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Abstract: Ground point filtering of the airborne laser scanning (ALS) returns is crucial to derive digital
terrain models (DTMs) and to perform ALS-based forest inventories. However, the filtering calibration
requires considerable knowledge from users, who normally perform it by trial and error without
knowing the impacts of the calibration on the produced DTM and the forest attribute estimation.
Therefore, this work aims at calibrating four popular filtering algorithms and assessing their impact
on the quality of the DTM and the estimation of forest attributes through the area-based approach.
The analyzed filters were the progressive triangulated irregular network (PTIN), weighted linear
least-squares interpolation (WLS) multiscale curvature classification (MCC), and the progressive
morphological filter (PMF). The calibration was established by the vertical DTM accuracy, the root
mean squared error (RMSE) using 3240 high-accuracy ground control points. The calibrated parameter
sets were compared to the default ones regarding the quality of the estimation of the plot growing
stock volume and the dominant height through multiple linear regression. The calibrated parameters
allowed for producing DTM with RMSE varying from 0.25 to 0.26 m, against a variation from 0.26
to 0.30 m for the default parameters. The PTIN was the least affected by the calibration, while the
WLS was the most affected. Compared to the default parameter sets, the calibrated sets resulted in
dominant height equations with comparable accuracies for the PTIN, while WLS, MCC, and PFM
reduced the models’ RMSE by 6.5% to 10.6%. The calibration of PTIN and MCC did not affect the
volume estimation accuracy, whereas calibrated WLS and PMF reduced the RMSE by 3.4% to 7.9%.
The filter calibration improved the DTM quality for all filters and, excepting PTIN, the filters increased
the quality of forest attribute estimation, especially in the case of dominant height.

Keywords: point classification; ALS; forest modeling

1. Introduction

The success of airborne laser scanning (ALS) on collecting accurate measurements of forest
ecosystems consolidated this technique worldwide as a state-of-the-art approach in forest inventories.
The term ALS refers to light detection and ranging system (LiDAR) onboard an aerial platform, aiming
to quickly scan large areas to produce detailed three-dimensional point clouds of the surface [1,2].
These characteristics allow the ALS data to be used for many purposes including topographic- and
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forest-related studies [3–5]. Among the forest-oriented applications, the area-based approach (ABA)
has been widely applied to estimate forest attributes, where the tree dominant height and growing stock
volume are commonly targeted [6–8]. However, the interpretation of ALS data requires successive
steps to process, filter and re-scale the information. The calibration of the algorithms used on each step
during the processes can turn into a prohibitively time-consuming operation for the users. Furthermore,
the experience in handling of the ALS data is essential to properly assess the calibration of the algorithms
when it comes, for instance, to generate the digital terrain model (DTM).

Despite the many developments related to the ALS data processing, ground point filtering is a
critical procedure for deriving DTM [9], and it is necessary to classify raw ALS returns as coming from
the ground or non-ground. Once the ground returns are interpolated to build the DTM (see [10]),
the point cloud is normalized in a process by which the Z coordinates of all non-ground returns
are re-scaled to above-ground elevation. In the case of the ABA, several metrics are extracted from
the normalized point cloud and used to estimate the forest attributes (see, for example, [11]). Thus,
the DTM has a great influence on the computation of ALS metrics and consequently on the statistical
modeling based on ABA, so the filtering process can be regarded as the cornerstone step in the data
processing when using ALS in forest inventory.

Great efforts have been made to develop enhanced filtering algorithms [12]. Besides the
quality of the filtering, the usability of an algorithm is partially related to its availability on the
ALS-oriented processing software. Among the most common filtering algorithms available, good
solutions have been reported when using progressive triangulated irregular network (PTIN, [13]),
weighted linear least-squares interpolation (WLS, [14]), multiscale curvature classification (MCC, [15]),
or the progressive morphological filter (PMF, [16]).

The performance of the above-mentioned methods has been tested in forest areas where the
results point to a higher discrepancy among filters as the terrain becomes steep and as the undergrowth
increases [17–19]. This fact is common in other benchmarks, which shows the higher difference among
the filter efficiencies as the terrain complexity increases [20–25]. As presented by Montealegre et al. [26],
the steeped slopes affect the way the filters recognize the returns belonging to the vegetation from
ones coming from the ground, causing excessive removal of returns and reducing the details of the
ground surfaces. Another source of errors in the filtering process is caused by the border effect, which
is the misclassification of returns on the border of the dataset due to the lack of returns outside the
boundary [21]. Consequently, many returns in the border are removed causing an erosion in the DTM,
so that it cannot extend above all non-ground returns. In this regard, the interpolation process of
ground returns located on the edge of the ALS coverage is challenging and can substantially impact
the quality of the ALS-based inventory workflow.

The filter calibration is often required to improve the filtering performance, where trial and error
are the most common praxis. Using and calibrating a filtering algorithm can involve several parameters
that may require considerable knowledge from forest practitioners along a tedious and time-consuming
process. Many benchmark studies applied parameters calibration to compare filters [18,26], but the
practical effects of the calibration on the accuracy of the DTM and the forest attribute estimation are
still unknown. This understanding would be valuable for ALS users by supporting them during the
data processing to produce the DTM, especially when the forest characterization is the goal.

The aims of this study are: i) To assess the calibration of four filtering algorithms (PTIN, WLS,
MCC, and PMF) commonly used in ALS-based forest inventory; ii) to evaluate the impact of the
calibration on the DTM quality and forest modeling, particularly for plot growing stock volume and
dominant height estimation. The analysis was oriented to the forest data users or the ones who need
to process ALS data of forested areas. We applied alternative combinations of parameter values for
each tested algorithm in the software implementation, and the different parameters were calibrated
according to the accuracy of the DTM derived from the filtered ground returns. More than 3000 ground
control points were used to assess the quality of the produced DTM. The effect of calibrating the
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filters was traced from the DTM generation to its impact on the performance of the models, where the
multiple linear regression approach and a eucalyptus forest plantation was used as showcase.

