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Abstract: A vast majority of the archaeological record, globally, is understudied and increasingly
threatened by climate change, economic and political instability, and violent conflict. Archaeological
data are crucial for understanding the past, and as such, documentation of this information is
imperative. The development of machine intelligence approaches (including machine learning,
artificial intelligence, and other automated processes) has resulted in massive gains in archaeological
knowledge, as such computational methods have expedited the rate of archaeological survey and
discovery via remote sensing instruments. Nevertheless, the progression of automated computational
approaches is limited by distinct geographic imbalances in where these techniques are developed and
applied. Here, I investigate the degree of this disparity and some potential reasons for this imbalance.
Analyses from Web of Science and Microsoft Academic searches reveal that there is a substantial
difference between the Global North and South in the output of machine intelligence remote sensing
archaeology literature. There are also regional imbalances. I argue that one solution is to increase
collaborations between research institutions in addition to data sharing efforts.

Keywords: machine intelligence; remote sensing; archaeology; ethics; data sharing;
automated analysis

1. Introduction

The archaeological record holds important information about the past, but our understanding of
human history is often patchy, incomplete, and disjointed, as datasets are unavailable or incompatible
across research projects [1,2]. This is compounded by the fact that scientific observations are subjective,
leading to biases in different analysis procedures [3]. Machine intelligence (MI) research (Al, machine
learning, deep learning, etc.) provides powerful mechanisms for collecting more complete and
systematic information from remote sensing instruments to inform researchers about the archaeological
record. M, in turn, can permit for more comprehensive—and reproducible—research into important
anthropological questions [4-8].

The age of “big data” has resulted in the availability of extraordinarily large collections of
information on global scales [1,9]. One example of “big data” are worldwide remote sensing datasets.
With so much information at our disposal, the challenge lies in efficient and reproducible analysis [10-13].
It is within this set of challenges where MI research has made great strides, especially within remote
sensing applications of cultural heritage and archaeological research [5,6,12,14-24]. MI encompasses
statistical classifiers, semi-automated analysis, deep learning, machine learning, and other methods
of systematically parsing through image data to extract information [14,16,25]. While a majority of
this work has focused on the development of algorithms for detecting archaeological deposits from
landscape-scale satellite and aerial imagery, and airborne laser scanning (ALS) [6,12,26], research has
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also focused on analyzing individual materials and smaller-scale phenomena [4,20,22,23,27-29]. In the
past several years, alone, there has been an explosion of machine learning research with archaeological
remote sensing foci around the world (Figure 1).
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Figure 1. The number of publications (n = 408) on archaeological machine intelligence (MI) since 2000
(source, Web of Science).

At the largest scale, MI can be used in conjunction with remote sensing datasets to help researchers
document human system dynamics in a relatively complete manner, allowing for comprehensive
studies of settlement and mobility patterns, effects of environmental change on human societies,
ecological effects of anthropogenic land use, and other significant archaeological topics [10,14,30-34].
Without the aid of computer learning techniques, our knowledgebase often remains highly biased,
with vast components of the archaeological record remaining hidden [35-37]. As demonstrated recently
by ref [38], large portions of the world’s archaeological knowledge are extremely limited, and data
quality for these understudied regions are, likewise, poor. This geographic data-gap limits our ability
to learn about the past. Cultural heritage protection is of great interest to many nations around the
world (e.g., U.N. Resolution 2347 [39] declaring the destruction of cultural heritage a war crime),
and computer algorithms can help to improve conservation and protection efforts [6,18,25,40-42].

Despite these abilities, there are imbalances in the use and development of MI methods for
archaeological remote sensing throughout the world. Specifically, these methods are highly utilized by
researchers in the Global North (e.g., United States and parts of Western Europe), but other regions
produce very few studies, in comparison, dealing with archaeological MI applications for remote
sensing (Figure 2). Elsewhere, my colleagues and I have discussed this issue, illustrating that important
developments in automated archaeological procedures have been underrepresented in archaeological
literature from developing countries, particularly those in the Southern hemisphere [6,43]. However,
robust quantitative evaluation of the problem within archaeology has not yet been undertaken.

Here, I attempt to quantify the extent to which this disparity exists globally and explore the
possible reasons for the geographic imbalance in the output of MI research. Then, I lay out some
possible solutions to this growing problem. I argue that one solution is via a combined effort of active
data sharing (including code and workflow procedures) and interdisciplinary and inter-institutional
collaboration. These suggestions for future developments are not limited to studies of archaeology and
cultural heritage, but rather warrant consideration by all disciplines involved in MI research.
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Figure 2. The percentage of papers (n = 148) published on machine intelligence for archaeological
research (as of December 2019). This includes automated and semi-automated algorithms, Al, etc.

developed for archaeology. Data collected from Web of Science.

