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Abstract: Nutritive value (NV) of forage is too time consuming and expensive to measure routinely in
targeted breeding programs. Non-destructive spectroscopy has the potential to quickly and cheaply
measure NV but requires an intermediate modelling step to interpret the spectral data. A novel
machine learning technique for forage analysis, Cubist, was used to analyse canopy spectra to predict
seven NV parameters, including dry matter (DM), acid detergent fibre (ADF), ash, neutral detergent
fibre (NDF), in vivo dry matter digestibility (IVDMD), water soluble carbohydrates (WSC), and crude
protein (CP). Perennial ryegrass (Lolium perenne) was used as the test crop. Independent validation
of the developed models revealed prediction capabilities with R2 values and Lin’s concordance
values reported between 0.49 and 0.82, and 0.68 and 0.89, respectively. Informative wavelengths for
the creation of predictive models were identified for the seven NV parameters. These wavelengths
included regions of the electromagnetic spectrum that are usually excluded due to high background
variation, however, they contain important information and utilising them to obtain meaningful
signals within the background variation is an advantage for accurate models. Non-destructive field
spectroscopy along with the predictive models was deployed infield to measure NV of individual
ryegrass plants. A significant reduction in labour was observed. The associated increase in speed and
reduction of cost makes targeting NV in commercial breeding programs now feasible.

Keywords: data mining; forage; high through-put phenotyping; near infrared spectroscopy;
non-destructive sampling; predictive models; lolium perenne

1. Introduction

Using hyperspectral sensors in crop research is increasingly common for complex traits that
multispectral sensors have failed to describe, because these sensors capture a large amount of
information without the need for destructive harvesting [1,2] Non-destructive measurement removes
many time consuming and costly steps from data capture and analysis. As a result, it makes an
appealing option for phenotyping, particularly for quantitative traits, the improvement of which
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requires selection from large sample numbers with traditional plant breeding [3]. One such trait is
nutritive value (NV) of forage, which is economically important to the dairy and red meat industry
in Australia [4]. Improving the NV of forage would be beneficial to primary producers with grazing
stock as it would increase the carrying capacity of paddocks [5]. The NV of forage is the culmination of
multiple parameters that all contribute to the amount of energy and nutrition derived by digestion.
Development of high NV cultivars requires a method of monitoring the expression of NV parameters
in the field 2001, which is necessary as glasshouse trials are often poorly correlated with results in field
grown plants [6].

It is imperative to measure the phenotypes across different environmental conditions as the
expression of NV characteristics in forage grasses are heavily influenced by various abiotic and biotic
conditions such as soil type and water availability [7,8]. The growth stage of the plant also affects
NV 2017, with a notable decline in positive forage traits such as in vivo dry matter digestibility
(IVDMD) and increase in negative traits such as neutral detergent fibre (NDF) when the grass enters
its reproductive phase [8]. The inherent variability of forage, both within the genome of the species
and across seasons necessitates high volumes of data capture and analysis to improve forage NV.
Unfortunately, 1999, this variability also makes measuring NV in the field more challenging than more
uniform crops like wheat and maize. Hyperspectral sensors may be a solution to measuring in large
outdoor trials in situ since they can be used to gather large amounts of phenotypic data rapidly [2,6].

The industry standard method for determining NV in forages is the use of Near Infrared (NIR)
spectroscopy conducted in laboratory conditions using dried, ground herbage samples, which are
calibrated and validated by wet chemistry [9]. Though this method is accurate and reliable it does
constrain sample numbers due to the cost and time involved in analysis [10]. Transitioning to field-based
2005, non-destructive spectroscopy would drastically decrease the time and cost involved in analysis
of NV, making it possible to directly target NV traits in breeding programs [11–13]. Unfortunately,
field spectroscopy captures significant environmental signals that are not related to the target trait,
but are due to solar radiation, light levels, recent precipitation events, and plant structure, making
it challenging to retrieve biophysical parameters from background variation [14,15]. The important
signals may be weak and hidden within many overlapping peaks and troughs [16]. Additionally,
relationships between biophysical parameters and spectra are often nonlinear and are difficult to
identify with linear models [17]. Various spectral pre-processing approaches have been used to reduce
background variation in the spectra and increase the relevant signals from biochemical parameters [18].
Pre-treatments may correct baseline drift 2019, or correct the effect of overlapping peaks, and improve
the simplicity and robustness of the calibration [19].

Creating an empirical model with spectral data always involves an intermediate modelling
step [14]. One option is to create non-parametric models 2011, which use a training set of spectral data
and corresponding laboratory results [18]. Non-parametric algorithms such as principal component
analysis (PCA), or partial least square regression (PLSR) are often employed to retrieve biophysical
parameters of vegetation from spectra [20,21]. In many cases the combination of spectral pre-processing
techniques and model building techniques that works best varies from one parameter to the next [22].
Finding the best combination of spectral pre-treatment and regression model for each parameter often
involves trialing combinations and examining the predictive statistics 2010, after which models that
perform well should be tested with independent data [15,23]. The accuracy of predictive models
created with spectra tends to be limited spatially and temporally to the training data sets that create
them. Testing models with independent data is important for creating robust models and being able to
discern NV parameters of plants from different growth stages and ecotypes [24].

Data mining and machine learning approaches have been successfully used to create predictive
models with the large data sets associated with crop research [25]. An example of a data mining
method is tree-based regression 2018, which is often utilised for continuous class data such as spectral
data [26]. An example of machine learning is Support Vector Machine (SVM), a modelling approach
that uses a supervised learning algorithm to find both linear and non-linear relationships in data [27].
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SVM has been used to predict nitrogen uptake 1999, dry matter, and crude protein in grass and clover
forage with R2 between 0.90 and 0.98 [17]. Another commonly used machine learning algorithm is
Random Forest Regression, which creates thousands of regression trees and averages all the outputs
for the prediction of dependent variables [20]. This technique has been applied to predict NDF 2019,
acid detergent fibre (ADF), and lignin in tropical forage grasses [20].

Cubist is an alternative machine learning technique that is based on decision trees, with data
partitioned into units of similar spectral signals and attributes with a hierarchy of rules determining the
partitions [28]. Decision trees work well for simple discrete classification but less well for continuous
measures. To address this problem Cubist uses decision trees that instead of ending in a binary decision
2011, end in a regression equation [28,29]. The rules have the formula of a boolean statement, an action
for when true, and an alternative action for not true, (if[], then[], else[]). These rules divide data into
similar classes which can then be more easily analysed with linear regression [29]. Cubist has been
demonstrated to be an accurate alternative to PLSR and is ideal to be used for analysis of hyperspectral
datasets [30]. Cubist models have been successfully utilised in other disciplines of agriculture and soil
sciences; however, Cubist has not been tried as an approach for predicting NV values in forage plants
from a field-based breeding nursery [30,31]. Cubist models are also able to provide the wavelengths
utilised and a percentage of usefulness to prediction which makes this technique less of a “Blackbox”
approach than other machine learning modelling options.