2. Material and Methods

2.1. Study Area

The study area is located in Northwest Portugal (40◦36′N, 8◦25′W), close to the city of Águeda,
comprising 9 km2 of forested landscapes. The terrain presents a heterogenic topography, with altitude
varying from 70 to 220 m and slopes ranging from 2.5% to 34.2%. At the time of the forest data
collection (July 2008), the forest area was mainly covered by pure even-aged Eucalyptus globulus Labill
stands, harvested every 10–12 years during three or four rotations, with some stands of Pinus pinaster
Aiton. The eucalyptus stands had a mean tree density around 1600 trees per hectare, with regular or
irregular spacings, and they were composed by stands from seedling (first rotation) and regenerated by
coppice (following rotations) for pulp supplying. Many stands were multi-layered, with E. globulus in
the uppermost layer and suppressed trees, shrubby and herbaceous vegetation in the lowermost layer.

2.2. Field Data Collection

The forest and the topographic surveys occurred between 10 June and 3 July 2008 through
41 circular plots with 400 m2 of area (11.28 m of radius). The plots were systematically installed over the
area (Figure 1a) and covered a large range of terrain slopes (Figure 1b). Within each plot, the diameters
at breast height (dbh, at 1.30 m height) were measured from all trees higher than 2 m, together with the
height of the dominant and co-dominant trees. For each plot, a concentric subplot of 200 m2 (7.98 m of
radius) was used to collect the heights of all trees higher than 2 m. The missing tree heights of each plot
were estimated using the Prodan’s model [27] fitted with the respective subplot data. The individual
tree volumes with bark were estimated using an equation provided by Tomé et al. [28], and the tree
volumes were summed to obtain the ground reference volume for each plot (V, m3). The 41 plots were
used for the filter calibration assessment, from which 25 plots were selected to evaluate the impact of
the calibration on the forest modeling. The selection of the 25 plots was needed to remove plots that
were located in the transition boundary between two stands, or crossed by roads, that could bias the
forest modeling (see [29]). The biometrical description of the forest content within plots is presented in
Table 1.
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Figure 1. (a) Map of plots distributed over the area. (b) Histogram of mean terrain slope within plots
used on the filtering calibration assessment (41 plots) and forest modeling assessments (25 plots).
(c) Exemplification of a digital terrain model (DTM) with their respective control points within a plot.
(d) A showcase example of an eroded DTM for the plot (c).
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Table 1. Biometrical description of the forest within plots with their minimum, mean, maximum and
standard deviation (σ) values.

Assessment Plots * Attribute Unit Minimum Mean Maximum σ

Calibration 41

dg cm 3.0 11.7 19.3 4.4
hd m 3.67 15.54 26.50 5.79
V m3 0.011 2.937 11.726 2.605
N trees ha−1 875 1528 3613 534

Forest modeling 25

dg cm 5.6 12.3 18.2 3.6
hd m 6.55 16.74 23.10 4.48
V m3 0.088 3.134 7.891 2.232
N trees ha−1 875 1470 2343 361

* V = growing stock volume within plot area; hd = dominant height; dg = quadratic mean diameter; N = stand density.

The coordinates of each tree within each plot were recorded as well as the coordinates of prominent
terrain points, like breaklines or spot heights (Figure 1c), resulting in 3240 ground control points,
a mean of 79 points per plot (σ = 24). The accuracy of the coordinates of points using a geodetic Global
Navigation Satellite Systems (GNSS) on land covered with dense vegetation is not reliable; therefore,
the devised strategy for measuring the coordinates of ground control points was not straightforward.
Firstly, those coordinates were measured in each plot by means of a topographic survey using the
radial method [30]. As these coordinates are in a local system, they were converted to that of the LiDAR
data by using GNSS receivers. To this end, it was decided to attach to each plot two GNSS-derived
points, named GNSS base, whose coordinates were measured with two GNSS receivers. They allow
for coordinating the surveyed points directly in the referred coordinate system. Two points are needed
to orient the total station. These two points were placed as close as possible to the plot and as much
as possible in an open space. The method used to measure the coordinates of the two GNSS-derived
points was the relative positioning by using a fixed receiver on a geodetic pillar with known coordinates
on the same system as the LiDAR data. This method, in post-processing, is the most precise and may
reach levels of precision in the order of centimeters [31].

2.3. ALS Data Collection and Pre-Processing

The ALS survey was carried out in July 2008, a few days after the forest inventory, using a
LiteMapper-5600 laser system from RIEGL (www.riegl.com), which has as main components the
high-resolution laser scanner LMS-Q560, the positioning system AEROcontrol, and the digital camera
DigiCAM (see [32] for more technical details on the system). The airplane flew 600 m above ground
with a mean speed of 46.26 m s−1. The parameters of the laser system were: 0.5 mrad of beam
divergence, ±45º of scan angle and pulse rate of 150 kHz. The resulted swath was 497 m (60% of
overlap) and the returns density was 9.5 returns m−2. More details about the ALS survey is described
in [31,33]. The ALS point clouds were inspected for outliers and further clipped using the plot center
coordinates with a 15-m radius buffer (706.85 m2) for each plot. The clipping process was carried
out to avoid edge-effect over the ground returns during the filtering process. The FUSION software
V3.60 [34] was used for this pre-processing.

2.4. Filtering Calibration

The used filters were chosen based on their recurrent utilization on the related literature [20,26].
We gave preference to those filters implemented into line-code-based software that allows being
incorporated into programming routines; in our case the R environment [35] was used. Each filter was
applied to the last returns of the point clouds of the 41 plots using different parameter sets. The choice
of which parameters to be calibrated was done for each filter since they follow different principles
described in the following sections. This work is focused on the filtering process for forest applications,
so settings regarding urban terrain or smoothing filters were not considered. The values tested in the

www.riegl.com
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calibration were defined considering the ones close to the software defaults and recommendations
(Table 2).