2. A Brief Overview of Machine Intelligence Research in Archaeological Remote Sensing

The quantitative turn in archaeology began as early as the 1960s [44-48], as statistics and modeling
became commonplace. Beginning in the 21st century, advancements in data quality, processing
techniques, and availability of computing sources allowed for the many successes of landscape
archaeology in prior decades (e.g., site and artifact detection, viewing landscapes as palimpsests,
etc.) to be expanded upon. These expansions occurred both in terms of unprecedented speeds
and levels of coverage [17,25,49-51]. The development of predictive models for archaeological site
detection, which started in the 1980s with explosions in satellite and aerial image availability [52],
were invaluable for expediting surveys and protecting these locations [53-57]. For example, in Spain
and Portugal, the use of automated remote sensing analyses to record Iron Age settlement structures
resulted in the detection and subsequent confirmation of over 300 new archaeological sites throughout
the Iberian Peninsula over the past several years [7]. Additionally, recent work in Madagascar—which
is critically understudied archaeologically—surveyed and identified over 70 new archaeological sites
(and hundreds of potential sites) across an area of over 1000 km? over the past year [55]. Prior to
the use of semi-automated remote sensing methods, most of the coastline in this region was either
unsurveyed or understudied.

Since the turn of the 21st century, a number of significant improvements in MI methods have
significantly increased the accuracy and discovery of archaeological materials within remote sensing
datasets [12,25]. Object-based image analysis (OBIA)—an MI method that uses morphometric and
spectral parameters to identify features in image data [58-60]—has been successfully utilized by
archaeologists since 2006 [6] and has resulted in extremely high accuracy for detecting archaeological
sites around the world [14,21,61,62]. OBIA has also been successful in identifying artifact compositions
(which yield insights to manufacturing processes and material origins) and even microscopic
classification of mineral inclusions in cultural materials [24].

Advances in neural network analysis—a deep learning method of pattern recognition [63]—has
recently provided additional improvements to archaeological remote sensing, improving site detection
on landscape scales [5,26,64]. Such MI work has increased site discovery rates and are particularly
important for areas with increased risk to cultural heritage preservation. While such developments in
MI have been met with skepticism from researchers within archaeology [65-67], they have proven their
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abilities in maximizing archaeological knowledge with reduced time requirements and interobserver
biases [6,10,11,25,26].

Part of the need for such automated remote sensing analysis methods in archaeology is the
increasing complexity of datasets (e.g., multispectral sensors, 3D datasets, time series, etc.) which
make manual analysis challenging and time-consuming [11,49]. Landscape-scale data (e.g., satellites,
ALS, and aerial imagery) contain vast geographic spaces, as well as multiple data levels, and provide
important information about past settlement and human—environmental relationships, socio-political
organization, and a myriad of other topics. Smaller-scale analyses of sites, individual features and
artifacts, and even microanalysis of material composition also contain increasingly complicated data,
and MI can assist in understanding architectural developments, living strategies, settlement histories,
economic trade networks, and technological development [20,22-24,27-29,68,69].

Archaeological applications of MI are imperfect, of course, and issues with false positives and
overall accuracy remain a concern [6,70]. Nonetheless, these issues have decreased substantially over
the past decade, and advancements in MI are reducing these problems even further, often achieving
accuracies of >95% [5,21,26,64,71]. For a detailed discussion of MI applications in archaeology,
see refs [6,11,12,24].

3. Geographic Disparities within Archaeological Machine Intelligence

While applications of MI work have made great strides in archaeology and cultural heritage
applications, there are still substantial barriers to the propagation of this research. To quantify the
geographic imbalance of MI analysis in remote sensing archaeology, I conducted a bibliographic
analysis using the Web of Science search engine of publications from the late 20th century through
2019. Search terms were selected using the following algorithm:

TS = ((automat* AND image analysis AND archaeol*) OR (semi-automat* detection AND archaeol*) OR
(machine learning AND archaeol*) OR (deep learning AND archaeol*) OR (artificial intelligence AND
archaeol*) OR (supervised classification AND archaeol*) OR (unsupervised classification AND archaeol*) OR
(object based image analysis AND archaeol*) OR (neural network AND archaeol*))

These terms provide for any automated approaches to archaeology or archaeological image
analysis, artificial intelligence or machine learning techniques, or statistical classification methods
that provide for machine intelligence work. The results yielded a total of 148 references spanning
multiple disciplines within archaeological research. Additional references collected by recent literature
reviews [6,11,25] were also consulted. Following this analysis, another algorithm containing the
same search terms minus “archaeol*” was used to assess MI research across disciplines to compare to
archaeological applications.

