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Abstract: The lack of pixel-level labeling limits the practicality of deep learning-based building
semantic segmentation. Weakly supervised semantic segmentation based on image-level labeling
results in incomplete object regions and missing boundary information. This paper proposes a weakly
supervised semantic segmentation method for building detection. The proposed method takes the
image-level label as supervision information in a classification network that combines superpixel
pooling and multi-scale feature fusion structures. The main advantage of the proposed strategy is its
ability to improve the intactness and boundary accuracy of a detected building. Our method achieves
impressive results on two 2D semantic labeling datasets, which outperform some competing weakly
supervised methods and are close to the result of the fully supervised method.

Keywords: building detection; weakly supervised learning; superpixel; semantic segmentation;
deep learning

1. Introduction

Building detection plays an important role in urban development planning, urban infrastructure
planning, urban land use and management, land use change monitoring, digital cities, and real-time
updates of urban traffic maps. Ensuring high efficiency and the precision of the automatic detection of
buildings, based on massive high-resolution remote sensing data, is a challenging task in remote sensing.

Traditional algorithms for building detection based on remote sensing images are mainly driven
by visual features via bottom-up approaches. These methods, such as geometric boundary-based [1],
image segmentation-based [2], and building-specific auxiliary information (shadows, elevations, etc.)
based [3], consider a building as a combination of low-level features that merge a building as a whole
under some rules. These methods focus on the characteristic feature of buildings. However, the feature
design requires experimental testing in decision making, thereby increasing the algorithm complexity.

In recent years, deep convolutional neural networks (DCNNs) [4] have been widely used in image
classification [5], object detection [6] and semantic segmentation [7,8], because of their end-to-end
learning mechanism and feature representation. In the remote sensing field, some DCNN-based
segmentation approaches, such as U-Net [8], Deeplabv3+ [7], etc., are used to achieve excellent results
in building detection [9–14]. All of these approaches are fully supervised, which means a pixel-level
label benchmark is essential for training the semantic segmentation networks. However, pixel-level
label datasets of high-resolution remote sensing images are scarce because of the time consuming and
expensive work. The accurate extraction of buildings without a large-scale pixel-level dataset is a
considerable problem to be solved in remote sensing.
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In order to alleviate the problem of lacking pixel-level labels, in the field of image semantic
segmentation, weaker labels instead of pixel-level labels are used, including bounding boxes [15],
scribbles [16], and image-level labels [17]. It is because, although the weaker labels cannot indicate
objects at the pixel-level, they potentially contain the high-level semantic and rough location information
of objects. Among these weaker labels, image-level ones are the cheapest and are easier to obtain than
others, and they obtain more and more attention in weakly supervised semantic segmentation [17–21].
In accordance with the different means of introducing weak supervision information, these methods
can be divided into bottom-up and top-down approaches.

In the bottom-up approach, the saliency map of an image is generated by extracting its low-level
features. Pseudo-labels are generated through the threshold-based segmentation of the saliency map
and are used as the supervision information for the segmentation network. Wei et al. used a saliency
map for supervision to train the initial segmentation model of simple images and train complex
images to enhance segmentation performance [17]. This method can achieve good results on natural
images containing a prominent object and simple background. However, this method misidentifies
the buildings with other geo-objects when it is applied on remote sensing images with complex
backgrounds and intra-class differences, because the saliency map only utilizes the low-level features
of images.

In the top-down approach, classification networks, like VGG16 [5], and visualization methods, such
as CAM(class activation map) [22] and Grad-CAM [23], are generally used to find the discriminative
regions of objects. CAM obtains the weight of pixels in the feature maps through a global average
pooling layer and generates a heatmap with different heat values in accordance with the different
weights. The heatmap shows the approximate location and region of the object. Pseudo-labels
can be generated through threshold-based segmentation of the objects. Wei et al. proposed an
adversarial erasing method that uses a classification network to mine the object region [19]. It relies on
a classification network to sequentially activate the most discriminative areas of an object. Durand et al.
proposed a method for learning local visual features related to some classes, named WILDCAT(weakly
supervised learning of deep convolutional neural networks), which can be used as weakly supervised
semantic segmentation [21]. The object region located by a classification network can be considered as
a segmentation seed that usually highlights a local discriminative area of an object and then propagates
to the entire object region. The top-down approach can extract the high-level semantic information
of images and can identify and locate the objects. However, the generated object region frequently
contains the most discriminative area of the object, but cannot cover the entire object. Thus, this
approach has poor performance in depicting the shapes and edges of objects.