The aims of this study were to: (i) Use data mining techniques to extract biophysical parameters
of perennial ryegrass from hyperspectral canopy data; (ii) Identify specific wavelengths important
for modelling NV parameters in perennial ryegrass; (iii) Evaluate the predictive ability of Cubist
models to analyse NV parameters with an independent dataset; (iv) Assess advantages of the machine
learning approach for data analysis as well as potential limiting factors; (v) Demonstrate the use of
the developed predictive models to analyse NV parameters from the canopy spectra of a large study
population of 2880 plants.

2. Materials and Methods

2.1. Study Site

All samples used in this study are from a perennial ryegrass field trial in Hamilton Victoria 2019,
Australia (37.819440 S, 142.062171E. Fifty experimental varieties of perennial ryegrass were grown
as plots of 96 individual ryegrass plants, with ten replicates of each plot. Spectral measurements
from 960 of these plants were collected at four harvest dates over the course of the growing season
of At each harvest a subset of 128 plants were cut immediately after scanning, then dried at 60◦C
for 48 h, then ground using a 1 mm grate for laboratory based NIR analysis. Seven nutritive value
(NV) parameters were analysed using a Foss XDS analyser® including Ash 2019, crude protein (CP),
in vivo dry matter digestibility (IVDMD), neutral detergent fibre (NDF), acid detergent fibre (ADF),
water-soluble carbohydrates (WSC), and dry matter percentage (DM. Sixty-five plants were discarded
from analysis as they had died between measurements or were too low in biomass for lab-analysis.
A set of 156 data points from previous harvests of the trial were included to expand the calibration,
making a total of 605 plants. Convex hull and Mahalanobis distance were then used to identify spectral
outliers which were removed from the analysis if the H value was over 0.6, with sixty-five samples
excluded [32]. In total, 540 samples with both lab results and spectra were used in this experiment to
build and test the NV predictive models. The seven NV parameters were then predicted using scanned
spectra obtained from 2880 samples (960 plants measured four times over the growing season.

2.2. Spectra Collection

The canopy spectra of 960 plants were collected at each harvest date using an ADS® FieldSpec
Hi-Res 4 (Boulder 2019, CO, USA) with a 10◦ lens and scrambler. Spectra within the visual-NIR (350
nm to 2500 nm) range was recorded (Figure 1). For each sample, the spectra were measured 50 times
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and averaged. The spectrometer was calibrated after measuring each plot of 96 plants, approximately
every 20 min. A light shield was used to reduce background spectral signals from the environment.
The shield consisted of a 56 cm tall cylindrical plastic bin with a diameter of 45 cm, painted inside with
matte black paint (Black 2.0©), and fitted with three tungsten halogen lights with spectral range of
300–2500 nm [22]. The light shield was equipped with a sensor holder that insured the sensor was
always perpendicular to the ground and at 56 cm from the sample, creating a field of view of 79 cm2.
A full description of the light shield is provided in Smith et al. 2019. The light shield and halogen
lights were used instead of sunlight as a source of irradiance as this method was shown to be more
successful for creating predictive models [21,22].
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Figure 1. The FieldSpec® HiRes 4 is mobilised using an ASD field-lab 2019, and the sensor is fitted into
a holder within a light shield to capture canopy spectra under stable light conditions.

2.3. Spectra Data Pre-Processing

The software used for the pre-processing and model development was R version 3.5.3, reflectance
spectra was trimmed, leaving between 400 nm to 2450 nm, this was done to remove the regions at
the ends of the sensor range which contain a lot of background variation. The spectra were then
filtered to every 5th wavelength, this decision was a balance between reducing the dimensionality of
the data to prevent overfitting and retaining high spectral resolution so that important information is
not lost, as hyperspectral reflectance data is highly autocorrelated and spectral variance captured at 1
nm resolution should still be present at 5 nm. To optimise the signal to noise ratio, Savitzky Golay
smoothing was applied, with an interval width of 11 nm [33]. To reduce the impact of light scattering,
a spectral scatter correction technique, standard normal variate (SNV) was used to scale each spectrum
based on their standard deviation and mean [32].

2.4. Splitting Data as Model Calibration and Validation

R version 3.5.3 was also use for the data splitting; Conditional Latin hypercube sampling was
used to split the samples with corresponding lab results into a calibration set of 75% and a validation
set of 25% [32]. The calibration set included 405 samples and the validation set included 135 samples.
A processing example of the cubist model is available upon request to the first author.

2.5. Spectral Model Development

Models were developed with Cubist algorithms using pre-processed spectra from the 405
calibration samples (Figure 2).
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Figure 2. Schematic diagram of spectral data collection and nutritive value (NV) assessment pipeline
used for model development to predict acid detergent fibre (ADF) 1964, ash, dry matter (DM), crude
protein (CP), in vivo dry matter digestibility (IVDMD), neutral detergent fibre (NDF), and water-soluble
carbohydrates (WSC.

2.6. Model Validation

The model predictions and observed lab results were compared and several validation indices
were derived to determine model performance, including mean square error (MSE) which depicts
the model bias, root mean square error (RMSE) which depicts the model accuracy, Lin’s concordance
correlation coefficient (LCC), and the correlation coefficient or R2 [34].

2.7. Model Prediction of Nutritive Value (NV)

Once the model prediction ability had been assessed, the best models were then used to predict
the NV parameters in all plants which had been scanned for canopy reflectance (2880.

2.8. Model Variable Usage and Importance

Cubist provides wavelength usage statistics which gives the percentage of times a wavelength
was used either in a condition or in a linear model [28]. The usage includes wavelengths used in
predictive models created at each split of the tree and therefore also includes each variable used in the
current split or any split above it [28].

2.9. Cubist Model Comparison to Partial Least Square Regression (PLSR) Model

In order to assess the advantages of the machine learning approach for data analysis 2012, the
process was compared to a previously validated traditional approach, partial least square regression
(PLSR. We have previously explored the use of non-destructive spectroscopy to assess NV in forage
using PLSR as the intermediate modelling step. This previous study had very similar methodology,
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except the sample size was much smaller and the predictive models were developed with PLSR using
the software WinISI®. To compare the predictive ability of cubist to PLSR, spectra of the total 109
samples used in the earlier study were run through the cubist models to predict seven NV parameters.
As the earlier PLSR models were developed with much lower sample numbers, to make comparison
fairer the PLSR models were redeveloped using the same calibration set of 405 sample used for the
cubist models. The results given by the cubist models and the PLSR models were then compared to lab
results of the 109 samples.