Table 2. The default filtering parameter values and the corresponding set of values for calibration
of the progressive triangulated irregular network (PTIN), weighted linear least-squares interpolation
(WLS), multiscale curvature classification (MCC), and progressive morphological filter (PMF).
The particularities of the parameters are defined in Sections 2.4.1–2.4.4.

Filter Software Parameters Default Set of Values for Calibration

PTIN LASground
Spike 0.5 0.0, 0.5, 1.0, 1.5, 2.0

Step size 5 1,3,5,7
Granularity Fine None, coarse, fine, extra fine

WLS FUSION

g −2.5 −3.0, −2.5, −2.0, . . . , 0.0
w 2.5 0.0, 0.5, 1.0, . . . , 3.0

Iterations 5 3, 5, 7
Window size 5 * 1, 3, 5

MCC MCC-LIDAR
Scale (λ) 1.5 0.5, 1.0, 1.5, . . . , 5.0

Tolerance (t) 0.3 0.1, 0.2, 0.3, . . . , 1.0

PMF lidR
Threshold 0.3 0.1, 0.2, 0.3 . . . , 1.5

Window size 5, 9, 13, 17 1, 3, 5, . . . , 19

* Exemplified value by the software’s manual.

2.4.1. Progressive Triangulated Irregular Network (PTIN)

The PTIN is frequently applied in forest studies [36–38]. The algorithm starts with a sparse
triangulated irregular network (TIN) created from seed points and then performs the densification
of the TIN iteratively. In this process, the densification occurs by including the returns according to
their distance to the TIN facets and their angles to the nodes. We used the adaptation of PTIN of
the LASground software (rapidlasso.com), which comprises the following three assessed parameters:
Spike, which is the threshold at which spikes get removed; step size, defines the size of the initial search
window and it is dependent on the terrain roughness, where values around 5 are suggested for forest
or mountain areas; and granularity, related to the computational effort invested into finding the initial
ground estimate.

2.4.2. Weighted Linear Least-Squares Interpolation (WLS)

The applied WLS filter was the adaptation of the Kraus and Pfeifer’s algorithm [14] into the
FUSION software [34], which was used in many works [39–41]. This filter averages reiteratively the
return heights inside a defined search window, assigning the weights according to their residuals in
relation to the mean height. In this case, the weights are recalculated in each iteration according to the
weighting function (Equation (1)), so that height values associated with lower residuals receive higher
weights, whereas those with higher residuals receive lower weights. The parameter values a = 1 and
b = 4 are commonly used and are recommended by the software developers for most applications so
they were kept in the analysis [14,26]. The parameters g, w, window size and the number of iterations
(iteration) are supposed to be defined by the user according to the data, thus they were chosen to be
calibrated (Table 2). Among these parameters, the window size is the only one without a specified
default value, although the software’s manual points to 5 m2. In this case, a window size equal to 5 m2

was considered as a default value.

pi =


1 vi ≤ g

1
1+a(vi−g)b g < vi ≤ g + w ,

0 vi > g + w

(1)
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where pi is the weight for the return i = 1, . . . , n; vi is the residual point height value from the average
height, being i = 1, . . . , n; the parameters a and b determine the steepness of the weight function; g is
negative and represents a threshold value after which the weights are set to 1 if vi ≤ g and to 0 if vi > g
+ w. Note that w ≤ |g| for all w values.

2.4.3. Multiscale Curvature Classification (MCC)

The MCC is a filter developed by Evans and Hudak [15] and implemented in MCC-LIDAR
software (sourceforge.net/projects/mcclidar). It uses the thin-plate spline interpolation to produce
surfaces in different resolutions and uses progressive curvature tolerances to eliminate non-ground
returns. The software uses only two parameters that should be set by the user: the initial scale (λ),
related to the search window size that is used to interpolate the points; and the initial curvature
tolerance (t), which accounts for slope interaction between the interpolated surface and the returns.
During the processing, both parameters are changed through three domains to address variable canopy
configurations and their interaction with the terrain slope: the initial value set to λ is multiplied by 0.5,
1, and 1.5, while 0.1 is added to the initial t in each domain. Values for λ =1.5 and t = 0.3 are claimed by
the developers as efficient to filter non-ground returns, so variations around those values were tested
in this work (Table 2). Applications of the MCC in forest studies can be found, for example, in [42–44].

2.4.4. The Progressive Morphological Filter (PMF)

The PMF filter was developed by Zhang et al. [16] and uses concepts of object identification in
grey-scale images by applying mathematical morphology filters like opening and closing operators.
The closing operator removes returns from objects of sizes smaller than the window size, while the
opening operator keeps the returns from larger objects. The PMF was applied using the implementation
of the lidR package [45], where the filter works at point cloud level without any rasterization process.
The PMF has been commonly applied to ALS data [18,26], and the release of the lidR package has also
promoted this filter to process photogrammetric point clouds [46]. The package uses two parameters:
the sequence of windows size, and the sequence of threshold, which is the height value below which a
return is classified as a ground return. In this study, the PMF was applied using not a sequence but a
specific value for each parameter to better isolate the effect of each component in the processing of the
ALS datasets (Table 2).

2.5. Filtering Accuracy Assessment

For each combination of filter parameters, the classified ground returns within each plot were
interpolated into a DTM (1.0 m of cell size) from a TIN surface using the grid_terrain command
implemented on the lidR package [45]. The choice of using the TIN interpolation was due to its
efficiency and frequent application to generate DTM from ALS data [9,19,47]; thus, eventual errors in
the interpolation were not considered in this analysis. Each combination of the filter parameters was
assessed using the root mean squared error (RMSE, Equation (2)) computed with the height values
interpolated from the derived DTM at the same planimetric positions as the ground control points.
Note that the DTM was generated for each plot separately to allow detecting DTM erosion, which
was defined here as the non-inclusion of all ground control points within the DTM extension of its
respective plot (Figure 1d). The efficiency of a filtering process was then evaluated using the accuracy
of the DTM (the lower the RMSE, the better) so as its integrity, where the erosions were not allowed.