Several studies have been conducted on weakly supervised semantic segmentation in remote
sensing. Fu et al. proposed a weakly supervised semantic segmentation network with feature fusion
and tested it on water and cloud datasets [24]. This network combines top-down and bottom-up
approaches. However, this method is not flexible, because the a priori information extracted from the
bottom-up approach is introduced in the postprocessing stage. For the segmentation of high-resolution
synthetic aperture radar (SAR) images, Ma et al. subdivided images into superpixel maps and
input them into a condition generative adversarial network for training [25]. However, this method
relies excessively on the low-level feature information extracted from bottom-up approaches, thereby
causing misclassification.

Kwak et al. [26] added a superpixel pooling layer to the classification network and used iterative
training to improve segmentation performance. This method achieves good results on natural image
datasets. Without decoding and multi-scale feature fusion, the network only uses an upsampling
module to restore the feature map generated through convolution downsampling. The heatmap
generated using this method cannot reflect the object details.

The building results with an accurate boundary and intact region are essential in the building
detection using high-resolution remote sensing images. Therefore, this letter proposes a weakly
supervised learning segmentation method to extract buildings, by fully exploiting the implicit semantic
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information from image-level labels. In particular, the proposed method combines the advantages of
top-down and bottom-up approaches to generate pixel-level weak supervision building labels. The
proposed method makes the generated building labels have intact bodies and accurate boundaries
by embedding the structures of superpixel pooling and multi-scale feature fusion. The proposed
method is named as SPMF-Net (weakly supervised building segmentation method by combining the
Superpixel Pooling and Multi-scale Feature fusion structures).

The remainder of this article is organized as follows. Section 2 introduces the methodology.
Section 3 presents the experimental result, with quantitative and qualitative analyses. Section 4
provides the conclusions and future work directions.

2. Methodology

The proposed weakly supervised segmentation method consists of two parts: (1) giving the
image-level class label of the building image and the corresponding superpixel map and generating
pixel-level pseudo-label using a DCNN-based classification; (2) training a DCNN-based segmentation
model with generated pixel-level pseudo-label to extract buildings. The entire framework includes two
DCNNs, namely, a classification network that generates an object activation map and a segmentation
network for building extraction. The former network is used to generate the CAM of the building
region with image-level labels. On the basis of the threshold-based segmentation of the building region,
pixel-level pseudo-labels are obtained as training labels for the latter network to extract buildings.
The former network used to generate pixel-level labels is described in Section 2.1. Subsequently, the
segmentation network is briefly introduced in Section 2.2.

2.1. Weak Supervision Label Generation

VGG16 [5] is a simple and excellent image classification network. We adopted it as the backbone
of our classification network, where a superpixel pooling structure and a multi-scale upsampling
feature fusion structure are combined, as shown in Figure 1.
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Figure 1. Weak supervision label generation network consists of a downsampling module, a multi-scale
upsampling module, a superpixel pooling module, and a classifier.

2.1.1. Superpixel Pooling

The top-down weak supervision method transforms the feature map extracted by the last
convolution layer into a vector, through global average pooling or global maximum pooling. Then, the
vector is inputted into the fully connected layer to learn the weight in accordance with the image-level
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label. The weight is visualized using CAM to obtain the object activation map. However, the object
activation map obtained using this method cannot meet the requirements of semantic segmentation.
On the one hand, the object region is constantly not intact, because only a partial region of the object
with significant discriminant features will gain high weight. On the other hand, the resolution of
the feature map is excessively low to recover the boundary and shape information of geo-objects
after continuous downsampling, which is unsuitable for the pixel-level extraction of buildings. Some
studies have shown that the use of prior shape information can significantly improve segmentation
performance [27,28].

The superpixel can provide prior shape information of building objects, because it merges similar
pixels into superpixels through some low-level feature-based rules. Therefore, a superpixel pooling
layer is designed in this paper, as shown in Figure 2. The principle of the superpixel pooling layer is
similar to the average pooling layer. The features of the local regions are aggregated through average
pooling. Feature map Z ∈ RW × H × C is inputted into the superpixel pooling layer, where W denotes
the width, H denotes the height, and C denotes the number of channels. Superpixel map P ∈ AW × H is
a single channel map, with length H and width W. A= [1, M] indicates the label of each superpixel. Pi
=M represents that pixel i belongs to the Mth superpixel. Output O of the superpixel pooling layer is
a matrix with size M × C, represented as O∈RM × C, where M represents the number of superpixels,
and C is the number of channels of the feature map. The output of the superpixel pooling layer is
expressed as

