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Abstract: Currently, climate change poses a global threat, which may compromise the sustainability 
of agriculture, forestry and other land surface systems. In a changing world scenario, the economic 
importance of Remote Sensing (RS) to monitor forests and agricultural resources is imperative to 
the development of agroforestry systems. Traditional RS technologies encompass satellite and 
manned aircraft platforms. These platforms are continuously improving in terms of spatial, spectral, 
and temporal resolutions. The high spatial and temporal resolutions, flexibility and lower 
operational costs make Unmanned Aerial Vehicles (UAVs) a good alternative to traditional RS 
platforms. In the management process of forests resources, UAVs are one of the most suitable 
options to consider, mainly due to: (1) low operational costs and high-intensity data collection; (2) 
its capacity to host a wide range of sensors that could be adapted to be task-oriented; (3) its ability 
to plan data acquisition campaigns, avoiding inadequate weather conditions and providing data 
availability on-demand; and (4) the possibility to be used in real-time operations. This review aims 
to present the most significant UAV applications in forestry, identifying the appropriate sensors to 
be used in each situation as well as the data processing techniques commonly implemented. 

Keywords: sensing payloads; forest inventory; fire monitoring; post-fire monitoring; tree species 
classification; forest health monitoring; photogrammetry; LiDAR 

 

1. Introduction 

Remote sensing has been one of the most attractive research fields over the last decades. It 
provides several techniques that measure different Earth physical properties of shapes using reflected 
or emitted energy, at a given time or period [1,2]. Remote sensing has been influenced by significant 
progress in several technologies, such as advanced data processing techniques, Geographical 
Information Systems (GIS) and Global Navigation Satellite Systems (GNSS), which contributed to 
improve and expand its applications [3]. 

Monitoring forest ecosystems, particularly in national forest inventory (NFI) programmes to 
enhance estimates, is one of the particular applications where remote sensing has been extensively 
used [4]. Forest ecosystems are very dynamic, being extremely important to the acquisition of 
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accurate and up-to-date data [5]. The regular acquisition of data could be very expensive, depending 
on which remote sensing platform is being used [6]. Considering the traditional airborne and 
spaceborne remote sensing platforms, the spatial and temporal resolutions provided by satellite-
based data are usually not suited to achieve regional or local objectives. On the other hand, airborne 
platforms can be used to acquire more scale-appropriate data. However, they are expensive when 
regular time-series monitoring is desired. Comparing these platforms to unmanned aircraft systems 
(UAS), it is quite clear that traditional remote sensing platforms are not suitable for real-time 
applications, once UAS combine high spatial resolution and quick turnaround times with lower 
operational costs [7]. For these reasons, the interest in UAS has been increasing. 

UAS is defined as the entire system that includes the necessary equipment, network and 
technicians prepared to control the unmanned aircraft [8]. These platforms offer the potential to be 
used in several applications, such as environmental, emergency/rescue, surveillance and agroforestry 
[9]. Compared to airborne platforms, unmanned aerial vehicles (UAVs—referring to the platform 
itself), do not require a human pilot on board. Its control is conducted by a pilot using a ground 
station or a remote control, which contributes to decrease the price of these operations [10]. 

Small-sized UAVs are usually divided into two groups: fixed-wing and rotating-wing [11]. Both 
types are constrained different conditions [12] such as: the area to map and its geographical 
complexity, the desired spatial resolution, weather conditions and take-off and landing space. Fixed-
wing UAVs usually offer a longer travel distance in a single flight, for the same payload, reaching a 
high cruise speed, making them especially suitable for usage in larger areas with its spatial resolution 
reaching few centimetres. On the other hand, rotary-wing or multi-rotor solutions, which rely on a 
set of propellers arranged around its core, are more flexible, being adequate to cover smaller areas 
with the ability to obtain a sub-centimetric spatial resolution. Moreover, when compared to fixed-
wing UAVs, rotary-wing UAVs have a better manoeuvrability, since they are able to stand in a fixed 
position, are less prone to vibrations [13] and have the ability to vertically take-off and land (VTOL) 
[11]. In contrast, fixed-wing UAVs require a corridor for take-off and landing operations. For each 
project, the choice of the appropriate UAV solution has relevance, as well as the choice of the sensors 
that could be included in these platforms [12]. 

In the management process of forests and agricultural resources, there are some peculiarities 
that make UAVs one of the most suitable options to be considered: firstly, due to low material and 
operational costs and high-intensity data collection [14]; secondly, UAVs can host a wide range of 
sensors that could be adapted to be task-oriented [15]; thirdly, UAV missions can be planned in a 
flexible manner, avoiding inadequate weather conditions and providing data availability on-demand 
[16]; and lastly, UAVs can be used in real-time operations, for example, using thermal sensors that 
could be operating in order to detect forest fires, contributing to control fire spread in space and time 
[17]. Considering the identified advantages, in Koh and Wich [18] the opportunities that have 
emerged with the appearance of UAVs are clearly reflected, namely in forests monitoring. In the 
referred study, the goal was to monitor tropical forests in Indonesia using a UAV, once it offers 
affordable costs. Moreover, the higher cost of high-resolution satellite data and the issues related to 
frequent cloud cover also promoted the use of UAV, due to the flexibility and operability offered. 
UAVs can save time, manpower and financial resources for local conservation workers and 
researchers in the developing tropics [18]. 

Considering the potential of UAVs, Section 2 presents some concepts related to three three-
dimensional (3D) data acquisition using UAVs. The most suitable UAV applications in forestry are 
presented in Section 3, where the appropriate sensors to be used in each situation are identified 
alongside with the data processing techniques commonly implemented (Section 4). Both Sections 3 
and 4 were elaborated based on a thorough review of research studies that were organized by 
application type (forest structural parameters estimation, tree species mapping and classification, 
forest fire and post-fire monitoring, forest health monitoring and disease detection, and other 
applications). Finally, Section 5 presents the main conclusions derived from the present study/review. 

This document has been prepared so that it can be read in two different ways. Firstly, it can be 
read in its entirety, allowing readers to have a clear overview of the recent advances that result from 
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the use of UAVs for forestry applications. Secondly, for readers familiar with the topics addressed, 
each section is self-contained and for that reason can be read separately and in any order. Finally, the 
tables at the end of each section summarizes the review of each addressed topic, and can be useful if 
consulted first. 

2. Three-Dimensional Data Acquisition Using Unmanned Aerial Vehicles 

In recent years, there has been a continuous improvement of remote sensing techniques and 
sensors, which provided high-resolution data acquisition, varying in spatial, spectral and temporal 
scales [19]. These technological advances allowed the appearance of methods for measuring and 
monitoring several aspects of complex forest structures [20], thus allowing for describing and 
analysing the vertical and horizontal distribution of vegetative elements [21]. 

In order to provide a better insight of forest’s structure and variability, sensors that are able to 
detect 3D structure have been employed in UAVs [22]. Essentially, sensors that can be used in remote 
sensing are active or passive. Regarding the active sensors, those are responsible for providing the 
energy necessary to detect the objects. The sensor transmits radiation toward the object, which in turn 
reflects the radiation to be detected and measured by the sensor [23]. Laser altimeters, light detection 
and ranging (LiDAR), radar, ranging instruments are among the most used active sensors in remote 
sensing [24]. Regarding passive sensors, those can detect natural radiation that is emitted or reflected 
by the objects. Most of these sensors operate in the visible, infrared, thermal infrared parts of the 
electromagnetic spectrum [10]. RGB, multispectral, hyperspectral and thermal sensors are some 
examples of passive sensors [15]. While LiDAR sensors can directly obtain 3D properties in the form 
of point clouds, to achieve the same with some passive sensors the photogrammetric processing can 
be used and is the most popular method. 