RMSE =

√∑n
i=1(yi − ŷi)

2

n
(2)

where, yi and ŷi are, respectively, the observed and estimated value for the observation i = 1, . . . , n.
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2.6. Forest Modeling Assessment

The calibrated parameter values for each filter were further benchmarked against the default
values by assessing the impact of the corresponding derived DTM on the estimation of forest attributes
through ABA. Each of these DTM was used further into the normalization process, which provided
the height of points above ground. The growing-stock volume (V, m3) and the dominant height (hd,
m) were estimated for each plot using ALS metrics since these attributes are frequently assessed in
the ALS applications. The ALS metrics were computed for each plot using its respective normalized
point cloud and considering only points higher than 1 m above ground. The normalization and the
computation of ALS metrics were performed using the lidR package [45]; the set of metrics (Table 3)
were used as candidate predictors in forest modeling.

Table 3. Description of candidate metrics derived from airborne laser scanning (ALS).

Metric Type Metric Description

Position Zmin, Zmean, Zmax Minimum (Zmin), mean (Zmean) and maximum (Zmax) return height
Z5, Z10, Z15, Z20, Z25, Z30, Z35, Z40,

Z45, Z50, Z55, Z60, Z65, Z70, Z75,
Z80, Z85, Z90, Z95

Zx-th percentile (quantile) of height distribution

MQ, MC Quadratic (MQ) and cubic (MC) mean height
Height
variability Zcv, Zsd Height coefficient of variation (Zcv) and standard deviation (Zsd)

Zsqew, Zkurt Height skewness (Zsqew) and kurtosis (Zkurt)
Density PFRZmean, PARZmean Percentage of first (PFRZmean) and all returns (PARZmean) above Zmean

PFR2m, PAR2m Percentage of first (PFR2m) and all returns (PAR2m) above 2 m
C1, C2, C3, C4, C5, C6, C7, C8, C9 Cumulative percentage of returns in the C-th layer, i.e., C10 = 100%

Others CR Canopy relief ratio: (Zmean – Zmin)/(Zmax – Hmin)

Although there are several methodologies to perform a forest attribute modeling [48], the multiple
linear regression fitted using ordinary least squares was used as a showcase for its simplicity, efficiency
and frequent application to ALS data [49–52]. Thus, the multiple linear model (Equation (3)) was
used to estimate each forest attribute (V and hd), where the two metrics were selected through
exhaustive search.

√

Y = β0 + β1x1 + β2x2 + ε (3)

where,
√

Y is the response variable; βi is the model parameter i = 0, 1, 2; xi is the predictor i = 1, 2; and ε
is the random error.

Despite this analysis focusing on the estimative efficiency of the models (no inference made),
the linear regression assumptions were taken into account. The response variable was square rooted to
avoid heteroscedasticity, and the residual variance component was added to the back-transformed

response variable when an equation was used to estimate a forest attribute: Ŷ =
( √̂

Y
)2
+ σ2 [8,53].

In the exhaustive search, all possible combinations of two candidate metrics were used to fit the models
using the above-mentioned dataset with 25 plots. The best model was considered to be the one with the
lowest RMSE (Equation (2)), all parameters significantly different from zero (t-test, α = 5%), and with
variance inflation factors lower than 10 [54] computed using the car package [55]. The RMSE was
chosen for this purpose for is has been proven to be a stable and robust measure to assess model
performances [52].

Each model was selected and fitted using the data from the 25 plots referred above. The fitted
equation was assessed through 5-fold cross-validation. In the cross-validation the dataset is split into
five sets (“folds”) of equal size to start an iterative process. In each iteration one fold is omitted from
the model fitting and has their values estimated by the model; the estimated values of all omitted
folds at the end of the process are used to compute the final error. The entire cross-validation was
repeated 100 times to reduce the randomness involved in this process [56]. Thus, the resultant RMSE
values from the calibrated filter were compared to the ones derived from the default values through the
Wilcoxon–Mann–Whitney test [57,58], since preliminary analysis demonstrates that the RMSE values
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were not normally distributed. The accuracy of the models was thus represented by the median of the
error values (RMSEmed) as well as its percentage from the observed mean values RMSE%med.

3. Results

3.1. Filtering Parameters Calibration

As a general result, the calibration of the filter parameters allowed to produce more accurate DTMs
than those produced using the software defaults, with RMSE from 0.25 to 0.26 m when calibrated,
against a variation from 0.26 to 0.30 m with the default (Table 4). The accuracy of the DTMs produced
with the calibrated PTIN had the smallest improvement when compared to that obtained by using the
default parameters (a reduction of 4% in the RMSE). On the other hand, the accuracy of the DTMs
produced with calibrated WLS had the highest improvement on accuracy, decreasing 16% in terms of
RMSE. Excepting the PMF, the filters have more than one calibrated parameter set, so the set that has
less impact on the computational effort was chosen.

Table 4. Root mean square error (RMSE) of the digital terrain models (DTMs) derived by the default
and the calibrated parameter values for progressive triangulated irregular network (PTIN), weighted
linear least-squares interpolation (WLS), multiscale curvature classification (MCC), and progressive
morphological filter (PMF).

Filter
RMSE (m)

Difference * Calibrated Parameters Values
Default Calibration

PTIN 0.26 0.25 −0.01 (−4%) Spike: 0
Step size: 5
Granularity: Fine, extra fine

WLS 0.30 0.25 −0.05 (−16%) |g| = w = 0.0, 0.5, 1.0, . . . , 3.0
Iterations: 3
Window size: 1

MCC 0.29 0.26 −0.03 (−10%) Scale: 1, 1.5, 2, . . . , 4.5
Tolerance: 0.1

PMF 0.27 0.25 −0.02 (−7%) Threshold: 0.1
Window size: 5

* Differences between the calibrated parameter values and the default ones.