One limitation of the Web of Science search engine is that it excludes many journals with relevant
literature. To correct for this limitation, I ran a second analysis with similar search terms using
Microsoft Academic, another search engine for scholarly literature, to identify any potentially excluded
publications (Table 1). In what follows, I report the findings of the Web of Science and Microsoft
Academic analyses.
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Table 1. Search terms used in Microsoft Academic literature search. Microsoft Academic works using
topics, rather than keywords like Web of Science. As such, search terms are not exactly the same as Web
of Science (WoS) searches, but encompass the same overall concepts and methods. Results indicate a
strong leaning towards North American and Western European institutions.

Search Terms Number of Results Top Institutions Affiliated with Publications

Northwestern University (USA)
102 Harvard University (USA)
University of Washington (USA)

Machine learning AND
archaeology

Vienna University of Technology (Austria)
545 Ghent University (Belgium)
University of Vienna (Austria)

Artificial intelligence AND
archaeology

HafenCity University Hamburg (Germany)
Archaeology AND automation 37 Polytechnic University of Milan (Italy)
Vienna University of Technology (Austria)

Washington University (USA)
Deep-learning AND archaeology 7 University of Ontario (Canada)
Norweigen Computing Center (Norway)

Centre National de la Recherche Scientifique
artificial neural network AND 29 (France)
archaeology Mongolian Academy of Sciences (Mongolia)

University of Burgundy (France)

Spanish National Research Council (Spain)

Statistical Classification AND 7 Marche Polytechnic University (Italy)
Archaeology Nanjing University of Information Science and
Technology (China)

This review of automated and Al applications in archaeology reveals a disparity in where this
work is being conducted and who develops these methods (Figures 1 and 2). According to Web of
Science, most archaeological MI research originates from a handful of USA and Italian institutions,
with other parts of the world largely absent. This is substantiated by Microsoft Academic results.
There is a great disparity between the Global North and South (Australia is an exception), with very
few developments coming from African or South American institutions. Additionally, there are divides
within regions as well; one example is the divide between Eastern and Western Europe, with most
publications originating from Western European institutions. This trend is statistically similar to MI
research outside of archaeology (t = -0.31165, df = 518.81, p-value = 0.7554) (Figure 3).

One potential reason for this imbalance stems from funding opportunities [43,72]. When analyzing
published archaeological MI literature in Web of Science, most studies were conducted by affiliates
of France’s Centre National de la Recherche Scientifique (CNRS), Italy’s Consiglio Nazionale delle
Ricerche (CNR), the Chinese Academy of Sciences, and the University of California system in the
United States (Figure 4). Similarly, most research has been funded by USA and European agencies,
with China and Australia also making notable contributions (Figure 5), and this trend is followed by
MI research, generally.

When assessing these trends outside of Web of Science, specifically, similar trends were observed,
with the United States, Austrian, Italian, German, French, Canadian, and Norwegian institutions
leading the field in nearly every category searched (see Table 1). Mongolia also emerged as a top
country in the publication of neural network literature linked to archaeology.
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Figure 3. Quantity and geographic distribution of MI research (n = 621,630). (a) Graph of the
total number of publications on MI work in all disciplines since the 1990s included in the Web of
Science database. (b) Geographic distribution of MI studies in panel (a), indicating a concentration of
development in North America, China, and parts of Europe (primarily in the West). South America
and Africa contain the lowest percentage of MI research output. This result concurs with Microsoft
Academic search queries.

Funding appears to be a major contributor to these imbalances, as most studies published originate
from countries where funding sources are acquired. Likewise, most automated archaeological studies
focus on regions within well-funded nations (e.g., Europe [6]). For example, researchers in Spain used
data collected from MI procedures to conduct an analysis of settlement distribution within Spain and
Portugal and its environmental context using an unprecedented sample size and geographic extent [7].
This provided new insight into the similarities of habitations in the Iberian Peninsula that were
previously unknown. In the United States, freely available ALS data permitted for the development of
an automated mound detection algorithm that identified hundreds of new potential archaeological
deposits [14,31]. Likewise, in China, researchers developed an automated mound detection algorithm
resulting in the identification of almost 150 new tomb sites [62]. These advancements are less often
seen in the Global South (some exceptions include [40,73,74]) and when conducted are often led by
scholars from institutions in the Global North (e.g., Europe or North America).