3. Results

3.1. Descriptive Statistics and Evaluation of Model Performances for Key Nutritive Traits

After accumulating a library of spectra and corresponding lab results, Cubist models for the seven
NV parameters ADF, ash, NDF, CP, IVDMD, WSC, and DM were created. Models for the all parameters
showed decent predictive ability with R2 between 0.60 and 0.82, and LCC between 0.73 and 0.89 for
the calibration results (Table 1), and for the independent validation R2 between 0.66 and 0.82, LCC
between 0.82 and 0.89. The WSC model showed the lowest predictive ability with R2 of 0.49 and LCC
of 0.68 (Table 1). The variability of NV parameters found in the samples used to build and validate the
models are shown below in Table 2. The average, minimum, and maximum values of predicted NV
results was slightly broader, showing that the models were able to extrapolate (Table 2). The spectra of
perennial ryegrass are highly variable, this variation comes from many sources, as each plant will have
differences in leaf structure, water content, and other biophysical parameters all of which contribute
to the spectral signature [35]. The changing environmental conditions over the growing season also
increase the spectral variability. Though the spectra are highly variable 2017, the NV parameters do
not have a wide range of values (Table 2). This illustrates the challenges of finding spectral response to
biophysical parameters, as they are often less prominent than signals relating to the environmental
components and the three-dimensional structure of the plant.

Table 1. The predictive statistics for both the calibration and validation of Cubist models for each
nutritive value (NV) parameter.

Parameter R2 Calibration R2 Validation LCC Calibration LCC Validation MSE Calibration

ADF 0.69 0.75 0.81 0.85 4.54
Ash 0.71 0.66 0.82 0.80 2.08

IVDMD 0.72 0.82 0.83 0.89 15.20
NDF 0.72 0.78 0.84 0.87 18.18
CP 0.82 0.74 0.89 0.85 2.73

WSC 0.60 0.49 0.73 0.68 6.20
DM 0.81 0.69 0.89 0.82 7.68

Parameter MSE Validation RMSE Calibration RMSE Validation Bias Calibration Bias Validation

ADF 3.39 2.13 1.84 0.15 -0.33
Ash 2.39 1.44 1.55 -0.14 -0.16

IVDMD 7.29 3.90 2.70 0.16 0.40
NDF 13.06 4.26 3.61 0.19 -0.29
CP 4.08 1.65 2.02 -0.04 -0.13

WSC 7.68 2.49 2.77 -0.06 0.27
DM 11.60 2.77 3.41 0.07 0.30

The statistics given are, including mean square error (MSE) which depicts the model bias, root
mean square error (RMSE) which depicts the model accuracy, Lin’s concordance correlation coefficient
(LCC), and the correlation coefficient or (R2. Parameters listed are (ADF), ash, dry matter (DM),
crude protein (CP), in vivo dry matter digestibility (IVDMD), neutral detergent fibre (NDF), and
water-soluble carbohydrates (WSC.)
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Table 2. The range of NV variables found in the calibration set and the predicted values for the entire
sample population. Parameters listed are (ADF), ash, dry matter (DM), crude protein (CP), in vivo dry
matter digestibility (IVDMD), neutral detergent fibre (NDF), and water-soluble carbohydrates (WSC).

ADF
Calibration

ADF
Prediction

Ash
Calibration

Ash
Prediction

IVDMD
Calibration

IVDMD
Prediction

NDF
Calibration

Average 25.68 26.68 11.65 12.45 74.49 72.5 48.9
Minimum 17.64 14.76 5.69 6.76 47.31 40.09 33.73
maximum 41.37 46.72 23.47 21.79 83.41 87.97 76.90

Standard Deviation 3.62 4.30 2.61 2.16 6.38 7.87 7.71

NDF
Prediction

CP
Calibration

CP
Prediction

WSC
Calibration

WSC
Prediction

DM
Calibration

DM
Prediction

Average 49.17 14.05 14.92 22.07 21.12 26.13 28.18
Minimum 22.94 5.98 5.00 12.60 8.65 6.47 3.62
maximum 75.64 24.89 31.00 32.03 32.38 55.12 58.24

Standard Deviation 6.46 3.83 2.68 3.78 2.51 6.16 7.10

3.2. Application of Models for High-Throughput NV Prediction

To compare difference in time taken to analyse a single sample between the lab-based approach
and field-based approach required calculating the average time a single sample would take with either
method. The time required to analyse a plant sample with lab-based spectroscopy was calculated
by combining the total time for identification and hand cutting plants, oven drying the samples at
60◦C for 48 h, grinding the samples to a fine powder in a mechanical grinder with a 1mm grate, then
scanning of all samples in a lab-based spectrometer. The total time taken to measure samples was then
divided by the number of samples measured, averaging 15 min. The time required for analysis of a
single plant with field-based spectroscopy was calculated by combining the time needed to identify
plants, measure the reflectance spectra, and run the spectra through the predictive models. This time
was then divided by the number of samples analysed averaging 30 s, making the field-based approach
30 times faster than the lab-based approach.

3.3. Key Model Drivers for Prediction

The Cubist models produce a list of variable importance, which is a combination of wavelength
usage in the rule conditions for data splitting and wavelengths used in the regression [28]. The usage
percentage of wavelengths for this study can be found in the additional information.

3.4. Cubist Model Comparison to PLSR Model

The predicted results from cubist models were compared to lab results 2012, the PLSR predicted
results were also compared to lab results.

When comparing the predicted results of NV parameters determined using Cubist to lab results
the models showed consistently stronger regressions than models created using PLSR with the same
data set (Figure 3). The samples used in the above analysis were from the same field trial but measured
in a previous year to all the samples that had been used in the model calibration, showing that the
Cubist model is robust enough to cover multiple years of analysis.
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(m) (n) 

Figure 3. Comparison of predictive models developed using cubist and predictive models developed
with partial least square regression (PLSR). (a) Regression between Lab results for acid detergent fibre
(ADF) and the Cubist model predicted results for ADF. (b) Regression between Lab results for ADF
and the PLSR model predicted results for ADF. (c) Regression between Lab results for ash and the
Cubist model predicted results for ash. (d) Regression between Lab results for ash and the PLSR model
predicted results for ash. (e) Regression between Lab results for crude protein (CP) and the Cubist
model predicted results for CP. (f) Regression between Lab results for CP and the PLSR model predicted
results for CP. (g) Regression between Lab results for dry matter (DM) and the Cubist model predicted
results for DM. (h) Regression between Lab results for DM and the PLSR model predicted results for
DM. (i) Regression between Lab results for in vivo dry matter digestibility (IVDMD) and the Cubist
model predicted results for IVDMD. (j) Regression between Lab results for IVDMD and the PLSR
model predicted results for IVDMD. (k) Regression between Lab results for (NDF) and the Cubist
model predicted results for NDF. (l) Regression between Lab results for NDF and the PLSR model
predicted results for NDF. (m) Regression between Lab results for water soluble carbohydrates (WSC)
and the Cubist model predicted results for WSC. (n) Regression between Lab results for WSC and the
PLSR model predicted results for WSC.