2.1. LiDAR Sensors 

In the last decade, improvements in the spatial resolution allowed airborne platforms to occupy 
a prominent role [25]. These platforms gained a renewed importance for remote sensing, due to new 
sensors implemented. For example, LiDAR sensors can provide a better resolution and a high-point 
density, when airborne platforms flight at a low speed [26]. The LiDAR technology is presented as 
one of the most feasible alternatives to monitor forest structure, composition and function [27]. These 
scanning systems are composed of an emitter and a receiver of the laser beam (laser pulses) and 
integrate an inertial navigation system (INS) and GNSS responsible for the orientation of the scanner 
in the space (position and inclination angles). These components have contributed significantly to 
LiDAR development, allowing the capture of multiple returns and to reach the ground, even in 
forested areas [28]. LiDAR sensors makes use of time of flight principle or phase-based differences to 
measure distances to objects. This is achieved by measuring the time frame between sent and 
returned laser pulses which are backscattered from objects. The returns generate a 3D point cloud, 
representing, in the case of forested environments, the vegetation structure [29]. In order to further 
improve the accuracy and quality of these data and to generate a best-fitting surface, interpolation 
and modulation methods could be used [30]. LiDAR sensors offers the possibility to penetrate the 
forest canopy which gives the ability to accurately measure structural canopy parameters, such as 
forest height, canopy openness and leaf area density along the entire vertical profile [31]. 

Initially, the use of LiDAR systems was confined to manned aircrafts through optically pumped 
solid-state lasers with short pulses [32]. However, nowadays, this type of sensors appears as a viable 
option to be implemented in UAVs, once it represents one of the fastest technologies in the domain 
of direct acquisition of spatial data, making possible to collect reliable and dense 3D point data over 
a given area of interest [33]. 

2.2. Photogrammetric Processing of UAV-based Imagery 

Recent sensors and innovative image processing techniques, such as structure from motion 
(SfM), have been used for generating point clouds derived from images [34]. This technique applies 
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sophisticated algorithms, which are based on traditional stereoscopic photogrammetry principles, 
that use defined geometrical features captured in several images with different angular view points 
towards to generate a 3D point cloud [35]. In the case of aerial imagery acquired form UAVs, SfM 
techniques allow to extract 3D information , providing point clouds based on feature matches within 
overlapping images [36]. This way, UAV imagery emerged as a feasible alternative for the monitoring 
of the 3D structure of forests [37]. From the interpolation of the generated dense point clouds, several 
raster outcomes can be obtained. This process is summarized in Figure 1. 

 

Figure 1. Typical photogrammetric processing pipeline. The acquired imagery goes through an 
imagery alignment processing, resulting in a sparse point cloud, which in turn, is densified into a 
dense point cloud, by interpolating it several raster outcomes can result: digital surface model (DSM), 
digital terrain model (DTM), orthophoto mosaic, among others (depending on the sensor type). 

Currently, there are software solutions capable of performing a photogrammetric processing 
pipeline for different sensors. Some are commercially distributed, as the example of Agisoft 
MetaShape (Agisoft LLC, St. Petersburg, Russia) and Pix4Dmapper (Pix4D SA, Lausanne, 
Switzerland). There are also some open source options, for example MICMAC [38] and Open Drone 
Map [39]. The affordability of both UASs and photogrammetric processing software enabled the 
promotion of remote sensing studies and applications for research and commercial purposes. 

2.3. Data Processing, Vegetation Segmentation and Classification 

As mentioned in Sections 2.1. and 2.2., both LiDAR and photogrammetry techniques are capable 
of generating dense point clouds in which each point represents a coordinate in the space (X, Y, Z). 
However, to deeply explore such products in the forest context, a few methods can be applied to 
automatically obtain forest-related parameters that are crucial towards its monitoring [40–43], such 
as tree height, canopy diameter, canopy area, diameter at breast height (DBH), volume, among others. 
These methods can be directly applied to the point clouds by filtering them into each isolated tree or 
by point cloud interpolation transforming its 3D data into a raster [29]. Point cloud interpolation can 
be achieved through different techniques commonly used in GIS data, as the example of Delaunay 
Triangulation [44] or Inverse Distance Weighting (IDW) [45] and triangulated irregular networks 
(TIN) [46]. Different outcomes can be driven from point clouds such as contour lines, terrain slopes, 
Digital Surface Models (DSMs) and Digital Terrain Models (DTMs). Whereas a DSM presents the 
features above the ground level, e.g., trees and shrubs—typically the results that provide the altitude 
of the surface objects where all pixels have the same spatial resolution—the DTM discards features 
above ground level, using only the points belonging to the ground. The subtraction of both models 
(DSM–DTM) provides the height difference between objects/features presented in above ground 
level providing, in the case of vegetation monitoring, a canopy height model (CHM), where 
vegetation height is present [47]. Considering photogrammetric outcomes, other types of data 
(depending on the sensor) can be generated such as orthophoto mosaics, vegetation indices, spectral 
signatures and land surface temperature [48]. 

Usually, CHMs or DSMs, point clouds and spectral information are used in tree segmentation 
processes [49]. Depending on the type of data, there are several algorithms for tree detection, being 
the detection rate dependent on the forest type—usually higher in coniferous stands than broadleaves 
[50–52], tree density and clustering [52–54] and not in the algorithm used [53]. 

Concerning the tree detection using CHMs or DSMs, there are two types of methods widely 
used (i.e., raster-based algorithms): variable-sized window (VSW) and watershed delineation (WD). 
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VSW developed by Pupescu et al. [55] uses a variable-sized window to identify the local maxima in 
a surface mesh. Local maxima algorithms typically involve the selection of a search radius [56]. The 
WD is a method based on image processing that offers an improvement for crown geometries and 
creates a mesh inverting the CHM or DSM with the objective to detect the local minima of ridges and 
delineate adjacent individual tree crowns [57]. Watershed approaches can also be combined with 
local maxima detection to limit the number of local maxima within a segment to one [56]. Figure 2 
presents an example of such approach in an area mainly composed by maritime pine trees. 

 
Figure 2. Example of an individual tree crown detection and delineation approach using: (a) a canopy 
height model; (b) identified treetops using local maxima; and (c) tree crown delineation using 
watershed transform. 

Regarding the methods for tree detection using point clouds, there are two methods widely 
used: point cloud segmentation and the layer stacking [49]. The point cloud segmentation consists 
into first locating the local maxima points and consequently these points are iteratively assigned to 
trees based on a distance threshold of similar characteristics into homogeneous regions [58]. Point 
cloud segmentation methods are generally categorized into five classes: (1) edge-based methods; (2) 
region-based methods; (3) attributes-based methods; (4) model-based methods; and (5) graph-based 
methods [59]. Recently, Ayrey et al. [54] developed the layer stacking method, in which point cloud 
is sliced at given height threshold intervals and trees are isolated in each layer, then the results from 
all layers are merged producing, in this way, representative tree profiles. The authors compared the 
novel algorithm with WD, where the method of layer stacking reached higher detection rates. 

Spectral information can also be used to segment and detect trees, the application of vegetation 
indices and object-based image analysis (OBIA) being some of the most common methods. 
Segmentation using vegetation indices is a pixel-based approach that can be defined as a set of 
arithmetic operations applied in different bands of the electromagnetic spectrum, which are usually 
used in remote sensing for extraction of different characteristics such as water status, vegetative 
vigour, presence of diseases, biomass estimation, among others [10]. Among the vast number of 
existing vegetation indices, the Normalized Difference Vegetation Index (NDVI) [60] is the most used 
in remote sensing. Although, in recent years, several others indices were developed with different 
purposes being some of some of the most representative listed in [10,61]. On the other hand, OBIA is 
an alternative to a pixel-based methods with basic analysis unit as image objects instead of individual 
pixels [62,63]. This kind of method groups a number of pixels into shapes with a meaningful 
representation of the objects with the goal to address more complex classes that are defined by spatial 
and hierarchical relationships within and during the classification process [64]. 