The tested parameters of PTIN resulted in a small variation in the accuracy of DTMs, with RMSE
ranging from 0.25 to 0.29 m (Figure 2). The DTM accuracy was less affected by the spike and most
influenced by the step size—the RMSE decreased continually as the step size increased. On the other
hand, larger values for step size increased the susceptibility of the filter to border effect, producing
eroded DTMs. This effect was intensified when the coarse granularity was applied so that smaller
values of step size were needed to derive eroded DTMs. Despite the influence of the border effect,
the granularity had marginal impact on the accuracy of the DTMs, and the fine and extra fine granularity
had comparable results. Therefore, the fine granularity should be preferred since it requires less
computational effort during data processing.

The WLS presented high variation in the DTM accuracy among the different parameter settings
(RMSE between 0.25 and 0.46 m). It is strongly and similarly affected by the parameters g and w
(Figure 3), where the RMSE decreased with their decreasing in value. Additionally, the RMSE decreased
as the differences in the absolute values of these parameters decreased, which means that the filter is
more accurate as |g| and w values are closer. The tested number of iterations and window cell sizes did
not influence the accuracy of the DTMs, but they were important concerning the border effect. Eroded
DTMs occurred when |g| = w, except when the cell size was set to 1 m2 and using three or five iterations.
By setting |g| = w the filter is forced to consider only the lowest residuals to compute the averages,
and positive residuals (v) are no longer accepted. Consequently, the WLS becomes less tolerant of
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variations in the ground surface within the search window so more points are removed if a higher cell
size or a higher number of iterations are used. Furthermore, there was no difference in the filtering
performance when the number of iterations was set to either three or five, so the lower value (i.e., three)
should be preferred to speed up the computational process.
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The calibration of the MCC did not produce eroded DTMs, and their accuracy varied between 0.26
and 0.36 m (Figure 4). The tolerance had the greatest impact on the filter’s performance (i.e., the higher
its value, the higher the RMSE and thus the smaller the DTM accuracy). On the other hand, the scale
appears to have only marginal impact, tending to reduce the RMSE as the values increase. The tested
values for scale suggested that its effect on the DTM accuracy also depends on the tolerance; when the
tolerance was set to 0.1, the effect of the scale on the accuracy was marginal (RMSE between 0.26 and
0.27 m), while a wider range was observed for intermediary tolerance values (e.g., RMSE between 0.29
and 0.34 m for tolerance value equal to 0.4). Despite the most accurate DTM being produced when
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setting tolerance to 0.1, many values could be used for the scale (0.1–4.5). This parameter controls the
cell resolution of the thin-plate spline interpolation (see Section 2.4.3), so setting larger values increases
the number of returns to be interpolated. For this reason, using lower values for the scale (i.e., between
1 to 2) is advisable to reduce the computational effort.Remote Sens. 2020, 12, 918 11 of 19 
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Figure 4. Root mean square error (RMSE) values of the digital terrain models (DTMs) derived from the
calibration of the parameters of the multiscale curvature classification (MCC).

The calibration of the PMF parameters resulted in the widest range of DTM accuracies, with RMSE
between 0.25 and 0.56 m (Figure 5). Both tested parameters influenced the filtering efficiency. The RMSE
of the DTMs increased with the increasing of the threshold. The changes in the accuracy due to the
window size were more highlighted when its values shifted from 1 to 3, but a marginal effect was noted
for values higher than three. The eroded DTMs were more frequent as the threshold value was lower
and the window size higher. Since the PMF uses a sequence of window size values in the filtering, the use
of higher values (i.e., ≥9) showed to be not effective for the filtering efficiency in the studied area.
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3.2. Estimation of Forest Attributes

The default and the calibrated parameter values listed in Table 4 were used to estimate the forest
attributes through ABA. The parameters with more than one calibrated value were set as follows: Fine
granularity for PTIN; g = 0 and w = 0 for WLS; and scale = 1.0 for MCC.

The dominant height equations resulted in good accuracy for all filters, with RMSE%med between
4.9% and 5.2% for the calibrated values, and between 5.0% and 5.6% for the default values (Table 5).
The calibrated and the default parameters values originated equations with comparable performances
for the PTIN considering a confidence level (α) of 5%. The metrics used by the equations derived from
PTIN were also similar; the equation derived from the calibrated parameters used Z65, while the one
derived from the default parameters used Z60. The calibration of WLS, MCC and PFM resulted in
a significant improvement of the estimated dominant height accuracy when compared to that one
derived using the default parameter values. The decrease in the RMSEmed values due to the calibration
was 0.08 m points for WLS, 0.06 m for MCC and 0.10 for PMF, which are equivalent to an improvement
of 8.5%, 6.5% and 10.6%, respectively. Although their respective equations used the metric Z95, the ones
derived for the calibrated values used Z60 instead of C8 in the equations of the default values, which
are metrics computed with different principles (see Table 3).

Table 5. Dominant height equations with their associated variances (σ2), and the p-value for the
Wilcoxon–Mann–Whitney test obtained with different settings of the progressive triangulated irregular
network (PTIN), weighted linear least-squares interpolation (WLS), multiscale curvature classification
(MCC), and progressive morphological filter (PMF).

Filter Setting * Equation σ2 (m) ** RMSEmed (m) p-value

PTIN
Calibrated

√
hd = 1.922− 0.037 Z65 + 0.164 Z95 0.009 0.829 (4.9%) 0.011

Default
√

hd = 1.930− 0.032 Z60 + 0.159 Z95 0.009 0.844 (5.0%)

WLS
Calibrated

√
hd = 1.926− 0.032 Z60 + 0.159 Z95 0.010 0.86 (5.2%) <0.001

Default
√

hd = 1.406 + 0.006 C8 − 0.139 Z95 0.009 0.94 (5.6%)

MCC
Calibrated

√
hd = 1.331− 0.034 Z60 + 0.161 Z95 0.009 0.86 (5.1%) <0.001

Default
√

hd = 1.390 + 0.006 C8 − 0.139 Z95 0.009 0.92 (5.5%)

PMF
Calibrated

√
hd = 1.930− 0.032 Z60 + 0.159 Z95 0.009 0.84 (5.0%) <0.001

Default
√

hd = 1.393 + 0.006 C8 − 0.139 Z95 0.009 0.94 (5.6%)

* hd is the dominant height (m); Zx is the height of the x-th percentile of height distribution; Cx is the cumulative
percentage of returns in the x-thlayer. ** Median of root mean square error (RMSE) values computed through
100 repetitions of five-fold cross-validation. The RMSE%med is shown in parenthesis.

