitations. First, the NPP-VIIRS data were aggregated temporally and spatially according to the
DMSP-OLS data, which caused the NPP-VIIRS data to lose their finer temporal and spatial resolution.
Secondly, the overglow effect of NTL data makes the areas around the light sources also recorded as
bright pixels, which makes it larger than the actual light source area. However, as compared with the
NTL data of single sensor, the integrated NTL sequence can promote the mining of richer and deeper
information about human settlement.

It is expected that this method can facilitate the development of researches on NTL and that
more novel information can be mined out. For example, the BDRVIIRS data would not be completely
consistent with the DMSP-OLS data due to the difference in overpass time. The inconsistency indicates
the changes in NTL on the ground (enhancement or dimming). Therefore, the way forward could be
analyzing the changes in NTL during this period to reveal human activities further. In addition, future
directions also include the development of a calibration method from DMSP-OLS to NPP-VIIRS, which
is expected to generate a consistent NTL dataset that is characterized by higher quality.
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