Nevertheless, all the methods previously presented are used to segment vegetation and not to 
identify and classify different species. In this scope, multispectral data acquired from UAVs has been 
used in tree species classification, but, in some cases, the data has been limited to RGB imagery and/or 
to modified RGB cameras to acquire near-infrared (NIR) or Red Edge channels using [65–67], also 
known as colour infrared (CIR) imagery. However, recently the development of small hyperspectral 
imaging sensors has enabled high-spectral and spatial resolution measurements from UAVs [68–70]. 
Hyperspectral sensors offer a large amount of data that is widely used in species classification with 
higher accuracies when compared to multispectral data [71]. Nevertheless, to extract patterns and 
features from these great amount of data, there is a need for more complex methods for its analysis 
and interpretation [72]. For this purpose, the most common methods are based on machine learning 
(ML) approaches as support-vector machines (SVMs) or random forests (RFs) [73,74]. Thus, tasks 
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such as the detection and classification of tree species can be carried out with many different methods, 
regardless the type of sensor used. 

3. Applications of UAVs for Forestry Purposes 

One of the biggest challenges in the application of remote sensing to forestry is associated with 
collecting updated and timely data over the target areas. In the assessment of pest outbreaks or 
wildfire spread in a forested landscapes, there is a risk of satellite imagery becoming unavailable and 
aerial photography from crewed/manned aircrafts becoming unaffordable [75]. On the other hand, 
the use of UAVs has considerable benefits, such as reduced costs, temporal and spatial flexibility, 
high accuracy data and the advantage of no human risks [76]. Forest fire monitoring and management 
was one of the first fields that showed the importance of UAVs in forestry [77]. In addition, there are 
a set of other applications that should be considered. For example, tree height and tree crown 
diameter determination have an important role in forestry monitoring [78,79]. To acquire multi-
temporal and accurate data, different sensors could be used in forest surveying, namely LiDAR 
sensors, which provide precise tree information obtained from digital surface models. Moreover, 
hyperspectral sensors also allow tree classification and health monitoring. However, approaches with 
low-cost RGB sensors combined with photogrammetric processing should be considered as a valid 
alternative to those expensive sensors [79]. This section aims to present the reviewed UAV-based 
studies depending on each type of application. In this review, the studies using UAVs were grouped 
into five categories: (1) forest structural parameters estimation; (2) tree species mapping and 
classification; (3) forest fire and post-fire monitoring; (4) forest health monitoring and disease 
detection; and (5) other applications. 

3.1. Forest Structural Parameters Estimation 

Forest inventory involves a continuous monitoring process, which is based on regular and 
periodic measurements of physical, chemical and biological parameters that are crucial to detect 
changes in forests over time [80]. In the past, field and aerial surveys were performed to collect forest 
cover data, while aerial photography was used for plot-based analysis of forest stocks [81]. A few 
years later, with the emergence of satellite imaging technology and, more recently, the appearance of 
UAVs, these have been contributing to simplify, optimize and reduce the costs associated with the 
forest monitoring procedures [37]. In this way, this section is dedicated to analysing studies related 
to forest structure parameters estimation using UAV data, comparing and identifying the most 
suitable UAV sensors for this purpose. The extracted parameters can be evaluated at the stand-level 
by considering several metrics or at an individual tree level. Regarding stand-level parameters, such 
as basal area, biomass or volume, they are better derived using an area-based approach (ABA), 
whereas tree-level parameters, such as stem density, are better derived using an individual tree 
crown (ITC) approach [82]. Considering the ABA approaches, the response variable results from a 
combined value over a sample plot, such as volume per ha or mean tree height. In turn, ITC 
approaches are related to the estimation of attributes from trees or tree crowns [83]. 

In the studies analysed regarding this topic, UAV data acquisition was conducted, and its 
accuracy was assessed by comparing it with ground-truth measurements or by using other remotely 
sensed data as reference (e.g., airborne laser scanner (ALS) point clouds). Taking this into account, 
the following studies are analysed by focusing in the sensor type used to perform UAV data 
acquisition, the tree species analysed, and the parameters estimated from the UAV-based data. The 
estimated and measured values are commonly evaluated by their correlation using statistical 
methods to measure how close the data are to a fitted regression line or curve. This way, and to 
facilitate text interpretation, we consider values for coefficient of determination (R2) and Pearson’s 
correlation (r) lower than 0.5 as being a low correlation, between 0.5 up to 0.7 as good correlation and 
above 0.7 as a strong correlation. 
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3.1.1. Stand-level Studies 

Regarding stand-level studies, several authors estimated height (H) parameters, such as Lorey’s 
mean height (HL), dominant height (Hdom) and maximum height (HM), using UAV-based data.  

Considering the results on HL, Puliti et al. [37], Cao et al. [84] (UAV-LiDAR; UAV-RGB) and Ota 
et al. [85] obtained consistent results, revealing adjusted R2 values with strong correlation for Lorey’s 
mean height, (respectively 0.71, 0.90, 0.82 and 0.93). Regarding results of Hdom, Puliti et al. [37], Ota et 
al. [85] and Guo et al. [86] also reached strong correlation (R2 respectively 0.97, 0.91 and 0.81). 
Analysing the results of HM, Ota et al. [85] confirmed a strong correlation (R2 = 0.93) for this parameter. 

Considering the height parameters estimated by several studies, the results were coherent, 
presenting a strong correlation. However, it is worth to notice that results are dependent on UAV 
sensor used (e.g., RGB, LiDAR, CIR), as well as the forest characteristics and species. Taking into 
account the sensors used in the aforementioned studies, Puliti et al. [37] used a UAV-based CIR 
imagery; Cao et al. [84] and Ota et al. [85] used a UAV-based RGB imagery; and Cao et al. [84] and 
Guo et al. [86] used a UAV LiDAR system. Despite the fact the results obtained are similar, Cao et al. 
[84] refer that the accuracies of models obtained with UAV-LiDAR were higher than those obtained 
by UAV-RGB. Indeed, UAV-RGB point clouds were limited to the upper canopy, lacking the ability 
to penetrate below the canopy as UAV-LiDAR. Considering the forest characteristics and species, 
Puliti et al. [37] suggested that boreal forests are usually considered as a more simple type due to the 
species composition and the height variations, in contrast with temperate broadleaved forests that 
are complex due to the irregular height of species. In line with this, Cao et al. [84] analysed different 
tree species, dawn redwood (coniferous) and poplar (broadleaved), revealing that the results 
obtained with different sensors were more similar in dawn redwood (coniferous) specie. According 
to the author, this is because dawn redwood (coniferous) has a more regular tree crown shape when 
compared to poplar (broadleaved) species, which simplifies identification process executed by the 
algorithm. Ota et al. [85], in turn, concluded that the estimated results obtained in managed temperate 
coniferous forests are comparable to the conifer-dominated boreal forests and superior to those 
obtained in dry tropical forests. 

Stem number (Sn) was modulated by few authors. Puliti et al. [37] and Cao et al. [84] (UAV-
LiDAR; UAV-RGB) obtained a good correlation for Sn parameter (R2 respectively 0.60, 0.56 and 0.50), 
demonstrating similarity in their studies. Comparing these results with those obtained in height 
parameters, Sn presents lower correlations. Following these results, Gobakken and Næsset [87] refer 
that stem number models are associated to large errors, being underestimated in plots with very 
dense forest. As it already mentioned, Cao et al. [84] implemented their study in forests with different 
species characterized by irregular height and crown, thus contributing to the lowest correlation 
obtained in Sn. 