4. Discussion

4.1. Data Mining Techniques to Extract Biophysical Parameters of Perennial Ryegrass

This study demonstrates that it is possible to predict NV parameters in large populations of
perennial ryegrass grown in natural, outdoor conditions. The cubist models showed strong predictive
statistics for all parameters with R2 between 0.49 and 0.82 and LCCs of between 0.68 and 0.89 for the
validation of models with samples not included in their calibration (Table 1). The minimum, maximum
and average value for each parameter were calculated for both the 540 samples with lab results in the
calibration set and the 2880 predicted values (Table 2). The predictive models were able to cover the
range of NV values included in the calibration but also extrapolate to predict higher or lower values
if necessary.

As a pipeline for selection of high NV plants for breeding purposes, this system will be rapid
and cost effective once the initial work of developing the models is complete, however, the initial cost
of the equipment and lab-analysis of the calibration may still be prohibitively expensive. Portable
spectrometers are comparatively expensive to lab-based systems and cover a similar range and
resolution of wavelengths. The software used to analyse the spectra is open sourced.

4.2. Identify Specific Wavelengths Important for Modelling NV Parameters in Perennial Ryegrass

An advantage of Cubist model is that it provides the percentage of use for the wavelengths utilised
by the model [30]. This identifies the most important wavelengths for each parameter and collectively
for NV in ryegrass. The wavelengths selected were often from biophysically meaningful regions of
the spectrum which is promising that the model will be robust for use in other field trials [36]. By
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routinely identifying wavelengths important to modelling NV 2013, the parsimonious wavelengths for
each parameter can be identified. Identifying important wavelengths for each parameter, along with
the percentage of usage could be used for further refinement of the models and for designing sensors
with reduced range and resolution. For instance, this information can be used to develop a cheaper,
lighter sensor that captures only the parsimonious wavelengths for forage NV. This would have the
added advantage of reduced data dimensionality, removing unnecessary wavelengths to diminish
the number of redundant variables in models [37]. Additionally, Cubist variable importance (percent
usage) could potentially be used to develop customized multispectral cameras for capturing spectral
images of samples in NV parsimonious wavelengths.

The key model drivers for prediction were varied and ranged across the entire electromagnetic
spectrum from the visual range to long wave near infrared (for the wavelengths identified please
see supplementary information, Table S1. Further work is needed to single out the parsimonious
wavelengths for all NV parameters 2019, ensuring the wavelengths selected are related to chemical
bonds within the targeted biophysical parameters to help reduce the inclusion of spectral noise in the
predictive models, building on the previous studies that have identified wavelengths important in NV
prediction [38–40]. When comparing the wavelengths identified in this study with wavelengths that
had previously been identified in forage studies, there were many similarities.

For ADF, some of the most important wavelengths for prediction are related to aromatics and
aliphatic C-H stretches, O-H stretches and deformations which are all found in lignin, cellulose, and
hemicellulose [40,41]. Other important wavelengths have been previously identified for ADF in models
using stepwise multiple linear regression (SMLR) or MPLS [38–40,42,43].

Ash can be more difficult to analyse as the inorganic proportions are often not measured directly
but rather an organic molecule that correlates to the inorganic component. Wavelengths in the visible
range of the spectrum likely relate to chlorophyll 1990, whereas, wavelengths within the NIR region
have been associated with lignin C-H stretches in starch molecules and C-H bends in lignin [39].
Some of the important wavelengths from the ash model have been previously identified by stepwise
multiple linear regression (SMLR) as important for prediction of ash [38]. For IVDMD some of the key
wavelengths have been linked to digestibility previously or are very similar to wavelengths identified by
PCA and SMLR analysis of IVDMD in grass silage [39,44,45]. For NDF 2008, an important wavelength
related to the O-H stretch in lignin, the O-H deformations in starch and N=H bends associated with
protein. Some of these wavelengths have been previously identified to relate specifically to NDF which
is known to correlate to IVDMD in forage [39,41]. Wavelengths in the visible range had previously
been identified as important for MLR equations to determine NDF [43].

Some of the wavelengths most important for predicting CP included were within the visual range
and are related to chlorophyll electron transition 2008, this may be due to the high protein content of
chlorophyll [39,46,47]. Predictive wavelengths from the NIR region likely related to N-H asymmetry
in protein, and the second overtone of N=H bends in protein [39,46,47]. Often wavelengths in the
MIR region 1475-1575 nm are utilised in protein analysis relate to an amide I and Amide II region of
the spectrum which may in this case be the 1550 nm and 1545 nm wavelengths [48]. Wavelengths
that have been identified previously by stepwise multiple linear regression (SMLR) as important for
prediction of CP or for prediction of nitrogen in forage were also identified in this analysis [38,49].

Unsurprisingly 2008, many of the wavelengths most important to predicting WSC have been
associated with the O-H stretches and deformation in sugar and starch [39,46,49]. For DM, some of the
most important wavelengths are associated with absorption by the C-H bond in oil molecules, though
it is unclear how this may relate to DM. Many other selected wavelengths for DM have been linked to
C-H stretches 2008, CH2 bends, and deformations associated with cellulose, sugar, and starch [39,44].
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4.3. Evaluation of the Predictive Ability of Models Created Using Cubist to Analyze NV Parameters from an
Independent Data Set

Splitting the total collected samples made it possible to see if the models could predict samples
that had not been included in model training (Figure 1). The Cubist models were able to consistently
produce results with stronger correlation to lab results than PLSR models for a dataset of samples
harvested in a different year and from different cultivars of perennial ryegrass (Figure 3). This success
is likely due to the machine learning algorithm that first separates the data into sets of similar samples.
Studies of complex traits often find that in some instances using a machine learning approach produces
models with better predictive ability than PLSR, and in other instances there is no difference. This
discrepancy is thought to relate to the type of non-linear relationship that is targeted, and the quality
of the data provided for the training set [50]. Both machine learning techniques and traditional
chemometric techniques have advantages and limitations, PLSR is adversely affected by outliers, whilst
machine learning can be prone to overfitting [18]. When finding the optimal modelling solution for
complex traits or removing high background variation 2007, or both, it is necessary to trial a wide
variety of different methods and techniques as well as the conventional approaches.