Om,C= average
{
ZC,i|i : Pi = M

}
(1)

where average {·} denotes the average pooling function.
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The backward gradient calculation formula for superpixel pooling is expressed as

δOC,M

δZC′,i
=

 1
N(Pi)

, i f Pi = M and C′ = C

0 , otherwise
(2)

where N(Pi) is the number of pixels in the superpixel with label M.
We can aggregate the feature vectors aligned in the superpixel space using the superpixel pooling

layer. Different from the traditional pooling structure, superpixel pooling does not have a rectangular
layout determined by predefined raster pixels (such as 2 × 2 maximum pooling), but an irregular
region determined by the superpixel shape. In other words, superpixel pooling is a pooling operation
under the constraint of a single superpixel boundary region. The superpixel map includes shape
prior information, which is good for detailing object boundaries. In this paper, simple linear iterative
clustering (SLIC) [29] is used to generate superpixel maps of building images. It first converts the
image from RGB color space to CIELAB color space at first and then generates homogeneous regions
of different sizes through SLIC.
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2.1.2. Multi-Scale Feature Fusion

CAM uses the weight of the last convolutional layer to generate the object activation map. The
direct method is to add a superpixel pooling structure into a classification network to restore the
last feature map to a superpixel image size at first and connect it with the superpixel pooling layer.
Accordingly, we need to restore the feature map size to the input image size and retain the semantic
detail of the object. In [26], only one upsampling module (including two deconvolution layers and one
unpooling layer) is used to restore the feature map size to the input image size, which is connected
to the superpixel pooling layer. The generated activation region cannot recover the main part of the
building when only one upsampling module is used, and the features from convolution downsampling
are not fused, because the resolution of the feature map generated after continuous downsampling
is excessively low. Although the object activation map contains a highly abstract semantic feature, a
superpixel inevitably corresponds to a large number of pixels in the feature map when the superpixel
pooling layer is used. This condition will result in superpixel feature vector smoothing and the loss of
many details with high probability.

The function of the upsampling module is to restore the size of the convolutional feature map
and match its size with the input superpixel map of the superpixel pooling layer for calculation.
Different from [26], we use five consecutive upsampling modules to form an encoder–decoder structure
corresponding to downsampling and restore the size of the feature map step by step. We merge the
output features at different scales and inputted them into the superpixel pooling layer. Assume that
V1 ∈ Ra, V2 ∈ Rb, where V1 represents the feature map of the output of the upsampling module, and V2

represents the feature map of the output of the downsampling module. Fused feature V is expressed as

V = [V1, V2] ∈ Ra+b (3)

A corresponding multi-scale upsampling feature fusion module is adopted after the downsampling
module in VGG16, as shown in Figure 1. The module consists of five upsampling modules,
corresponding to five downsampling modules. Each upsampling module consists of two deconvolution
layers and an unpooling layer, each of which is accompanied by a batch normalization layer and a
rectified linear unit layer. Each upsampling module is added with features from the corresponding
downsampling module.

2.1.3. CAM Calculation

The superpixel pooling layer is followed by a classifier. The classifier consists of a global average
pooling layer and a fully connected layer. The classifier transforms the output M × C matrix of the
superpixel pooling into a 1 × C vector, through global average pooling, to average each superpixel.
Each superpixel is assigned a feature vector through the superpixel pooling layer. The vector is
connected to the fully connected layer in the classifier for classification. As only image-level building
and background labels are available in our method, SPMF-Net is optimized with a binary classification
loss. The classification loss is calculated and backpropagated according to the formula (2).

Training the classification network with image-level labels aims to generate pixel-level labels
using CAM, rather than classifying the images. CAM assigns an activation score to each individual
pixel. Unlike the original CAM, the proposed strategy assigns an activation score to a single superpixel.
In this way, the object activation heatmap can be generated with the shape and boundary of the
preserved building. Many accurate building regions can be achieved, because the structure combines
the detailed information under the multiresolution feature map and retains the boundary information
of the building with high confidence.

The generated heatmap suggests that the higher the heat value is, the higher the likelihood of the
building area will be. We normalize the pixel value of heatmaps. The pixels with a heat value greater
than 0.5 are regarded as building, and the pixels below this threshold are regarded as other classes.
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Thus, the pseudo-labels of the building can be obtained as training data for network segmentation to
extract buildings.