Giannetti et al. [88], Chen et al. [89], Goodbody et al. [90] and Puliti et al. [37] obtained similar  
stem volume (Sv) results (R2 respectively 0.80–0.83, 0.91, 0.93, 0.85), presenting a strong correlation. 
Giannetti et al. [88] and Puliti et al. [37] used a UAV-based CIR imagery, while Chen et al. [89] and 
Goodbody et al. [90] used UAV-based RGB imagery. According to Goodbody et al. [90], Sv parameter 
was modelled with high accuracy, in boreal forest, using UAV structure from motion (SfM) 
algorithm. 

In the basal area (BA) estimation, Alonzo et al. [91] achieved a strong correlation (R2 = 0.79). On 
the other hand Puliti et al. [37] and Cao et al. [84] (UAV-LiDAR; UAV-RGB) obtained a good 
correlation in BA parameter (R2 respectively 0.60, 0.64 and 0.61). Considering the Alonzo et al. [91] 
study, authors mentioned that the classification accuracy was improved using three variables 
representing crown height, colour and form. Authors also referred that SfM point cloud data 
generated robust models. 

The diameter at breast height (DBH) parameter was analysed in Cao et al. [84] study. Authors 
obtained a good correlation using a LiDAR sensor (UAV-LiDAR) and RGB sensor (UAV-RGB), with 
R2 respectively 0.69 and 0.50. However, the UAV-LiDAR data presented a slightly better correlation 
than RGB sensor. Despite this, the UAV-RGB data also proved the ability to provide estimations of 
forest structural attributes with similar accuracies. 
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Several studies achieved promising results in the volume (V) estimation. Cao et al. [84] (UAV-
LiDAR; UAV-RGB), Ota et al. [85] and Jayathunga et al. [92] achieved a strong correlation in the 
estimation of this parameter (R2 respectively 0.78, 0.70, 0.75 and 0.84). Considering these results, Cao 
et al. [84] obtained, once again, a higher correlation using LiDAR system. On the other hand, 
Jayathunga et al. [92] achieved a strong correlation thanks to digital photogrammetry of UAV 
imagery, combined with LiDAR-DTM, which can be feasible for the estimation of V of uneven-aged 
mixed conifer-broadleaf forest. 

In above ground biomass (AGB) estimation, a good correlation was achieved by Cao et al. [84] 
(UAV-LiDAR; UAV-RGB), with R2 respectively 0.68 and 0.63. Alonzo et al. [91] and Guo et al. [86], in 
turn, had a strong correlation for AGB parameter, respectively R2 = 0.92 and 0.84. As verified in Cao 
et al. [84] study, Guo et al. [86] also used LiDAR sensor in different types of forest, demonstrating the 
ability of this system to map forest structure under different vegetation types and terrain conditions, 
with a high point density. Regarding Alonzo et al. [91] study, the strong correlation obtained stands 
out, once authors used a UAV-RGB sensor. An explanation for this result can be related to the type 
of forest analysed, once authors estimated parameters in the boreal forest.  

Table 1 summarizes the studies addressed in this subsection by presenting the UAV type and 
sensors used in each study. The most relevant results are also provided. 

Table 1. Unmanned aerial vehicle type, sensing payloads and results from stand-level studies. 

Studies 
UAV Type Sensor Type Results (R2) 
FW RW RGB LiDAR CIR HL HM Hdom Sn BA Sv DBH V AGB 

Puliti et al. [37] ●    ● 0.71  0.97 0.60 0.60 0.85    
Giannetti et al. [88] ●  ●  ●      0.80-0.83    

Chen et al. [89]  ● ●        0.91    
Cao et al. [84]  ●  ●  0.90   0.56 0.64  0.69 0.78 0.68 
Cao et al. [84] ●  ●   0.82   0.5 0.61  0.50 0.70 0.63 
Ota et al. [85]  ● ●   0.93 0.93 0.91     0.75  

Alonzo et al. [91]  ● ●       0.79    0.92 
Jayathunga et al. [92] ●  ●          0.84  

Guo et al. [86]  ●  ●    0.81      0.84 
Goodbody et al. [90]  ● ●        0.93    

FW: Fixed-Wing; RW: Rotary-Wing; CIR: Colour infrared; HL: Lorey’s Mean Height; HM: Maximum 
Height; Hdom: Dominant Height; Sn: Stem Number; BA: Basal Area; Sv: Stem Volume; DBH: Diameter 
at Breast Height; V: Volume; AGB: Above Ground Biomass. 

3.1.2. Tree-level Studies 

Considering tree-level studies, interesting results were obtained for tree height estimation. The 
higher accuracies obtained using the low-cost UAV-RGB sensor revealed the potential of this 
solution. Ni et al. [93] (R2 = 0.87), Guerra-Hernández et al. [94] (R2 = 0.81), Guerra-Hernández et al. 
[95] (R2 = 0.96) and Lin et al. [96] (R2 = 0.92) studies presented a strong correlation in the height 
parameter estimation, using a UAV-RGB sensor. Guerra-Hernández et al. [97] have a more recent 
study that also performed height estimations with an RGB sensor, obtaining a good correlation (r: 
0.61–0.69). On the other hand, Jaakkola et al. [98] (r = 0.92) and Yin and Wang [99] (r > 0.90) used a 
UAV-LiDAR sensor and achieved a strong correlation. Sankey et al. [100], in turn, obtained a strong 
correlation (R2 = 0.90) using LiDAR, multispectral (MSP) and hyperspectral (HSP) sensor. In the 
studies analysed, Wallace et al. [101] offered a different approach comparing the performance of two 
UAV sensors, LiDAR and RGB, for height estimations. The authors obtained better results using 
LiDAR (R2 = 0.84) than RGB (R2 = 0.68). According to Wallace et al. [101], LiDAR proved to be the best 
solution to estimate the vertical distribution of vegetation, once it better penetrates the upper canopy. 
Whereas SfM presented the poor definition of the mid- and understory parts of the forest. In the study 
performed by Wallace et al. [101], the plot analysed consisted of Eucalyptus pulchella trees, varying in 
age and ranging in height from 4.7 m to 16.2 m, which could complicate the acquisition of high-
density point cloud data of the vertical distribution of vegetation. 
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Regarding tree crown diameter (CD) estimation, Sankey et al. [100] and Yin and Wang [99] 
achieved a strong correlation (R2 respectively 0.72 and 0.83–0.85), using LiDAR system. Considering 
the study areas where authors used the UAV-RGB sensor, Panagiotidis et al. [78] analysed two 
different plots. Plot 1 was composed of Norway spruce (Picea abies L.) together with European larch 
(Larix decidua Mill.) and Scots pine (Pinus sylvestris L.), while plot 2 was mainly composed of 
Norway spruce and Scots pine together with scattered individuals of European larch and Silver birch 
(Betula pendula Roth). The CD estimation obtained in plot 1 had a good correlation (R2 = 0.63). On 
the other hand, the CD estimation obtained in plot 2 presented a strong correlation (R2 = 0.85). 
Another study was developed by Guerra-Hernández et al. [94] with the use of UAV-RGB sensor, 
allowing obtaining a strong correlation (R2 = 0.95). Despite the good performance obtained by Guerra-
Hernández et al. [94], authors referred that methodology was applied on a flat terrain below sparsely 
distributed trees without the need of supplementary data points to generate a DTM. However, poor 
performance is expected in denser vegetated areas, due to the impossibility of aerial photography for 
penetrating through vegetation. 