Regarding the volume estimation, the models presented RMSE%med between 16.3% and 16.7%
when using the calibrated values and 16.5% and 17.7% when using the default values (Table 6).
Although these errors are higher than those encountered in the estimation of the dominant height,
they could be considered low in the case of volume modeling when assessed through cross-validation.
The estimation efficiency when using the calibrated PTIN and MCC did not differ from those derived
with filters using their respective default values. The use of WLS and PMF with calibrated parameters
significantly improved the volume estimation when comparing to their respective default values.
Despite the related equations used the same metrics, the decrease of the RMSEmed values by using
the calibrated parameters were 0.018 m3 for WLS and 0.044 m3 for PMF, which is equivalent to an
improvement of 3.4% and 7.9%, respectively.
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Table 6. Volume equations with their associated variances (σ2), and the p-value for the
Wilcoxon–Mann–Whitney test obtained with different settings of the progressive triangulated irregular
network (PTIN), weighted linear least-squares interpolation (WLS), multiscale curvature classification
(MCC), and progressive morphological filter (PMF).

Filter Setting * Equation σ2 (m3) ** RMSEmed (m3) p-value

PTIN
Calibrated

√
V = −0.538 + 0.137 Zmax − 0.013 C2 0.021 0.522 (16.7%) 0.554

Default
√

V = −0.532 + 0.138 Zmax − 0.014 C2 0.020 0.528 (16.8%)

WLS
Calibrated

√
V = −0.518 + 0.137 Zmax − 0.014 C2 0.019 0.514 (16.4%) 0.007

Default
√

V = −0.516 + 0.139 Zmax − 0.018 C2 0.019 0.532 (17.0%)

MCC
Calibrated

√
V = −0.520 + 0.138 Zmax − 0.015 C2 0.019 0.515 (16.4%) 0.267

Default
√

V = −0.522 + 0.139 Zmax − 0.017 C2 0.018 0.517 (16.5%)

PMF
Calibrated

√
V = −0.532 + 0.138 Zmax − 0.014 C2 0.020 0.510 (16.3%) <0.001

Default
√

V = −0.516 + 0.140 Zmax − 0.021 C2 0.020 0.554 (17.7%)

* V is the plot growing stock volume (m3); Zmax is the maximum height; C2 is the cumulative percentage of returns
in the 2nd layer. ** Median of root mean square error (RMSE) values computed through 100 repetitions of five-fold
cross-validation. The RMSE%med is shown in parenthesis.

4. Discussion

This study demonstrated that a DTM derived from ALS is more accurate when the parameters of
the filtering process are calibrated. The DTM produced with the WLS was the most affected by the
calibration, followed by that of the MCC, PMF and of the PTIN (less affected). This fact influenced the
estimation of forest attributes, especially for dominant height. Except for PTIN, the estimation of the
dominant height derived by using the calibrated parameter values was significantly more accurate
than those that are derived with the default ones. In the case of the volume estimation, the calibration
of WLS and PFM derived equations with significantly better accuracies, contrary to the PTIN and MCC
filters that performed comparably when using calibrated and default parameter values.

The lower effect of the calibration for PTIN is justified by the similarity between the calibrated and
the default parameters values, which differs only by 0.5 in the spike parameter value (see Tables 2 and 4).
The calibrated parameters for the MCC differed the most with respect to the default ones, having
a large impact on the dominant height estimation as opposed to the volume estimation. The result
shows that a DTM can have different impacts on the modeling of these forest attributes and that the
calibration will lead to the best results depending on the filter and on the attribute to be estimated.

Although these two forest attributes are highly correlated, they present different aspects when are
estimated through ALS data. Many works have reported good correlations between the tree height
attributes with upper-tail percentiles of the height distribution of ALS returns [59,60]. The literature is
less consensual for the case of the volume estimation, for which good performances are found based
on ALS metrics associated to intermediary percentiles (higher than 50%), density metrics (e.g., C8)
and/or height variability measures (e.g., height kurtosis) [6,44,50]. These characteristics were also
observed in our work, where the metric Z95 appears in all dominant height equations just as the Zmax

and C2 in the volume equations. However, studies focusing on the effect of point density over the
metrics demonstrated that those ones related to the tail ends of the return distribution (e.g., C1 and C9,
or Zmin and Zmax) are more sensible and, therefore, less stable [61]. Despite the point density remaining
constant in our analysis, it is possible that those same metrics are also more sensitive to variations in
the normalized point cloud due to errors in the DTM. This fact is important in the case of ordinary least
squares regression since the predictors are selected following several rules to match the regression
assumptions, so small variations in the metric values have unpredictable effects in the final model.

It should be highlighted that the quality of the estimation of stand attributes is strongly dependent
on the applied modeling approach [52]. Nonparametric models, such as k-nearest neighbors or random
forest, have the advantage of being distribution-free and are normally used with more predictor
variables to improve their accuracy [48,62,63]. In this case, it is reasonable to suspect that using more
variables would turn the models less vulnerable against changes in the metrics and, thus, the effect of
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the filter calibration could be hidden by an improvement in the performance of the models. However,
the non-parametric approaches require a higher amount of field data for the modeling, which is not
often available (as is the case of this work). Besides, traditional parametric modeling approaches have
shown to be less affected by biased normalized point clouds, for instance, due to co-registration errors,
so that alternative combinations of ALS metrics models can result in similar estimative efficiency [51].
The co-registration effect could be ignored in this work given the high-accurate plot positioning
throughout the data collection; therefore, it corroborates that DTM quality is the major factor affecting
the performances of the model in the benchmark.