2.2. Building Extraction

Based on the procedures described in Section 2.1, the weak supervision labels can be generated.
These weakly supervision labels have reached the pixel-wise supervision, which can be employed for
training the semantic segmentation network in a supervised way.

The Deeplabv3+ [7], as one of the well-known fully supervised semantic segmentation networks,
uses an encoder–decoder multi-scale network structure and has achieved advanced performance
on many datasets. In this letter, we adopt Deeplabv3+ as the building segmentation network with
Xception as its backbone, and the cross-entropy loss function as its objective function. The loss function
L is used in network training to quantitatively evaluate the difference between real value y(i) and
predicted value y(i

′). i = 1, . . . , n, where n represents the number of training data. The loss function of
network training is expressed as

L = −
1
n

n∑
i=1

(y(i)log y(i
′) +

(
1− y(i)

)
log(1− y(i

′))). (4)

The loss function is minimized, which can be expressed as

Min
θ

∑
w∈Iw

LW( f (w;θ)), (5)

where Iw represents the images from the weakly supervised training dataset.

3. Results and Analysis

In this section, we will introduce the datasets, comparisons and evaluation metrics, and
experimental details.

3.1. Dataset

The public 2D semantic labeling contest Potsdam dataset and Vaihingen dataset are elaborately
labeled, which are provided by the International Society for Photogrammetry and Remote Sensing
(ISPRS) Commission II/4. These datasets have been used to verify the effectiveness of many methods
as test datasets, and they are widely recognized in the field of remote sensing [30,31]. The two datasets
consist of four-band image data (near-infrared, red, green, blue) and corresponding digital surface
model (DSM) data. Potsdam contains 38 patches with the same size of 6000 × 6000 pixels. Vaihingen
contains 33 patches of different sizes. The ground sampling distance is 5 cm. Each patch is labeled into
six categories, namely, impervious surfaces, building, low vegetation, tree, car, and clutter/background.

3.2. Data Processing

We select 20 patches as training data, 4 patches as verification data, and 14 patches as test data
from the Potsdam dataset. From the Vaihingen dataset, we select 17 patches as training data, 4 patches
as verification data, and 12 patches as test data. With a sliding step size of 128, we crop the patches
in the training data into image blocks with a size of 256 × 256. All image blocks are rotated by 90◦,
180◦, and 270◦. All the rotated image blocks are horizontally mirrored. Thus, the processed Potsdam
dataset for fully supervised building segmentation contains 62,437 blocks for training and 12,488
blocks for verification, while the Vaihingen dataset contains 24,793 blocks for training and 8811 blocks
for verification.

In particular, the blocks with a building pixel ratio of more than 50% from the training data are
collected as building class, and the blocks without building pixels are collected as another class, to



Remote Sens. 2020, 12, 1049 7 of 13

establish the dataset for weakly supervised classification. Considering that accurate building region
detection relies on good classification performance, the rest of the blocks that contain building pixels,
but have a ratio which is less than 50%, are excluded from the training data to ensure the performance
of the classification network. Consequently, the processed Potsdam dataset for classification contains
17,863 building blocks and 31,271 other class blocks, while the Vaihingen dataset contains 5056 building
blocks and 3944 other class blocks. All the weak supervision methods for comparison use this same
dataset for training. Each block was segmented into 64 superpixels using SLIC.

3.3. Parameter Settings

All experiments were conducted on the Pytorch framework version 0.4.1. The training of the
proposed weak supervision information generation network was iterated 10 times. The batch size
was set to 10, and the learning rate was set to 0.001. The network was optimized through stochastic
gradient descent, with a momentum of 0.9 and a weight decay rate of 0.0005. The training of adopted
segmentation network was iterated 10 times. The batch size was set to 8, and Adam was used as the
optimizer. The initial learning rate was 0.001 and the learning rate was reduced to 1/10 at every epoch.
The other methods used for comparison keep the experimental setup in their original paper. We used
the Deeplabv3+ model as the segmentation network. All experiments were performed on a computer
with NVIDIA 1080Ti GPU, i7-9700k CPU, and 16 GB memory.

3.4. Evaluation Metrics and Comparisons

In order to verify the effectiveness of the proposed method quantificationally, OA(Overall
Accuracy), DA(Detection Accuracy ), FAR(False Alarm Rate) and mIOU (mean Intersection
Over-Unions) were used as evaluation metrics [18].