Regarding DBH estimations using RGB sensor, the results achieved in the several studies 
analysed are consistent. Carr and Slyder [102] (r: 0.82), Iizuka et al. [103] (R2 = 0.78–0.79) and Guerra-
Hernández et al. [95] (R2 = 0.79) presented a strong correlation. According to Carr and Slyder [102], it 
may be possible to measure basal area directly from the point cloud data, instead of using the typical 
regression-based approaches. The slicing and averaging approach, performed in the study, mitigates 
errors due to scattering in the point cloud. Considering the LiDAR performance in DBH estimations, 
contrasting results were identified. While Jaakkola et al. [98] (r = 0.88) achieved a strong correlation, 
Chisholm et al. [104] (R2 = 0.45) obtained a low correlation. In the Chisholm et al. [104] study, authors 
refer that the use of UAV-mounted LiDAR for the below-canopy, without the use of GPS, has several 
limitations. However, it seems to be a promising technology, once DBH estimates were strongly 
positively correlated with the human-based ones. 

In Sv estimations, Jaakkola et al. [98] used a UAV-Lidar system, obtaining a strong correlation (r: 
0.88). Authors proposed a new concept based on the above and inside-canopy laser scanning survey 
through a UAV platform. In this way, the authors intended to improve the acquisition of the compact 
information of tree trunks and crowns. Regarding to Abdollahnejad et al. [105] study, authors used a 
UAV-RGB sensor, achieving a strong correlation (R2 = 0.71). Abdollahnejad et al. [105] concluded that 
remote sensing techniques revealed effective for characterizing forest tree parameters. 

Considering the AGB parameter, Lin et al. [96] (R2 = 0.96), Otero et al. [106] (R2 = 0.75) and Guerra-
Hernández et al. [95] (R2 = 0.86–0.87) performed studies using an RGB sensor, obtaining a strong 
correlation. Lin et al. [96] highlighted that a good AGB estimation is dependent of an accurate 
individual tree height extraction. In their study, a strong correlation was achieved for the height 
parameter (R2 = 0.92), which contributed to obtaining similar AGB results to those obtained by UAV-
LiDAR system. Moreover, it is important to note that authors applied their methodology in a 
relatively low density subalpine coniferous forest, which contributed to obtained correlation. On the 
other hand, Jaakkola et al. [98] obtained a strong correlation (r = 0.89) using a LiDAR sensor. 

Table 2 summarizes the studies addressed in this subsection by presenting the UAV type and 
sensors used in each study. Some of the most significant obtained results are also provided. 

Table 2. Unmanned aerial vehicle type, sensing payloads and results from tree-level studies. 

Studies 
UAV Type Sensor Type Results (R2; *r) 
FW RW RGB LiDAR MSP HSP H CD DBH Sv AGB 

Ni et al. [93]  ● ●    0.87     
Wallace et al. [101]  ●  ●   0.84     
Wallace et al. [101]  ● ●    0.68     

Guerra-Hernández et 
al. [97] 

●  ●    
0.61-
0.69* 

    

Chen et al. [89]  ● ●    0.76*     
Carr and Slyder [102]  ● ●      0.82*   

Surový et al. [107]  ● ●         
Dandois et al. [108]  ● ●    0.86     
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Chisholm et al. [104]  ●  ●     0.45   
Sankey et al. [100] ● ●  ● ● ● 0.90 0.72    

Guerra-Hernández et 
al. [94] 

●  ●    0.81 0.95    

Lin et al. [96] ●  ●    0.92    0.96 

Panagiotidis et al. [78]  ● ●    
0.75-
0.72 

0.63-
0.85 

   

Yin and Wang [99]  ●  ●   > 0.9 
0.83-
0.85    

Otero et al. [106]  ● ●    0.60    0.75 
Guerra-Hernández et 

al. [95] 
●  ●    0.96  0.79  

0.86-
0.87 

Abdollahnejad et al. 
[105] 

 ● ●    0.87  0.78 0.71  

Jaakkola et al. [98]  ●  ●   0.92*  0.88* 0.88* 0.89* 

FW: Fixed-Wing; RW: Rotary-Wing; MSP: Multispectral; HSP: Hyperspectral; H: Tree Height; CD: 
Crown Diameter; DBH: Diameter at Breast Height; Sv: Stem Volume; AGB: Above Ground Biomass. 

3.2. Tree Species Mapping and Classification 

UAV-based data can help distinguish tree species by their structural parameters or by their 
spectral response and vegetation structure. This way, several studies can be found addressing this 
topic focusing in forest type classification or in tree species classification. Several classification 
methods were used (Table 3). However, two methods stand out: random forest (RF) and support 
vector machines (SVM). The selection of the most feasible method is dependent on the type of 
problem being solved. In the case of having multiple features but limited records, a support vector 
machine is the best option. In the case of needing to handle high data dimensionality and 
multicollinearity, RF might work better [109]. 

Considering studies that use RF as a classification method (Table 3) applied to the UAV-RGB-
based imagery, the ones performed by Goodbody et al. [110] and Röder et al. [111] are highlighted. 
In the Goodbody et al. [110] study, authors intended to evaluate forestry regeneration in clear-cut 
stands in two different areas. In this way, authors computed several outcomes, such as orthophoto 
mosaics, dense point clouds and vegetation indices (NGRDI [112], VARIg [113], GLI [114]), which 
were used for the application of Object-Based Image Analysis (OBIA) methodology and RF 
classification method. The methodologies applied led to good results with overall accuracies of 86% 
to 95% for the first area and overall accuracy for the second area that ranged from 93% to 95%. On 
the other hand, Röder et al. [111] assessed forest disturbances caused by the European bark beetle 
(Ips typographus L.) in stands dominated by Norway spruce (Picea abies). RF was used to classify 
tree/non-tree areas to restrict the algorithm for tree crowns. Considering the results obtained, authors 
referred that the number of correctly delineated trees by automatic approach (mean value = 24.1%) 
was far lower than values reported by other studies performed in different locations, justifying the 
poor performance of the process with the complex structure of the sites. 

Regarding the RF method applied to UAV-RGB-NIR-based imagery, Michez et al. [67] used RGB 
and CIR sensors to survey two riparian forest sites. OBIA was applied for individual tree 
segmentation, and different object sizes were tested, and a RF classifier was applied. The overall 
accuracy reached 79.5% in site 1 and 84.1% in site 2. The black alder’s health assessment reached 
90.6% accuracy. Sá et al. [115], in turn, investigated how UAV can be used to map the invasive plant 
Acacia longifolia and to monitoring the effect of biocontrol agent Trichilogaster acaciaelongifoliae and 
to evaluate if there is a linear correlation between the number of flowers. For the classification, the 
authors used a RF with the orthophoto mosaics (RGB+NIR) and the CHM as input where 70% of data 
was used for training and 30% for validation. RF classification had an overall accuracy higher than 
0.95 with Cohen’s Kappa and higher than 0.85 in the seven test sites when detecting the presence of 
flowers of Acacia longifolia. The authors concluded that UAVs clearly offer a simple and reliable 
method to map the distribution of the investigated invasive species, with higher accuracy in the peak 
of flowering. However, linearly correlating the number of flowers with UAV imagery failed. Indeed, 
the use of RF method applied to UAV-RGB-NIR data proved to be effective in species classification. 
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Considering the RF method applied to multispectral (MSP) data, Franklin and Ahmed [116] 
studied deciduous tree species classification using OBIA and RF. Both methods were combined for 
the classification, and 23 tree crowns (species: White birch, aspen, Sugar maple and Red maple) were 
used for validation. The dataset was composed by spectral, textural and shape features. An overall 
accuracy of 78% was obtained. Aspen and birch were the most distinct species; the two different 
maple species appeared to be confused with each other and with immature trees and understory 
shrubs.  