4.4. Advantages of the Data Mining Approach for NV Analysis as well as Potential Limiting Factors

Traditional chemometric approaches often include Stepwise Multiple Linear Regression (SMLR),
PCA, PLSR in the analysis [51]. An advantage of SMLR is that it includes the entire hyperspectral
range, unfortunately, the multi-collinearity and spectral overlap of biophysical parameters makes
SMLR inappropriate for use in hyperspectral analysis of forage [51]. There is a danger in using too
many wavelengths in analysis as the increase in dimensionality causes what is known as the Hughes
phenomenon which diminishes the effectiveness of classifiers [52,53]. Principal component analysis
and PLSR are often used together in spectral analysis 2015, with PCA used as a means of reducing the
dimensionality of hyperspectral data so that the PLSR model is less prone to overfitting [38]. PLSR
and modified PLSR are useful for multivariate regression to explain the relationship between multiple
independent variables and dependent variables [38].

The Cubist model incorporates aspects of PLSR and decision tree modelling into one process
where the binary decision tree first separates the data into spectrally similar sets 2009, making it more
accurate to then fit the data to a one global PLSR model equation [28]. Another advantage of the
Cubist model is its ability to utilise the entire spectra rather than removing the background variation.
Areas of high variability such as the water bands are often removed from analysis. The previous study
we conducted found that removing water bands from the PLSR regression created more accurate
models [22]. Hydrogen-oxygen bonds in water show a high variation in intensity and wavelength
frequency due to the shifting and bending of the molecule [54]. Temperature dramatically changes
the absorbance and reflectance of energy in spectral water bands [55]. In laboratory conditions 2012,
this phenomenon can be minimised by maintaining a standard temperature, but this is not possible
in field conditions [56] Removing water from the plant tissue can make other spectral features easier
to identify as the complex signal of water molecules can overshadow other biochemical signals [57].
When analysing field spectra 1988, the reflectance values in the range between 1800 nm to 1939 nm and
between 2430 nm to 2500 nm show high levels of noise associated with water vapour and are often
omitted from linear calibration strategies [38]. However, this region can contain important information
relating to biophysical parameters [58]. With the introduction of aquaphotomics 2009, proposed in 2006
by the School of Bio-measurement, of Kobe University, Japan, the technique of removing wavelengths
relating to water is in question [58]. In living tissue, water is the medium in which all other molecules
are suspended, the structure of the water molecules responds to the presence of other molecules and
this in turn changes the reflectance spectra of the water [58]. The differences in spectra associated with
water structure may be identified with machine learning techniques and may overcome the problems
of high spectral variation in these regions 2009, contributing to more accurate models for NV in living
tissue [23,55].
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Including a range of NV reference values in the calibration helps to improve the robustness of
the models, therefore the data used in this study was sampled across different seasons to increase the
variability of NV results [18]. Selection of appropriate data for model calibration is important to ensure
the sample population is accurately represented by the calibration set, especially for heterogeneous,
compositionally complex samples [18]. Simple random splitting of data will not guarantee appropriate
selection 2010, so conditional Latin HyperCube sampling was used [32]. This approach is used to
select optimal calibration samples through multidimensional consideration of wavelengths, which is
important for the development of robust models. Conditional Latin HyperCube sampling ensures
that the calibration dataset is matched with the population. As a result 2019, the calibration dataset
captures the variability exhibited in each spectrum across all the samples.

5. Conclusions

This study demonstrates that it is possible to measure large sample numbers of individual plants
in field conditions through capturing canopy spectra with a portable spectrometer and light shield. The
results show that data mining techniques are effective for predicting NV results (Table 1) and suggests
a pipeline for large scale NV analysis in the field (Figure 2). The Cubist models were able to extract
biophysical parameters of perennial ryegrass growing in a natural, outdoor setting without disturbing
the plants. The throughput that was achieved to sample a large data set of plants would be useful in
selecting individual plants for an NV improvement program. With continued use and extension of the
data available to the models, further refinements will be possible and greater accuracy will be expected.
Issues of overfitting data will be mitigated with the anticipated larger data sets. The problem of
overfitting will be further mitigated by identifying informative bands important for modelling nutritive
value parameters and ensuring these bandwidths are attributed to logical, biophysical parameters and
not background variation [52]. This method of analysis made it possible to derive NV results for 2880
samples of perennial ryegrass thirty times as quickly as analysis of this scale would normally take.
Using this protocol to predict forage NV during crossing selection would make targeted high nutrition
forage breeding possible.

Supplementary Materials: The following are available online at http://www.mdpi.com/2072-4292/12/6/928/s1,
Table S1: The wavelengths (nm) identified by the Cubist as important for prediction of NV parameters. Each
wavelength used in prediction is listed along with the parameter it was linked to, the percent usage in the cubist
model, possible biophysical reasons for this wavelength to be useful and references to studies that have also
used the wavelengths. Parameters listed are (ADF), ash, dry matter (DM), crude protein (CP), in vivo dry matter
digestibility (IVDMD), neutral detergent fibre (NDF) and water-soluble carbohydrates (WSC). References [59–61]
are cited in the supplementary materials.

Author Contributions: Conceptualization, C.S.; Formal analysis, C.S., S.K. and K.S.; Funding acquisition, N.C.;
Investigation, C.S., G.S. and K.S.; Methodology, C.S., S.K., N.C. and K.S.; Project administration, P.B., N.C. and
K.S.; Supervision, N.C., G.S. and K.S.; Writing – original draft, C.S.; Writing – review & editing, S.K., P.B., N.C.,
G.S. and K.S. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by Agriculture Victoria 2005, Dairy Australia, and the Gardiner Foundation.

Acknowledgments: The authors would like to thank the technical staff for their help in maintaining the field trial
and harvesting samples. Many thanks to Micaela Murray, Darren Pickett, Daren Keane, Chinthaka J, Phat Nguyen,
Alem Gebremedhin, Russel Elton, and Elly Polonowita.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Blackburn, G.A. Hyperspectral Remote Sensing of Plant Pigments. J. Exp. Bot. 2007, 58, 855–867. [CrossRef]
2. Pullanagari, R.; Yule, I.; Hedley, M.; Tuohy, M.; Dynes, R.; King, W. Multi-spectral radiometry to Estimate

Pasture Quality Components. Int. J. Adv. Precis. Agric. 2012, 13, 442–456. [CrossRef]
3. Casler, M.D. Breeding Forage Crops for Increased Nutritional Value. Adv. Agron. 2001, 71, 51–107.

http://www.mdpi.com/2072-4292/12/6/928/s1
http://dx.doi.org/10.1093/jxb/erl123
http://dx.doi.org/10.1007/s11119-012-9260-y


Remote Sens. 2020, 12, 928 13 of 15

4. Chapman, D.F.; Kenny, S.N.; Lane, N. Pasture and Forage Crop Systems for Non-irrigated Dairy Farms in
Southern Australia: 3. Estimated Economic Value of Additional Home-grown Feed. Agric. Syst. 2011, 104,
589–599. [CrossRef]

5. Smith, K.F.; Reed, K.F.M.; Foot, J.Z. An Assessment of the Relative Importance of Specific Traits for the
Genetic Improvement of Nutritive Value in Dairy Pasture. Grass Forage Sci. 1997, 52, 167–175. [CrossRef]

6. Mueller-Sim, T.; Jenkins, M.; Abel, J.; Kantor, G. The Robotanist: A Ground-based Agricultural Robot for
High-throughput Crop Phenotyping. In Proceedings of the IEEE International Conference on Robotics and
Automation (ICRA) (IEEE), Singapore, 29 May–3 June 2017; pp. 3634–3639.