The researches focused on calibration of the above tested filters are scarce in the literature and
the few examples were oriented to digital aerial photogrammetry (DAP, [64,65]). One of them is the
study of Graham et al. [66] who analyzed the PTIN, WLS and the simple morphological filter (SMRF,
see [67]), which works similarly to the PMF. Their results share some similarities with ours: the PTIN
was mostly affected by the step size parameter, while the spike had minor or no effects over the accuracy
of the derived DTM; the WLS had the best accuracy with the |g| close to w; and low threshold for
the SMRF (analogous in PMF). On the other hand, the parameters related to the size of the search
windows of these filters (i.e., window size and step size) were exceptionally higher (≥17 m2). However,
we have demonstrated that using larger values for these parameters over ALS point clouds increases
the susceptibility of the filters to the border effect, resulting in eroded DTM.

The PTIN was also analyzed by Wallace et al. [68] using DAP-based data, where the calibration
was performed for different ecosystems. However, in contrast to the study of Wallace et al. [68], our
work did not distinguish the areas regarding the terrain conditions or forest covers due to a lack of
data for this discretization, especially in the forest modeling assessment. Instead, the filters were
analyzed considering all ALS data available so the results of the calibration can be applied to a wider
range of forest conditions. Furthermore, many works have been applied the ABA to mountainous sites
with success, demonstrating that the impact of the terrain slope over the forest attribute estimation is
not significant as expected [60,69,70], thereby it is unlikely that this effect can also compromise the
performances of our forest models.

Most of the ground filtering benchmarks assess the accuracy through visual inspection of
the filtered ground returns, which allows accounting for omission and commission errors of the
filtering [20,21,26]. Although such analysis produces detailed information about the filtering process,
it is highly time-consuming and can be impracticable in terms of the calibration routines like the
ones performed in this study. The analysis based on the quality of DTM is thus a good and practical
alternative when high-accurate ground control data is available. Additionally, further benchmarks
should also account for DTM erosion, since it is prohibitive when the goal is forest modeling.

Although this work did not aim at comparing filters, it should be highlighted that all tested filters
had comparable performances after the calibration, considering the accuracy of the derived DTM.
This fact suggests that more efforts should be given to calibrate the ground point filters instead of
finding a better one. Therefore, the software developers must be encouraged to implement adaptive
filters to reduce the number of parameters to be set to process the data (e.g., [24,71,72]).

The improvement in the estimation of dominant height is of great importance for forest
management since it ensures a more accurate analysis of forest site productivity [59,73]. Likewise,
ALS-based models play a key role in the valuation of growing stock inventory [74,75], so reducing
the errors of the estimated attributes by calibrating the filters allows increasing the liability of the
assessments. However, ALS-data users must preliminarily consider the potential improvement on
the DTM accuracy and forest attribute estimation before deciding to calibrate it instead of using the
software’s default.

This work did not consider the impact of the errors originating from different interpolation
methods on the accuracy of DTM nor on the forest attribute estimation. Previous studies demonstrated
the difference among the efficiency of interpolators while deriving DTM from ALS data [19,47]; despite
the TIN approach usually performed the best, Stereńczak et al. [19] showed that the differences
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among the interpolators were reduced after calibration. Additionally, Graham et al. [76] tested several
interpolation methods using DAP-data and showed that they do not have significant differences
regarding the accuracy of estimated forest attributes. The same may occur in the case of ALS-data,
but proper research is needed to investigate such a hypothesis. Finally, our analysis was based on a
massive ground control dataset that was collected using an exhaustive and high-accurate topographic
survey, which supports the liability of the DTM accuracy assessment [77]. For this reason, our results
can be used as a rule of thumb and the information we provided from the filter calibration can guide
the user during the ALS data processing, especially if the estimation of forest attributes is the goal.

5. Conclusions

The calibration of four algorithms to filter ground returns of airborne laser scanning data were
assessed, namely, the progressive triangulated irregular network (PTIN), weighted linear least-squares
interpolation (WLS), multiscale curvature classification (MCC) and the progressive morphological
filter (PMF). The impact of the calibration was assessed on the quality of the digital terrain models
(DTM) and on the forest attribute estimation accuracy, where the area-based approach (ABA) was
applied. The conclusions of this work are:

- The calibration of the ground filter parameters improved the quality of the DTM.
- The calibrated parameter values for WLS, MCC, and PMF allowed deriving more accurate

estimated forest attributes than those obtained when filtering using their default counterparts,
with a more highlighted impact on the estimation of dominant height than of growing stock.

- The results derived when using the PTIN filter varied the least with the calibration of
the parameters.

Author Contributions: Conceptualization, D.N.C. and L.G.P.; Methodology, D.N.C., L.G.P., J.G.-H. and A.P.; Data
Analysis, D.N.C. and J.G.-H.; Data Curation, D.N.C., L.G.P., P.S., and M.T.; Investigation, D.N.C., L.G.P., J.G.-H.,
A.P., P.S., and M.T.; Resources, L.G.P., P.S., and M.T.; Writing—Original Draft Preparation, D.N.C., L.G.P., J.G.-H.
and A.P.; Writing—Review and Editing, D.N.C., L.G.P., J.G.-H., A.P., P.S., and M.T.; Funding Acquisition, M.T., P.S.,
L.G.P.; and Supervision, P.S. and M.T. All authors have read and agreed to the published version of the manuscript.