Nevalainen et al. [71] performed a study with the application of the RF method to UAV-
hyperspectral (HSP)-based data. Authors addressed the data fusion from UAV-based RGB and HSP 
data (33 bands, 507.60 nm to 819.70 nm) for individual tree detection and classification in a boreal 
forest. Four classes were proposed to be detected among these tree species: Pine, Spruce, Birch and 
Larch. Several classification methods were tested, the highest accuracy was achieved by RF (95.2%). 
On the other hand, Melville et al. [117] applied OBIA in UAV HSP data (20 bands, from 600 to 875 
nm) and used a photogrammetric-driven DSM to distinguish different native lowland species: 
Themeda triandra grassland, Wilsonia rotundifolia, Danthonia/Poa grassland, and Acacia dealbata. 
A RF classifier was applied to the objects resulting from OBIA application in the surveyed area, 
including the DSM altitude values, spectral information and terrain slope. Training data for RF 
obtained an overall accuracy of 97.44%. When applied to the whole studied area the overall accuracy 
decreased to 71.8%. This decrease in the accuracy was justified by some confusion among Wilsonia 
and soil classes. However, there was a clear spatial distribution of the studied species matching the 
ground-truth observations. Nevalainen et al. [71] and Melville et al. [117] demonstrated the huge 
potential of RF when associated with HSP sensor, presenting good accuracies in their results. 

Regarding the application of the k-NN and SVM methods to UAV-HSP imagery, the study 
performed by Cao et al. [118] stands out. The authors explored the use of UAV hyperspectral data (125 
bands, 454 nm to 950 nm) and DSM for mangrove species classification. The surveyed area (3 ha) was 
composed of the following species: K. candel, A. aureum, A. corniculatum, S. apetala, A. ilicifolius, H. 
littoralis, and T. populnea. KC and SA. Apart from these species, shadow, water and broadwalk were 
the non-vegetation classes considered for classification. For this purpose, the area was clustered by 
means of OBIA, then spectral, textural features and vegetation indices were derived from hyperspectral 
data and height information was extracted from the DSM. Band selection was performed using 
classification and regression tree (CART) method and feature reduction was made through correlation-
based feature selection (CFS) algorithm. The clustered objects were classified in the different mangrove 
species and other land covers. In the classification features (spectral, textural and VIs) the overall 
accuracy was 76.12% for kNN and 82.39% for SVM. When considering DSM, the accuracy increased to 
82.09% for kNN and to 88.66% in SVM. SVM outperformed kNN and height information played a 
crucial role into discriminating mangrove species with similar spectral information. 

Other classification methods were also used. Among the studies analysed, the ones performed 
by Gini et al. [65,119] were highlighted, once it compares different classification methods (Table 3): 
unsupervised and supervised. Authors explored the usage of UAV-based RGB and CIR imagery in a 
park area in Italy. They classified eight classes, four belonging to trees and the remaining were grass, 
bare soil, concrete and shadow. Unsupervised and supervised classification methods were applied. 
The unsupervised method (ISODATA) obtained an overall accuracy of 50%, not being able to 
distinguish most of the tree species classes. Good results were obtained in concrete class since this 
has higher spectral differences than other classes. The supervised method relied in the maximum 
likelihood algorithm, and allowed an overall accuracy of 79%, the hornbean class being the less 
accurate and classified as part of the other vegetation class. 

Many other studies regarding the use of UAV-based data for classification can be found in the 
literature. The most relevant works are listed below: 

Sankey et al. [120] applied the decision trees (DT) method. Nevalainen et al. [71] applied the 
decision trees (DT), naive bayes (NB) and multi-layer perceptron (MLP) methods. Gini et al. [65,119] 
applied the ISODATA and maximum likelihood (MaxL) methods. Jayathunga et al. [92] applied 
maximum likelihood (MaxL) method. Laliberte et al. [121] applied hierarchical image classification 
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(HIC) method. Morales et al. [122] applied convolutional neural network (CNN) method. Alonzo et 
al. [91] applied canonical discriminant classifier (CDC) method. Generically, the authors obtained 
good accuracies with the classification methods used.  

Table 3. Unmanned aerial vehicle type, sensing payloads and classifiers used for tree classification. 

Studies 
UAV Type Sensors Classification Method 
FW RW RGB LiDARCIR MSP HSPk-NNDTNB MLPRFISO MaxL SVM HIC CNN CDC 

Fraser and Congalton [123] ●  ●                
Brovkina et al. [124]  ● ●  ●   ●           
Sankey et al. [120]  ●  ●   ●  ●          

Nevalainen et al. [71]  ● ●    ● ● ● ● ● ●       
Melville et al. [117] ● ● ●    ●     ●       
Michez et al. [67] ●  ●  ●       ●       
Gini et al. [65,119]  ● ●  ●        ● ●     

Cao et al. [118]  ●     ● ●       ●    
Laliberte et al. [121] ●  ●             ●   
Morales et al. [122]  ● ●              ●  

Goodbody et al. [110]  ● ●         ●       
Franklin and Ahmed [116]  ●    ●      ●       

Röder et al. [111]  ● ●         ●       
de Sá et al. [115] ●  ●  ●       ●       
Alonzo et al. [91]  ● ●               ● 

Jayathunga et al. [92] ●  ●           ●     
Li et al. [125]  ● ●           ●     

Fromm et al. [126]  ● ●              ●  
Imangholiloo et al. [127]  ● ●    ●     ●       

FW: Fixed-Wing; RW: Rotary-Wing; CIR: Colour Infrared; MSP: Multispectral; HSP: Hyperspectral; 
k-NN: k-Nearest Neighbours; DT: Decision Trees; NB: Naive Bayes; MLP: Multi-Layer Perceptron; 
RF: Random Forest; ISO: ISODATA; MaxL: Maximum Likelihood; SVM: Support Vector Machine; 
HIC: Hierarchical Image Classification; CNN: Convolutional Neural Network; CDC: Canonical 
Discriminant Classifier. 

3.3. Forest Fire and Post-Fire Monitoring 

Fires are one of the most disturbing events occurring in forests. They can cause life and property 
losses. Once a forest fire burns off vegetation, soil, organic matter, and moisture, the danger of landslides 
or other secondary disasters is present [128]. Therefore, forest fire and post-fire monitoring are essential, 
which are extremely dependent on emerging remote sensing technologies. In this way, this section intends 
to explore and analyse fire and post-fire monitoring studies focusing on the UAV-sensors potential. 

Regarding forest fire prevention, some countries adopted legislation towards vegetation 
management to increase the safety of populations in wildland–urban interfaces. This way, 
Fernández-Álvarez et al. [49] proposed a methodology for monitoring the compliance of identified 
vegetation with the fire prevention legislation, using UAV LiDAR-driven models in wildland–urban 
interfaces. The data processing workflow consisted of filtering the LiDAR point cloud to obtain DTM, 
DSM, and consequently CHM and shrub cover. For this purpose, the authors identified biomass 
management strips which, depending on the type, can have different diameters (ranging from 2 m to 
50 m). The shrub cover was computed by considering LiDAR returns with more than 0.2 m and lower 
than 3 m. For individual tree detection, the authors applied the watershed method in the inverted 
CHM and a method consisting of variable-sized window. This methodology enabled to estimate tree 
parameters such as height, pruning height, and spacing.  