7. Casler, M.; Vogel, K. Accomplishments and Impact from Breeding for Increased Forage Nutritional Value.
Crop Sci. 1999, 39, 12–20. [CrossRef]

8. Casler, M.D. Cultivar and Cultivar × Environment Effects on Relative Feed Value of Temperate Perennial
Grasses. Crop Sci. 1990, 30, 722. [CrossRef]

9. Richardson, A.D.; Reeves, J.B., III. Quantitative Reflectance Spectroscopy as an Alternative to Traditional
Wet Lab Analysis of Foliar Chemistry: Near-infrared and Mid-infrared Calibrations Compared. Can. J. For.
Res. 2005, 35, 1122–1130. [CrossRef]

10. Starks, P.; Zhao, D.; Phillips, W.; Coleman, S. Development of Canopy Reflectance Algorithms for Real-Time
Prediction of Bermudagrass Pasture Biomass and Nutritive Values. Crop Sci. 2006, 46, 927–934. [CrossRef]

11. Araus, J.L.; Cairns, J.E. Field High-throughput Phenotyping: The New Crop Breeding Frontier. Trends Plant
Sci. 2013, 19. [CrossRef]

12. Virlet, N.; Sabermanesh, K.; Sadeghi-Tehran, P.; Hawkesford, M.J. Field Scanalyzer: An Automated Robotic
Field Phenotyping Platform for Detailed Crop Monitoring. Funct. Plant Biol. 2017, 44, 143–153. [CrossRef]

13. Zaman-Allah, M.; Vergara, O.; Araus, J.L.; Tarekegne, A.; Magorokosho, C.; Zarco-Tejada, P.J.; Hornero, A.;
Albà, A.H.; Das, B.; Craufurd, P.; et al. Unmanned Aerial Platform-based Multi-spectral Imaging for Field
Phenotyping of Maize. Plant Methods 2015, 11, 35. [CrossRef] [PubMed]

14. Caicedo, J.P.R.; Verrelst, J.; Muñoz-Marí, J.; Moreno, J.; Camps-Valls, G. Toward a Semiautomatic Machine
Learning Retrieval of Biophysical Parameters. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2014, 7,
1249–1259. [CrossRef]

15. Esteve Agelet, L.; Hurburgh, C.R. Limitations and Current Applications of Near Infrared Spectroscopy for
Single Seed Analysis. Talanta 2014, 121, 288–299. [CrossRef]

16. Li, Y.; Shao, X.; Cai, W. A Consensus Least Squares Support Vector Regression (LS-SVR) for Analysis of
Near-infrared Spectra of Plant Samples. Talanta 2007, 72, 217–222. [CrossRef]

17. Zhou, Z.; Morel, J.; Parsons, D.; Kucheryavskiy, S.V.; Gustavsson, A.-M. Estimation of Yield and Quality of
Legume and Grass Mixtures Using Partial Least Squares and Support Vector Machine Analysis of Spectral
Data. Comput. Electron. Agric. 2019, 162, 246–253. [CrossRef]

18. Agelet, L.E.; Hurburgh, C.R. A Tutorial on Near Infrared Spectroscopy and Its Calibration. Crit. Rev. Anal.
Chem. 2010, 40, 246–260. [CrossRef]

19. Chen, H.; Pan, T.; Chen, J.; Lu, Q. Waveband Selection for NIR Spectroscopy Analysis of Soil Organic Matter
Based on SG Smoothing and MWPLS Methods. Chemom. Intell. Lab. Syst. 2011, 107, 139–146. [CrossRef]

20. Andueza, D.; Picard, F.; Jestin, M.; Andrieu, J.; Baumont, R. NIRS Prediction of the Feed Value of Temperate
Forages: Efficacy of Four Calibration Strategies. Animal 2011, 5, 1002–1013. [CrossRef]

21. Pullanagari, R.; Yule, I.; Tuohy, M.; Hedley, M.; Dynes, R.; King, W. In-field Hyperspectral Proximal Sensing
for Estimating Quality Parameters of Mixed Pasture. Precis. Agric. 2012, 13, 351–369. [CrossRef]

22. Smith, C.; Cogan, N.; Badenhorst, P.; Spangenberg, G.; Smith, K. Field Spectroscopy to Determine Nutritive
Value Parameters of Individual Ryegrass Plants. Agronomy 2019, 9, 293. [CrossRef]

23. Pasquini, C. Near infrared spectroscopy: A Mature Analytical Technique with New Perspectives—A Review.
Anal. Chim. Acta 2018, 1026, 8–36. [CrossRef]

24. Pantazi, X.E.; Moshou, D.; Alexandridis, T.; Whetton, R.; Mouazen, A.M. Wheat Yield Prediction Using
Machine Learning and Advanced Sensing techniques. Comput. Electron. Agric. 2016, 121, 57–65. [CrossRef]

25. Behmann, J.; Mahlein, A.-K.; Rumpf, T.; Römer, C.; Plümer, L. A Review of Advanced Machine Learning
Methods for the Detection of Biotic Stress in Precision Crop Protection. An International J. Adv. Precis. Agric.
2015, 16, 239–260. [CrossRef]

26. Holmes, G.; Hall, M.; Prank, E. Generating Rule Sets from Model Trees. In Australasian Joint Conference on
Artificial Intelligence; Springer: Berlin/Heidelberg, Germany, 1999; pp. 1–12.