In our experiments, three weakly supervised semantic segmentation models are used for
comparison with the proposed method: (1) CAM-based weakly supervised method [22], which
is a simple model of the top-down approach, has been used as the baseline in many tasks; (2) WILDCAT
method [21], which is an efficient model in the top-down approach, improves the attention to the
feature of different objects based on the CAM method; (3) superpixel pooling network (SPN) [26],
which adds a superpixel pooling layer based on the CAM method.

Besides, in order to verify the effectiveness of the multi-scale feature fusion integrated in SPMF-Net,
an ablation experiment is conducted on SPMF-Net_v1, which is only embedded in the encoder–decoder
upsampling module on the basis of SPN. Moreover, the fully supervised approach Deeplabv3+ [7] is
adopted to verify the potential of the proposed method.

3.5. Quantitative Analysis

The quantitative results of SPMF-Net are compared with other state-of-the-art approaches, as
shown in Tables 1 and 2 respectively. Compared with CAM and WILDCAT, the accuracy of SPMF-Net
with the superpixel pooling structure and multi-scale upsampling feature fusion module is significantly
improved. On the Potsdam dataset, compared with CAM, OA of SPMF-Net increases by 4.01%, DA
increases by 17.9%, FAR score increases by 9.84%, and the mIOU score increases by 8.58%. Compared
with WILDCAT, OA increases by 2.28%, DA increases by 25.26%, FAR score increases by 14.15%, and
the mIOU score increases by 9.64%. Compared with SPN, OA increases by 1.34%, DA increases by
3.09%, FAR score increases by 1.67%, and the mIOU score increases by 1.92%. As shown in Table 2,
the performance of SPMF-Net is also impressive on the Vaihingen dataset. Compared with CAM, the
OA of SPMF-Net increases by 2.24%, DA increases by 19.90%, FAR score increases by 9.83%, and the
mIOU score increases by 7.84%. Compared with WILDCAT, OA increases by 3.95%, DA increases by
27.13%, FAR score increases by 17.47%, and the mIOU score increases by 13.10%. Compared with SPN,
OA increases by 3.35%, DA increases by 4.05%, FAR score increases by 3.32%, and the mIOU score
increases by 4.33%.
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Table 1. Comparison of quantitative results on the Potsdam dataset.

Method OA DA FAR mIOU

CAM [22] 87.36% 63.61% 71.00% 69.86%
WILDCAT [21] 89.09% 55.95% 66.70% 68.81%

SPN [26] 90.03% 78.42% 79.17% 76.52%
SPMF-Net_v1 90.71% 80.37% 80.17% 77.60%

SPMF-Net 91.37% 81.51% 80.84% 78.45%
Deeplabv3+ [7] 96.08% 87.33% 91.02% 89.39%

Table 2. Comparison of quantitative results on the Vaihingen dataset.

Method OA DA FAR mIOU

CAM [22] 90.53% 58.91% 73.48% 73.58%
WILDCAT [21] 88.83% 51.67% 65.84% 68.31%

SPN [26] 89.42% 74.76% 79.99% 77.08%
SPMF-Net_v1 91.75% 76.76% 81.82% 79.77%

SPMF-Net 92.77% 78.81% 83.31% 81.42%
Deeplabv3+ [7] 95.54% 90.42% 91.70% 89.19%

The results of SPMF-Net are also promising compared with the results of the fully supervised
Deeplabv3+ model. On the Potsdam dataset, the OA of SPMF-Net reaches 95%, and DA reaches 93%,
FAR score reaches 89%, and the mIOU score reaches 88% compared with Deeplabv3+’s result. On
the Vaihingen dataset, the OA of SPMF-Net reaches 97%, and DA reaches 87%, and both FAR score
and mIOU score reach 91% compared with Deeplabv3+’s result. These results demonstrate that the
addition of the superpixel pooling structure and multi-scale fusion module has a great advantage for
improving the accuracy and integrity of building location. The low-level features are introduced and
the boundary information is preserved because of superpixel pooling. The features from different
convolutional layers are fused because of the multi-scale upsampling module.