In the developing world, where funding is limited compared to places like Europe, foreign
scholars with monetary support tend to be responsible for the development of MI methods (when
they exist) [43]. A survey conducted by ref [72] found that most R&D expenditures in Africa are
covered by international grants outside of the African continent. This funding issue is compounded
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by comparatively limited training opportunities and necessary infrastructure for such techniques in
institutions within developing countries [72,75].
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Figure 4. Top institutions producing archaeological MI research contained in Web of Science. These do
not represent the total number of published studies, but illustrate disparities within certain journals
(source, Web of Science). Results from Microsoft Academic indicate similar results.
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Figure 5. Top funding agencies for archaeological MI research published in Web of Science. These do
not represent the total number of published studies, but illustrate disparities within certain journals
(source, Web of Science). Results from Microsoft Academic indicate similar results.

4. Potential Solutions to the Global Divide in Machine Intelligence Research

There are solutions to this growing problem of inequality. First, we must prioritize data sharing
and open-access repositories for datasets, code, protocols, and other workflows needed to develop and
replicate computational algorithms [6,76-78]. While becoming more commonplace, many researchers
still do not make their datasets or code/workflows available in publications or other publicized
platforms for other researchers to use and build upon. Many journals now require data availability
statements, but a lot of data are still under embargo by researchers and some funding agencies.
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For example, large datasets (e.g., LIDAR/ALS) collected by well-funded research consortia are often not
released to researchers due to governmental or other restrictions, which limits the ability of researchers
without such funding to develop new methods of assessing these datasets.

With the availability of numerous computer languages and software for machine learning and
other automated analysis procedures (e.g., Google Earth Engine, R, Python, Keras and Tensorflow, etc.),
the cost of developing new MI methods is not always a barrier to innovation; rather it is the acquisition
of suitable datasets to analyze using MI. As such, the availability of costly and expansive datasets
(which single research teams cannot adequately analyze alone) makes collaboration essential for good
scientific practice and increased rates of discovery. For example, using manual analysis, researchers
required two weeks to analyze a 10 km? area for archaeological deposits [79]. In the same amount
of time, automated methods were used to evaluate over 2000 km? with similar levels of success [14].
Recent MI developments by archaeologists have released code and software to permit for replication
and use by other researchers [4,80], and this must become standard practice.

Second, there is a need for inter-institutional and international collaborations of researchers
across disciplines involving humanities and social science as well as computer science, geophysics,
and other related computational fields. According to Web of Science, the top authors of archaeological
machine intelligence research are primarily from European institutions (i.e., Italy, France, and
Spain). Furthermore, researchers often collaborate with others from the same or nearby institutions.
This results in the continued dominance of specific areas and institutions in producing MI research
(Figures 2 and 3). By forming multidisciplinary collaborations between disciplines (e.g., social
sciences, humanities, and computational mathematics and sciences) we can develop powerful analysis
methods for addressing anthropological questions. Furthermore, and equally as important, by creating
inter-institutional (and international) collaborations, the geographic disparity of machine intelligence
research, in general, can be alleviated; in such circumstance’s skillsets are shared between collaborators
and novel methods are applied in new regions. While establishing and maintaining these collaborations
is difficult, especially across large geographic distances [81], research has shown that international and
inter-institutional collaborations are more impactful than non-collaborative efforts [82].

Furthermore, seeing as the majority of funding agencies are based in the Global North (e.g., Europe,
USA, etc.), geographic disparities in where Ml research is undertaken can be alleviated by an effort on the
part of funding agencies to support work conducted in underrepresented areas. In Africa, for example,
questions concerning the evolution of early humans and eventual expansion of Homo sapiens out
of Africa can potentially be linked to remote sensing and machine learning methods. Additionally,
recording of at-risk cultural heritage from significant periods of human development [41,83] and
cultural adaptations to climate change [84,85] can (and should) be viewed as a research priority
within Africa, which automated remote sensing approaches are capable of investigating. Similarly,
questions concerning settlement distribution of populations in high-altitude environments can be
assessed utilizing automated remote sensing procedures in places like the Andes in South America.
If researchers attempt to frame their machine learning studies within larger research programs, funding
agencies may increase support for investigations in locations that have been largely understudied
using MI methods.