http://dx.doi.org/10.1016/j.agsy.2011.06.001
http://dx.doi.org/10.1111/j.1365-2494.1997.tb02347.x
http://dx.doi.org/10.2135/cropsci1999.0011183X003900010003x
http://dx.doi.org/10.2135/cropsci1990.0011183X003000030050x
http://dx.doi.org/10.1139/x05-037
http://dx.doi.org/10.2135/cropsci2005.0258
http://dx.doi.org/10.1016/j.tplants.2013.09.008
http://dx.doi.org/10.1071/FP16163
http://dx.doi.org/10.1186/s13007-015-0078-2
http://www.ncbi.nlm.nih.gov/pubmed/26106438
http://dx.doi.org/10.1109/JSTARS.2014.2298752
http://dx.doi.org/10.1016/j.talanta.2013.12.038
http://dx.doi.org/10.1016/j.talanta.2006.10.022
http://dx.doi.org/10.1016/j.compag.2019.03.038
http://dx.doi.org/10.1080/10408347.2010.515468
http://dx.doi.org/10.1016/j.chemolab.2011.02.008
http://dx.doi.org/10.1017/S1751731110002697
http://dx.doi.org/10.1007/s11119-011-9251-4
http://dx.doi.org/10.3390/agronomy9060293
http://dx.doi.org/10.1016/j.aca.2018.04.004
http://dx.doi.org/10.1016/j.compag.2015.11.018
http://dx.doi.org/10.1007/s11119-014-9372-7


Remote Sens. 2020, 12, 928 14 of 15

27. Vapnik, V. Estimation of Dependences Based on Empirical Data; Springer Science & Business Media:
Berlin/Heidelberg, Germany, 2006.

28. Kuhn, M.; Weston, S.; Keefer, C.; Coulter, N. Cubist Models for Regression, R package Vignette R package
version 0.0 2012, 18; CRAN: Vienna, Austria, 2012.

29. Rossel, R.V.; Webster, R. Predicting Soil Properties from the Australian Soil Visible–near Infrared Spectroscopic
Database. Eur. J. Soil Sci. 2012, 63, 848–860. [CrossRef]

30. Minasny, B.; McBratney, A.B.; Stockmann, U.; Hong, S.Y. Cubist, a Regression Rule Approach for use in
Calibration of NIR Spectra. Picking Up Good Vib. 2013, 630.

31. Padarian, J.; Minasny, B.; Mcbratney, A.B. Using Deep Learning for Digital Soil Mapping. SOIL 2019, 5, 79–89.
[CrossRef]

32. Singh, K.; Majeed, I.; Panigrahi, N.; Vasava, H.B.; Fidelis, C.; Karunaratne, S.; Bapiwai, P.; Yinil, D.;
Sanderson, T.; Snoeck, D. Near Infrared Diffuse Reflectance Spectroscopy for Rapid and Comprehensive
Soil Condition Assessment in Smallholder Cacao Farming Systems of Papua New Guinea. Catena 2019, 183,
104185. [CrossRef]

33. Savitzky, A.; Golay, M.J. Smoothing and Differentiation of Data by Simplified Least Squares Procedures.
Anal. Chem. 1964, 36, 1627–1639. [CrossRef]

34. Lin, L.I.K. A Concordance Correlation Coefficient to Evaluate Reproducibility. Biometrics 1989, 45, 255–268.
[CrossRef]

35. Makdessi, N.A.; Jean, P.-A.; Ecarnot, M.; Gorretta, N.; Rabatel, G.; Roumet, P. How Plant Structure Impacts
the Biochemical Leaf Traits Assessment from In-field Hyperspectral Images: A Simulation Study Based on
Light Propagation Modeling in 3D Virtual Wheat Scenes. Field Crop. Res. 2017, 205, 95–105. [CrossRef]

36. Doktor, D.; Lausch, A.; Spengler, D.; Thurner, M. Extraction of Plant Physiological Status from Hyperspectral
Signatures Using Machine Learning Methods. Remote Sens. 2014, 6, 12247–12274. [CrossRef]

37. Malmir, M.; Tahmasbian, I.; Xu, Z.; Farrar, M. Prediction of Macronutrients in Plant Leaves Using Chemometric
Analysis and Wavelength Selection. J. Soils Sediments 2019, 1–11. [CrossRef]

38. Biewer, S.; Fricke, T.; Wachendorf, M. Development of Canopy Reflectance Models to Predict Forage Quality
of Legume-grass Mixtures. (Research) (Author abstract) (Report). Crop Sci. 2009, 49, 1917. [CrossRef]

39. Thulin, S.M. Hyperspectral Remote Sensing of Temperate Pasture Quality. In Science, Engineering and
Technology Portfolio; School of Mathematical and Geospatial Sciences, RMIT University Melbourne: Melbourne,
Australia, 2008; p. 486.

40. Wessman, C.A. Evaluation of Canopy Biochemistry. In Remote Sensing of Biosphere Functioning; Springer:
Berlin/Heidelberg, Germany, 1990; pp. 135–156.

41. Andueza, D.; Picard, F.; Martin-Rosset, W.; Aufrère, J. Near-infrared Spectroscopy Calibrations Performed
on Oven-dried Green Forages for the Prediction of Chemical Composition and Nutritive Value of Preserved
Forage for Ruminants. Appl. Spectrosc. 2016, 70, 1321–1327. [CrossRef]

42. Danieli, P.P.; Carlini, P.; Bernabucci, U.; Ronchi, B. Quality Evaluation of Regional Forage Resources by
Means of Near Infrared Reflectance Spectroscopy. Ital. J. Anim. Sci. 2004, 3, 363–376. [CrossRef]

43. Zeng, L.; Chen, C. Using Remote Sensing to Estimate Forage Biomass and Nutrient Contents at Different
Growth Stages. Biomass Bioenergy 2018, 115, 74–81. [CrossRef]

44. Downey, G.; Robert, P.; Bertrand, D.; Devaux, M.F. Near Infra-red Analysis of Grass Silage by Principal
Component Analysis of Transformed Reflectance Data. J. Sci. Food Agric. 1987, 41, 219–229. [CrossRef]

45. Downey, G.; Robert, P.; Bertrand, D.; Devaux, M.F. Dried Grass Silage Analysis by NIR Reflectance
Spectroscopy—A Comparison of Stepwise Multiple Linear and Principal Component Techniques for
Calibration Development on Raw and Transformed Spectral Data. J. Chemom. 1989, 3, 397–407. [CrossRef]

46. Ferner, J.; Linstädter, A.; Südekum, K.-H.; Schmidtlein, S. Spectral Indicators of Forage Quality in West
Africa’s Tropical Savannas. Int. J. Appl. Earth Obs. Geoinf. 2015, 41, 99–106. [CrossRef]

47. Jin, J.; Wang, Q. Evaluation of Informative Bands Used in Different PLS Regressions for Estimating Leaf
Biochemical Contents from Hyperspectral Reflectance. Remote Sens. 2019, 11, 197. [CrossRef]