Martínez-de Dios et al. [129], Merino et al. [130], Hristov et al. [131], McKenna et al. [132], Aicardi 
et al. [133], White et al. [134], Larrinaga and Brotons [135], Fernández-Guisuraga [136], Mayr et al. 
[137] performed studies based on the use of UAV-RGB sensor. Martínez-de Dios et al. [129], Merino 
et al. [130] and Hristov et al. [131] studies also used a thermal infrared sensor (TIR). Martínez-de Dios 
et al. [129] proposed a system to fill the gap in temporal and spatial resolution of forest fire 
information acquisition. The system has high flexibility and modularity and relies on the 
complementary usage of UAVs and static cameras. This way, potential false alarms from static 
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cameras can be reduced by a UAV confirmation. The proposed approach enabled through multi-
camera data fusion to estimate, in real-time, fire geometry as its location and width of fire front, spread 
rate, its direction, and fire flame height. Authors reported some challenges such as smoke occluding the 
visual images, the dynamics of the fire front which lead to high-frequency fluctuations, and and errors 
in image geo-referencing. The research continued in Merino et al. [130], which used multiple UAVs to 
mitigate the errors and limitations from Martínez-de Dios et al. [129] by having different perspectives 
of the fire front, avoiding the presence of smoke occluding the fire front, and to cover more extensive 
areas. Hristov et al. [131], in turn, proposed a conceptual model combining medium altitude fixed-wing 
UAVs for permanent monitoring of a certain area. If a potential fire is detected, low altitude rotary-
wing UAVs are triggered to confirm the forest fire. If confirmed, ground level teams are notified, and 
the fixed-wing UAV continues the fire monitoring. In case of a false alarm the UAV returns to its base 
and the fixed-wing UAV maintains its monitoring procedure. Both UAVs are equipped with RGB and 
thermal sensors. However, no practical applications were presented. 

Considering the studies developed by Shin et al. [138], White et al. [134] and Fernández-
Guisuraga et al. [136], authors used MSP sensors. Shin et al. [138] evaluated the feasibility of using 
UAV imagery to estimate forest canopy fuels and its structure in a ponderosa pine (Pinus ponderosa) 
stand with a small Gambel oak (Quercus gambelii) component. The results obtained indicate that UAV 
imagery can be used to accurately estimate forest canopy cover (R2 = 0.82, RMSE = 8.9%). Tree density 
estimates correctly detected 74% of field-mapped trees with a 16% commission error rate. Individual 
tree height estimation was strongly correlated with field measurements (R2 = 0.71, RMSE = 1.83 m), 
while canopy base height estimation had a poor correlation (R2 = 0.34, RMSE = 2.52 m). This way, 
UAVs can provide additional data to supplement, or potentially substitute, traditional estimates of 
canopy fuel. Considering the spatial resolution that can be achieved by UAVs, White et al. [134] 
evaluated the potential of jake pine (Pinus banksiana) saplings identification in post-fire environments. 
The best results were achieved in the latter epoch due to sapling development compared to ground 
vegetation cover, combination of RGB and NIR-R bands obtained higher accuracies. The Red-edge 
band did not provide any substantial improvements of results, only when used along with NIR band. 
In the study performed by Fernández-Guisuraga et al. [136], the possibility of using UAVs to generate 
multi-spectral orthophoto mosaics for large areas affected by forest fires was evaluated. For this 
purpose, 3000 ha were surveyed using a UAV equipped with a multi-spectral sensor. Acquired UAV-
based data was compared against satellite imagery (WorldView-2) and it provided higher spatial 
variability in heterogeneous burned areas, and NDVI from both sources was compared. It was 
concluded that the high-resolution multispectral data acquired can be used for post-fire decision 
making and interpretation of fine-scale ground patterns. 

Table 4 summarizes the used UAV types, sensing payloads and principal outcomes used in each 
study addressed in this subsection. 

Table 4. Unmanned aerial vehicle type, sensing payloads and more significant outcomes used in fire 
and post-fire studies. 

Studies 
UAV Type Sensor Type Outcomes Used 
FW RW RGB LiDAR MSP TIR PC OM CHM DSM VI 

Fernández-Álvarez et al. [49]    ●   ●  ●   
Shin et al. [138] ●    ●    ●  ● 

Martínez-de Dios et al. [129]; Merino et al. [130]  ● ●   ●      
Hristov et al. [131] ● ● ●   ●      

McKenna et al. [132] ●  ●     ●   ● 
Aicardi et al. [133] ●  ●     ●  ●  
White et al. [134]  ●   ●   ●    

Larrinaga and Brotons [135]  ● ●      ●  ● 
Fernández-Guisuraga et al. [136]  ● ●  ●      ● 

Mayr et al. [137]  ● ●      ●   

FW: Fixed-Wing; RW: Rotary-Wing; MSP: Multispectral; TIR: Thermal Infrared; PC: Point Cloud; 
OM: Orthophoto Mosaic; CHM: Canopy Height Model; DSM: Digital Surface Model; VI: Vegetation 
Indices. 
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3.4. Forest Health Monitoring and Disease Detection 

The detection of diseases in forest trees caused by biotic or abiotic factors is essential for forest 
sustainability. To prevent and monitor events that could compromise the forest health, new remotely 
sensing sensors and platforms have been emerging, providing enhanced and accurate information of 
forest condition [139]. 

Näsi et al. [140] and Minařík and Langhammer [141] presented similar studies, related to the 
detection of Bark Beetle damage in Norway spruces. While Näsi et al. [140] used a Fabry-Pérot 
Interferometer (FPI) composed of a low-cost miniaturized hyperspectral camera and a RGB camera, 
mounted on a rotary wing UAV, and Minařík and Langhammer [141] used a UAV equipped with a 
multispectral sensor. Näsi et al. [140] considered three classes (healthy, infested, and dead) and 
Minařík and Langhammer [141] five classes (healthy, infested, dead, forest restoration and grass). 
According to Näsi et al. [140], the classification of healthy and infested trees was challenging due to 
minor differences in the spectra. On the other hand, the class ‘dead’ was clearly distinguishable from 
the other two. Minařík and Langhammer [141], in turn, refers that the digital number (DN) values of 
dead trees are separable only in the red and red-edge portion of the spectrum from infested trees. In 
the NIR wavelengths, differences were not verified between DN values of dead and infested trees. 
Considering the results obtained, in the Näsi et al. [140] study the overall classification accuracy was 
90% for one test site and 72% for the other. The authors stated that their study proved for the first 
time the feasibility of the FPI technology in capturing 3D hyperspectral data in forest areas. In 
Minařík and Langhammer [141], NDVI and the Normalized Difference Red Edge (NDRE) [142] were 
able to correctly distinguish the boundary categories represented by the healthy and dead trees. On 
the other hand, the Anthocyanin reflectance index [143] and Red Edge–Green NDVI [144] were not 
able to separate and distinguish the categories of forest status. 

Considering studies that use the UAV-RGB sensor applied to the detection of diseases, Cardil et 
al. [145] assessed the insect outbreak impacts, more specifically the pine processionary moth, on a 
forest mostly covered by conifers (Pinus sylvestris, Pinus nigra) and deciduous species (Quercus ilex, 
Quercus faginea). According to the authors, it was possible to identify healthy, infested and 
completed defoliated trees, with an overall accuracy of 79 %. When defoliation is low, and located in 
treetops or small branches, it may not be possible to recognize trees as infested. The results obtained 
proved that UAVs can be used with enough accuracy on processionary moth infestation severity 
mapping. A similar study, using the UAV-RGB sensor, was performed by Otsu et al. [146]. The 
authors estimated the severity of defoliation caused by the pine processionary moth. Tests were 
performed in areas composed mainly by Pinus nigra and Pinus sylvestris trees. Several vegetation 
indices were used and their difference (dVI) was computed. Even though dVIs were calibrated, 
nNDVIs resulted better with an accuracy of 78.7%. These results show great potential in the use of 
UAV images as an alternative to other conventional ground-truth data. In Otsu et al. [146], it was 
found that using Moisture Stress Index (MSI) the overall accuracy was a very promising approach 
for estimating the severity of defoliation. 