Third, training in MI methods must be expanded to more institutions globally. Recent policy
initiatives by countries like the United Arab Emirates, Qatar, South Africa, and Tunisia will hopefully
see the rise in Al education and development in the Middle East and Africa [86]. Indeed, publications
on automated archaeology in Africa and South America listed in the Web of Science databases all date
to after the adoption of these initiatives (ca. 2018), and other publications from under-represented
regions also follow these recent trends [6]. In MI research in general, publications have increased in
these areas substantially since 2015. Nonetheless, the challenge to developing MI training opportunities
lies in the lack of technological infrastructure needed to develop such computational programs [75].

As countries increase economic priorities on technological developments, disparities in
computational research should begin to dissipate, but if (and when) this will happen is entirely
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uncertain. While we wait for governments to designate funding for such goals, the divide continues to
grow, and it is an ethical concern that all researchers should be attuned too. Scholars fortunate enough
to work in the developed world, where Ml research is growing, should attempt to close this deepening
global divide by engaging in ethical data sharing practices and collaborative efforts as detailed above.
This is one way by which we, as researchers, can do our part in alleviating an increasing problem in
the computational sciences.

Nevertheless, each of these suggestions, alone, is not enough to make a substantial difference in
the widening geographic disparity within automated archaeological research. Rather, each step is
a piece of a puzzle that together will assist in closing this divide (Figure 6). While advocations for
data sharing have been a staple of archaeological literature for decades [77,78,87,88], it is clear that
more is needed. This is especially necessary with the advent of increasingly complicated methods like
machine learning.

Storerelevant data in Involve scholars Set up workshops
‘ open-access ‘ from institutions with collaborators
repositories lacking training or Collaborate with
Ensure replicability mfras.tru?ture m early career scholars
of methods machineintelligence and students
research

Invest in projectsin
regions with under-
developed
technological
infrastructure

This includes
collaborations on
grants and funding

Data Sharing
Increase Training
Opportunities

International Collaboration

Figure 6. Graphical representation of the different steps necessary to address the geographic disparity
in machine intelligence approaches within archaeology. Data sharing, while necessary, is not enough to
decrease this widening gap in archaeological development.

To accelerate this effort, researchers should be made aware of economical, or entirely free ways
of learning and utilizing MI approaches in their work. Table 2 provides a non-comprehensive list of
some of the more popular open-source software and programming languages used for MI applications,
as well as a link to a tutorial for each platform listed. There are dozens of additional resources, including
plugins for GIS programs, cloud-based services, and packages for languages like R and Python, which
perform general-to-specific computer automation tasks. As such, this table should serve as a starting
point for researchers who are interested in learning and developing MI skills.



Remote Sens. 2020, 12, 921

10 of 15

Table 2. Some open-source resources for machine learning and computer-automated research.

Platform Name

Tutorials and Resources

Platform Download URL

https://www.shogun-toolbox.org/

Shogun examples/latest/index.html https://www.shogun-toolbox.org/
Tensorflow https://www.tensorflow.org/tutorials https://www.tensorflow.org/
Keras https://keras.io/#getting-started-30-s- https://keras.io/
to-keras
. https://developers.google.com/earth- ) .
Google Earth Engine engine/tutorials https://earthengine.google.com/
Python https://docs.python.org/3/tutorial/ https://www.python.org/
https://cran.r-project.org/doc/contrib/ ) o
R Paradis-rdebuts_en.pdf https://www.r-project.org/
SAGA GIS https://sagatutorials.wordpress.com/  http://www.saga-gis.org/en/index.html
https: .
ORFEO Toolbox /www.orfeo-toolbox.org/CookBook/ https://www.orfeo-toolbox.org/
GRASS GIS https://grass.osgeo.org/support/ https://grass.osgeo.org/
. https://jblindsay.github.io/wbt_book/ https:
Whitebox GAT intro.html //jblindsay.github.io/ghrg/Whitebox/
InterImage http://www.lvc.ele.puc-rio.br/ http://www.lvc.ele.puc-rio.br/projects/

projects/interimage/documentation/

interimage/

ILWIS: Integrated Land
and Water Information
System

https://www.itc.nl/ilwis/users-guide/

https://gisgeography.com/ilwis-
integrated-land-and-water-
information-management/

Example of Solutions in Action

While many of these suggestions are not novel, they have been effective when applied in

different places around the world [78,89,90]. One recent example stems from my work in Madagascar.
In collaboration with a large team of local archaeologists, the Morombe Archaeological Project
(MAP) [90], we were able to formulate a research program focused around semi-automated remote
sensing archaeology in Southwest Madagascar. Collaborators from MAP and the nearby University
of Toliara assisted in planning the research, carrying out fieldwork operations, analyzing materials
recovered, and publishing the results [55].