48. Shi, H.; Lei, Y.; Louzada Prates, L.; Yu, P. Evaluation of Near-infrared (NIR) and Fourier transform mid-infrared
(ATR-FT/MIR) Spectroscopy Techniques Combined with Chemometrics for the Determination of Crude
Protein and Intestinal Protein Digestibility of Wheat. Food Chem. 2019, 272, 507–513. [CrossRef]

49. Shorten, P.R.; Leath, S.R.; Schmidt, J.; Ghamkhar, K. Predicting the Quality of Ryegrass Using Hyperspectral
Imaging. (Report). Plant Methods 2019, 15. [CrossRef]

http://dx.doi.org/10.1111/j.1365-2389.2012.01495.x
http://dx.doi.org/10.5194/soil-5-79-2019
http://dx.doi.org/10.1016/j.catena.2019.104185
http://dx.doi.org/10.1021/ac60214a047
http://dx.doi.org/10.2307/2532051
http://dx.doi.org/10.1016/j.fcr.2017.02.001
http://dx.doi.org/10.3390/rs61212247
http://dx.doi.org/10.1007/s11368-019-02418-z
http://dx.doi.org/10.2135/cropsci2008.11.0653
http://dx.doi.org/10.1177/0003702816654056
http://dx.doi.org/10.4081/ijas.2004.363
http://dx.doi.org/10.1016/j.biombioe.2018.04.016
http://dx.doi.org/10.1002/jsfa.2740410304
http://dx.doi.org/10.1002/cem.1180030207
http://dx.doi.org/10.1016/j.jag.2015.04.019
http://dx.doi.org/10.3390/rs11020197
http://dx.doi.org/10.1016/j.foodchem.2018.08.075
http://dx.doi.org/10.1186/s13007-019-0448-2


Remote Sens. 2020, 12, 928 15 of 15

50. Balabin, R.M.; Safieva, R.Z.; Lomakina, E.I. Comparison of Linear and Nonlinear Calibration Models Based
on Near Infrared (NIR) Spectroscopy Data for Gasoline Properties Prediction. Chemom. Intell. Lab. Syst.
2007, 88, 183–188. [CrossRef]

51. Capolupo, A.; Kooistra, L.; Berendonk, C.; Boccia, L.; Suomalainen, J. Estimating Plant Traits of Grasslands
from UAV-acquired Hyperspectral Images: A Comparison of Statistical Approaches. ISPRS Int. J. Geo Inf.
2015, 4, 2792–2820. [CrossRef]

52. Chen, D.; Huang, J.; Jackson, T.J. Vegetation Water Content Estimation for Corn and Soybeans Using Spectral
Indices Derived from MODIS Near- and Short-wave Infrared Bands. Remote Sens. Environ. 2005, 98, 225–236.
[CrossRef]

53. Da Silva, C.R.; Centeno, J.A.S.; Aranha, S.R. Reduction of the Dimensionality of Hyperspectral Data for the
Classification of Agricultural Scenes. In Proceedings of the 13th Symposium Deformation Measurements
and Analysis, Lisbon, Portugal, 12–15 May 2008.

54. Shenk, J.S.; Workman, J.J., Jr.; Westerhaus, M.O. Application of NIR Spectroscopy to Agricultural Products. In
Handbook of Near-Infrared Analysis; Burns, D.A., Ciurczak, E.W., Eds.; CRC Press: Boca Raton, FL, USA, 2008.

55. Tsenkova, R. Aquaphotomics: Dynamic spectroscopy of aqueous and biological systems describes
peculiarities of water. J. Near Infrared Spectrosc. 2009, 17, 303–313. [CrossRef]

56. Abrams, S.M.; Shenk, J.S.; Harpster, H.W. Potential of Near Infrared Reflectance Spectroscopy for Analysis of
Silage Composition1,2,3. J. Dairy Sci. 1988, 71, 1955–1959. [CrossRef]

57. Ollinger, S.V. Sources of Variability in Canopy Reflectance and the Convergent Properties of Plants. New
Phytol. 2011, 189, 375–394. [CrossRef]

58. Tsenkova, R. Aquaphotomics: The Extended Water Mirror Effect Explains Why Small Concentrations of
Protein in Solution can be Measured with Near Infrared Light. Nir News 2008, 19, 12–13. [CrossRef]

59. Wijesingha, J.; Astor, T.; Schulze-Brüninghoff, D.; Wengert, M.; Wachendorf, M. Predicting Forage Quality of
Grasslands Using UAV-Borne Imaging Spectroscopy. Remote Sens. 2020, 12, 126. [CrossRef]

60. Goodchild, A.V.; El Haramein, F.J.; El Moneim, A.A.; Makkar, H.P.S.; Williams, P.C. Prediction of phenolics
and tannins in forage legumes by near infrared reflectance. J. Near Infrared Spectrosc. 1998, 6, 7. [CrossRef]

61. Mirik, M.; Norland, J.E.; Crabtree, R.L.; Biondini, M.E. Hyperspectral one-meter-resolution remote sensing in
Yellowstone National Park, Wyoming: I. Forage nutritional values. Rangel. Ecol. Manag. 2005, 58, 452–458.
[CrossRef]

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/j.chemolab.2007.04.006
http://dx.doi.org/10.3390/ijgi4042792
http://dx.doi.org/10.1016/j.rse.2005.07.008
http://dx.doi.org/10.1255/jnirs.869
http://dx.doi.org/10.3168/jds.S0022-0302(88)79766-0
http://dx.doi.org/10.1111/j.1469-8137.2010.03536.x
http://dx.doi.org/10.1255/nirn.1079
http://dx.doi.org/10.3390/rs12010126
http://dx.doi.org/10.1255/jnirs.134
http://dx.doi.org/10.2111/04-17.1
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Materials and Methods 
	Study Site 
	Spectra Collection 
	Spectra Data Pre-Processing 
	Splitting Data as Model Calibration and Validation 
	Spectral Model Development 
	Model Validation 
	Model Prediction of Nutritive Value (NV) 
	Model Variable Usage and Importance 
	Cubist Model Comparison to Partial Least Square Regression (PLSR) Model 

	Results 
	Descriptive Statistics and Evaluation of Model Performances for Key Nutritive Traits 
	Application of Models for High-Throughput NV Prediction 
	Key Model Drivers for Prediction 
	Cubist Model Comparison to PLSR Model 

	Discussion 
	Data Mining Techniques to Extract Biophysical Parameters of Perennial Ryegrass 
	Identify Specific Wavelengths Important for Modelling NV Parameters in Perennial Ryegrass 
	Evaluation of the Predictive Ability of Models Created Using Cubist to Analyze NV Parameters from an Independent Data Set 
	Advantages of the Data Mining Approach for NV Analysis as well as Potential Limiting Factors 

	Conclusions 
	References