Funding: The research activities of Diogo Cosenza was funded by Fundação para a Ciência e a
Tecnologia I.P. (FCT), grant number PD/BD/128489/2017. Adrián Pascual (I.P. in the scope of Norma
Transitória–DL57/2016/CP5151903067/CT4151900586) was supported by Fundação para a Ciência e a Tecnologia
through the MODFIRE project—A multiple criteria approach to integrate wildfire behavior in forest management
planning (PCIF/MOS/0217/2017). The ALS and field data used in this work were acquired under the framework
of the PTDC/AGR-CFL/72380/2006 project (supported by the FCT under grant PTDC/AGR-CFL/72380/2006,
co-financed by the European Fund of Regional Development (FEDER) through COMPETE—Operational Factors
of Competitiveness Program, POFC). This research was funded by the Forest Research Centre, a research unit
funded by Fundação para a Ciência e a Tecnologia I.P. (FCT), Portugal (UIDB/00239/2020).

Acknowledgments: We thank the Fundação para a Ciência e a Tecnologia I.P. (FCT) for funding the research activities
of Diogo Cosenza and Adrián Pascual.

Conflicts of Interest: The authors declare no conflicts of interest.

References

1. Wehr, A.; Lohr, U. Airborne laser scanning—An introduction and overview. ISPRS J. Photogramm. Remote Sens.
1999, 54, 68–82. [CrossRef]

2. Vauhkonen, J.; Maltamo, M.; Mcroberts, R.E.; Næsset, E. Forestry Applications of Airborne Laser Scanning;
Maltamo, M., Næsset, E., Vauhkonen, J., Eds.; Managing Forest Ecosystems; Springer: Dordrecht,
The Netherlands, 2014; Volume 27.

3. Eitel, J.U.H.; Höfle, B.; Vierling, L.A.; Abellán, A.; Asner, G.P.; Deems, J.S.; Glennie, C.L.; Joerg, P.C.;
LeWinter, A.L.; Magney, T.S.; et al. Beyond 3-D: The new spectrum of lidar applications for earth and
ecological sciences. Remote Sens. Environ. 2016, 186, 372–392. [CrossRef]

4. Nelson, R. How did we get here? An early history of forestry lidar. Can. J. Remote Sens. 2013, 39, S6–S17.
[CrossRef]

http://dx.doi.org/10.1016/S0924-2716(99)00011-8
http://dx.doi.org/10.1016/j.rse.2016.08.018
http://dx.doi.org/10.5589/m13-011


Remote Sens. 2020, 12, 918 15 of 18

5. Hyyppä, J.; Hyyppä, H.; Leckie, D.; Gougeon, F.; Yu, X.; Maltamo, M. Review of methods of small-footprint
airborne laser scanning for extracting forest inventory data in boreal forests. Int. J. Remote Sens. 2008, 29,
1339–1366. [CrossRef]

6. Nilsson, M.; Nordkvist, K.; Jonzén, J.; Lindgren, N.; Axensten, P.; Wallerman, J.; Egberth, M.; Larsson, S.;
Nilsson, L.; Eriksson, J.; et al. A nationwide forest attribute map of Sweden predicted using airborne laser
scanning data and field data from the National Forest Inventory. Remote Sens. Environ. 2017, 194, 447–454.
[CrossRef]

7. Næsset, E. Area-based inventory in Norway—From innovation to an operational reality. In Forestry
Applications of Airborne Laser Scanning; Maltamo, M., Næsset, E., Vauhkonen, J., Eds.; Springer: Dordrecht,
The Netherlands, 2014; pp. 215–240.

8. Kotivuori, E.; Korhonen, L.; Packalen, P. Nationwide airborne laser scanning based models for volume,
biomass and dominant height in Finland. Silva Fenn 2016, 50, 1–28. [CrossRef]

9. Liu, X. Airborne LiDAR for DEM generation: Some critical issues. Prog. Phys. Geogr. Earth Environ. 2008, 32,
31–49.

10. Chen, Z.; Gao, B.; Devereux, B. State-of-the-art: DTM generation using airborne LIDAR data. Sensors
2017, 17, 150. [CrossRef]

11. Næsset, E. Practical large-scale forest stand inventory using a small-footprint airborne scanning laser. Scand. J.
For. Res. 2004, 19, 164–179. [CrossRef]

12. Meng, X.; Currit, N.; Zhao, K. Ground filtering algorithms for airborne LiDAR data: A review of critical
issues. Remote Sens. 2010, 2, 833–860. [CrossRef]

13. Axelsson, P. DEM generation from laser scanner data using adaptive TIN models. In Proceedings of
the International Archives of Photogrammetry and Remote Sensing. XIXth ISPRS Congress, Amsterdam,
The Netherlands, 16–23 July 2000; Schenk, T., Vosselman, G., Eds.; International Society for Photogrammetry
and Remote Sensing: Amsterdam, The Netherlands, 2000; Volume XXXIII, pp. 110–117.

14. Kraus, K.; Pfeifer, N. Determination of terrain models in wooded areas with airborne laser scanner data.
ISPRS J. Photogramm. Remote Sens. 1998, 53, 193–203. [CrossRef]

15. Evans, J.S.; Hudak, A.T. A multiscale curvature algorithm for classifying discrete return LiDAR in forested
environments. IEEE Trans. Geosci. Remote Sens. 2007, 45, 1029–1038. [CrossRef]

16. Zhang, K.; Chen, S.C.; Whitman, D.; Shyu, M.L.; Yan, J.; Zhang, C. A progressive morphological filter for
removing nonground measurements from airborne LIDAR data. IEEE Trans. Geosci. Remote Sens. 2003, 41,
872–882. [CrossRef]

17. Tinkham, W.T.; Huang, H.; Smith, A.M.S.; Shrestha, R.; Falkowski, M.J.; Hudak, A.T.; Link, T.E.; Glenn, N.F.;
Marks, D.G. A Comparison of two open source LiDAR surface classification algorithms. Remote Sens. 2011, 3,
638–649. [CrossRef]

18. Silva, C.A.; Klauberg, C.; Hentz, Â.M.K.; Corte, A.P.D.; Ribeiro, U.; Liesenberg, V. Comparing the performance
of ground filtering algorithms for terrain modeling in a forest environment using airborne LiDAR data.
Floresta E Ambiente 2018, 25, 1–10. [CrossRef]
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