The data required to replicate the methods implemented in ref. [55] were subsequently stored
on an open-access repository sponsored by Penn State (ScholarSphere), allowing for researchers
around the world, including in Madagascar, to access the necessary datasets and replicate the study
independently. Additionally, funding being sought for the continuation of this project includes local
Malagasy collaborators on grant applications (either as project members or co-investigators). This helps
to ensure that research conducted is as collaborative as possible at all stages of investigation [90].

Future plans incorporate the third suggested solution presented above, as we aim to set up
a workshop in Madagascar focused on remote sensing and automated methods for archaeological
prospection. The outcomes of these actions have already resulted in a substantial increase in systematic
survey coverage of the study area in Southwest Madagascar, and illustrate the importance, and validity,
of the aforementioned solutions to the growing issue of geographic disparity in MI remote sensing work.

5. Conclusions

Scientific observations are subjective [3] and as such require reproducible methods for deriving
information. MI can provide a means of acquiring and deriving data from the archaeological
record in systematic and reproducible ways, and by doing so can reveal substantial information that
was previously overlooked. For example, the use of computer automation techniques to analyze


https://www.shogun-toolbox.org/examples/latest/index.html
https://www.shogun-toolbox.org/examples/latest/index.html
https://www.shogun-toolbox.org/
https://www.tensorflow.org/tutorials
https://www.tensorflow.org/
https://keras.io/#getting-started-30-s-to-keras
https://keras.io/#getting-started-30-s-to-keras
https://keras.io/
https://developers.google.com/earth-engine/tutorials
https://developers.google.com/earth-engine/tutorials
https://earthengine.google.com/
https://docs.python.org/3/tutorial/
https://www.python.org/
https://cran.r-project.org/doc/contrib/Paradis-rdebuts_en.pdf
https://cran.r-project.org/doc/contrib/Paradis-rdebuts_en.pdf
https://www.r-project.org/
https://sagatutorials.wordpress.com/
http://www.saga-gis.org/en/index.html
https://www.orfeo-toolbox.org/CookBook/
https://www.orfeo-toolbox.org/CookBook/
https://www.orfeo-toolbox.org/
https://grass.osgeo.org/support/
https://grass.osgeo.org/
https://jblindsay.github.io/wbt_book/intro.html
https://jblindsay.github.io/wbt_book/intro.html
https://jblindsay.github.io/ghrg/Whitebox/
https://jblindsay.github.io/ghrg/Whitebox/
http://www.lvc.ele.puc-rio.br/projects/interimage/documentation/
http://www.lvc.ele.puc-rio.br/projects/interimage/documentation/
http://www.lvc.ele.puc-rio.br/projects/interimage/
http://www.lvc.ele.puc-rio.br/projects/interimage/
https://www.itc.nl/ilwis/users-guide/
https://gisgeography.com/ilwis-integrated-land-and-water-information-management/
https://gisgeography.com/ilwis-integrated-land-and-water-information-management/
https://gisgeography.com/ilwis-integrated-land-and-water-information-management/

Remote Sens. 2020, 12,921 11 of 15

remote sensing data has permitted researchers to map out cultural practices to their geographic
extents [7,8], and fill important gaps in the archaeological record in other regions, thereby permitting
for cross-regional comparisons and more robust analyses of past human activities [7,21]. These
systematically acquired data provide key insights into sociopolitical organization, cultural boundaries,
human-environmental relationships, and demographic changes.

Since the turn of the 21st century, machine intelligence approaches to archaeological remote
sensing research have increased exponentially, and this trend is likely to continue well into the future.
As I demonstrate here, this research has a strong geographic bias, which has continued to grow over
the first two decades of the 21st century. To ensure that the current geographic disparities in the
developments of these methods do not continue to grow, we must encourage complete data sharing
(in the form of code, datasets, protocols, etc.) and collaborations between different researchers from
different types of institutions.

The need for data availability and collaboration also constitute ethical issues within computer
learning in general, for the lack of funding by many global institutions often prevents their researchers
from contributing to this ever-growing field of study. Such developments are imperative, however,
as cultural heritage continues to disappear around the world from violent conflict, development, and
climate change. In order to learn about (and from) the past, we require complete datasets and the
ability to replicate complex calculations, both of which are offered by machine intelligence applications.
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