We present the results of the ablation analysis for SPMF-Net to demonstrate the effectiveness of the
proposed module, as listed in Tables 1 and 2. The comparison of SPN with CAM and WILDCAT shows
that the addition of superpixel pooling modules can effectively improve the performance of building
extraction. After adding the superpixel pooling layer, the FAR score improves by approximately 8%
compared with CAM, and the mIOU score improves by approximately 7% on the Potsdam dataset, as
shown in Table 1. On the Vaihingen dataset, the FAR score improves by approximately 6% compared
with CAM, and the mIOU score improves by approximately 4%. The comparison of SPMF-Net_v1
with SPN illustrates the effectiveness of the continuous upsampling module with an encoder–decoder
structure added to the network structure. On the Potsdam dataset, compared with SPN, the DA of
SPMF-Net_v1 improves by 2%, and FAR and mIOU score improve by 1%. As shown in Table 2, the
DA and FAR of SPMF-Net_v1 improves by 2%, and the mIOU score improves by approximately
3% compared with SPN on the Vaihingen dataset. This finding shows that the detailed information
of images is retained, using continuous upsampling modules to restore the size of the feature map.
Compared with SPMF-Net_v1, the FAR and mIOU scores of SPMF-Net approximately improve by 1%
on the Potsdam dataset, while the FAR and mIOU scores of SPMF-Net approximately improve by 1.5%
on the Vaihingen dataset. This finding indicates that the fusion of the corresponding downsampled
features in the upsampling module is helpful to completely and accurately extract buildings.

3.6. Qualitative Analysis

CAM, WILDCAT, and SPMF-Net for the pseudo-labels of buildings are shown in Figure 3. CAM
has a larger located region of buildings, whereas WILDCAT prefers to locate many discriminating
regions of buildings. Compared with the ground truth, some nonbuilding regions in the heatmap
generated by SPMF-Net are included in the building regions (as shown in the red rectangles of the
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second line in Figure 3d,h). This condition is because the feature of these regions is similar to the
feature of the building. However, the pseudo-labels generated by SPMF-Net can completely and
accurately mark the building region. Compared with CAM and WILDCAT, the results of SPMF-Net
are more accurate in building regions and contain less noise regions. This finding is because SPMF-Net
combines the high-level semantic features using a top-down approach and the low-level structural
features extracted using a bottom-up approach, which are suitable for generating a complete and
accurate heatmap. The value of pixels in the same superpixel in the heatmap generated by SPMF-Net
is limited to the same value, because of the superpixel pooling module. On the contrary, every pixel
of the heatmap in CAM and WILDCAT is different in the local area, because of the different weights
of pixels.
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Figure 3. Pseudo-labels of building. (a) and (e) are the input image and ground truth respectively;
(b) and (f) are the heatmaps of CAM and its generated pseudo-label; (c) and (g) are the heatmaps
of WILDCAT and its generated pseudo-label; and (d) and (h) are the heatmaps of SPMF-Net and its
generated pseudo-label. (a–d) are from the Potsdam dataset, (e–f) are from the Vaihingen dataset.
Buildings are represented by black color, and other classes are represented by white color.

The results of all the methods used in the experiments are shown in Figure 4. The building
detection results generated by CAM and WILDCAT cannot completely preserve the boundaries of the
building. This condition is because the unit of building region generated by CAM and WILDCAT is
at the pixel level rather than a local superpixel. The value of heatmap varies for pixels because the
weight of each pixel is different. The shape of the object region is lumpy in the heatmap, indicating
that the two methods are insensitive to the boundary information of the building. Compared with
the SPN, the noise in the result of SPMF-Net is significantly reduced, the boundary is clearer, and the
possibility of misclassification decreases.
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Figure 4. Qualitative results comparison between our method and other methods on the Potsdam
dataset (the first and second columns) and Vaihingen dataset (the third and fourth columns). (a) is the
original remote sensing image; (b) is result of CAM, (c) is result of WILDCAT; (d) is result of SPN; (e) is
result of SPMF-Net_v1; (f) is result of SPMF-Net; (g) is result of Deeplabv3 +; and (h) is the ground
truth. Buildings are displayed by black color, and other classes are displayed by white color.
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4. Conclusions

This paper proposes a weakly supervised network for pixel-level building label generation. It
uses image-level label as supervision to locate the building region using a top-down approach. The
low-level detail features extracted using a bottom-up approach can be used to exhibit the boundary of
the building, by combining the superpixel pooling layer module, in accordance with the characteristics
of the remote sensing image. The validity of the proposed method is verified by comparing it with
several related methods on the ISPRS Potsdam dataset and Vaihingen dataset. SPMF-Net can achieve
the boundary of buildings and improve the accuracy and integrity of building results.

In future studies, we will focus on making the building region generated in weakly supervision to
be intact and accurate. Auxiliary data, such as DSM and normalized difference vegetation index, will
be used to enhance the performance.
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