Considering the studies based on the application of UAV-based RGB and CIR imagery, 
Lehmann et al. [147] proposed a low-cost solution, for private forest owners, to detect pest 
infestations, this being achieved by detection of defoliation and altered leaf reflection. Authors 
applied photogrammetric workflow and used OBIA techniques. Two study sites were considered, 
composed of oak trees, which can be infected by the oak splendour beetle. A modified NDVI derived 
classification was used to distinguish between five vegetation health classes. Very good (site A) and 
good (site B) overall KIA statistics were achieved. However, for the classes ‘infested’ and ‘dead 
branches’, KIA statistics were poorer. Some dead branches were often misclassified. Infested 
branches classification achieved suitable results. With this approach the cause of stress was not 
possible to be detected. Another study, performed by Smigaj et al. [148] presented a system to detect 
disease-induced canopy temperature increase. The system is composed of a fixed-wing UAV carrying 
thermal, RGB and CIR sensors. The acquired imagery was used to evaluate the detection of Red Band 
Needle Blight in Scots and Lodgepole pine stands flying. Datasets were geometrically corrected by 
registering to a CHM. A moderate positive correlation was obtained between tree temperature and 
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disease progress suggesting that it might be possible to detect sub-degree temperature differences 
induced by a disease onset. However, more tests must be performed at different periods of the day 
and various atmospheric conditions, since plant temperature can potentially be influenced by 
environmental factors. Table 5 summarizes the used UAV types, sensing payloads and principal 
outcomes used in each study addressed in this subsection. 

Table 5. Compilation of the studies reviewed in this subsection summarized by their main objectives, 
conclusions and UAV type and sensors used in each case. 

Studies 
UAV Type Sensor Type 
FW RW RGB CIR MSPHSPTIR 

Lehmann et al. [147]  ● ● ●    
Näsi et al. [140,149]  ●    ●  
Smigaj et al. [148] ●  ● ●   ● 

Cardil et al.; Otsu et al. [145,146,150]  ● ●     
Wen et al. [151] ●  ●     

Minařík and Langhammer [141]  ●   ●   

FW: Fixed-Wing; RW: Rotary-Wing; CIR: Colour Infrared; MSP: Multispectral; HSP: Hyperspectral; 
TIR: Thermal Infrared. 

3.5. Other Applications 

Apart from tree monitoring, the high spatial resolution and versatility of UAVs enable to make 
other forestry-related studies that were not possible, or at least the results would be much worse, if 
another remote sensing platform were used. These studies include: (1) forest canopy assessment (2) 
regeneration of forests (3) assessment of soil disturbances in post-harvest areas; (4) impacts of 
selective logging; and (5) tree stump detection, and rot assessment. 

Forest canopy assessment is crucial in the characterization of forest ecosystems [7]. Several 
studies related to the estimation of canopy attributes were analysed, focusing on canopy cover, 
canopy gaps, leaf area index, foliage clumping and leaf angle distribution. Regarding canopy cover 
estimations, Li et al. [125] evaluated the use of UAV-based RGB imagery to determine understory 
and overstory vegetation cover. For this purpose, a method named back-projection of 3D point cloud 
onto superpixel-segmented image (BAPS) was developed for automatically estimating overstory 
crown cover and understory vegetation cover. BAPS accuracy was validated by comparison with 
CHMs, supervised classification (maximum likelihood) and using in-situ reference values, an RMSE 
of less than 0.12 was obtained showing the ability of BAPS method in the estimation of understory 
and overstory vegetation cover. Considering the estimation of canopy gaps, Getzin et al. [152,153] 
analysed forest gap information for ecological assessment of plant diversity in forests [152] and to 
monitor its patterns and to provide a spatial quantification [153], in temperate managed and 
unmanaged forests. For this purpose, a fixed-wing UAV equipped with an RGB sensor was used. In 
Getzin et al. [152], it was showed that aerial imagery of canopy gaps can be used to assess floristic 
biodiversity of the forest understory. More specifically, the spatial implicit information on gap shape 
metrics were enough to reveal a strong dependency between disturbance patterns and plant diversity 
(R2 up to 0.74). In Getzin et al. [153], the orthorectified imagery of the canopy gaps was delineated for 
further comparison. This study proved that UAVs can be used for mapping spatial dynamics of 
repeated canopy gap formation in a multi-temporal approach (yearly), relating gap patterns to forests 
spatio-temporal dynamics. Bagaram et al. [154], in turn, studied the relation between forest gaps and 
biodiversity features to explore the possibility of: (1) mapping forest canopy gaps from orthophoto 
mosaics using UAV-based RGB imagery, and (2) deriving patch metrics that can be tested as 
covariates of variables of interest for forest biodiversity monitoring. Considering the results obtained, 
canopy cover (75% smaller than 7 m2) can be estimated by UAV RGB imagery, using the red band 
and contrast split segmentation. Regarding correlation results, mixed forests (beech and turkey oak) 
obtained strongest correlations (adjusted R2 ranging from 0.52 to 0.87) followed by turkey oak forests 
with intermediate correlations, followed by the weakest correlations in beech forests. Strong 
correlations were also achieved in the same forest types were observed for forest habitat biodiversity 
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variables (with adjusted R2 ranging from 0.52 to 0.79). Regarding leaf area index (LAI) estimation, 
Tian et al. [155] intended to supply the lack of forestry studies mapping LAI with UAV-based 
multispectral imagery. The study was conducted in a mangrove forest with variety of vegetation 
species using a UAV NDVI and compare them with WorldView-2 (WV2) NDVI (2 m spatial 
resolution. Three types of NDVIs were estimated, average NDVI, vegetated specific NDVI, and scaled 
NDVI. The highest accuracy for WV2 (R2 = 0.778, RMSE = 0.424) was achieved using the average 
NDVI, whereas the optimal accuracy for UAV (R2 = 0.817, RMSE = 0.423) was obtained using scaled 
NDVI. The application of UAV revealed a better performance in plots that were covered by 
homogeneous mangrove species, while WV2 obtained a higher accuracy than UAV in the plots 
covered with a variety of mangrove species. Chianucci et al. [7] estimated some forest canopy 
attributes such as: canopy cover, foliage clumping and LAI, using an UAV equipped with a RGB 
sensor, obtaining accurate measurements of canopy structure from the UAV digital photographs. 
Considering leaf angle distribution (LAD), which affects biophysical interaction between sunlight 
and forest canopies, McNeil et al. [156] used digital photographs from UAVs to measure LAD. The 
results showed that UAVs are able to measure LAD in virtually any broadleaf forest environment. 

Several studies evidence the contribute of UAVs in the detection of forests regeneration. Feduck 
et al. [157] analysed the ability of UAV-based RGB imagery to detect coniferous seedlings in replanted 
forest-harvest areas, in leaf-off conditions, obtaining a detection rate of 75.8% (n = 149). In Puliti et al. 
[158], UAV data was used for modelling tree density and canopy height, in young boreal forests 
stands under regeneration. Considering an ABA, fitted random forest models using ground-truth 
data and the corresponding UAV data were used. Then, the models were validated at plot and stand 
level. The RMSE obtained at the stand-level, UAV data presented the smallest values for mean height 
(0.56 m) and tree density (1175 trees/ha), with the UAV-based data being 50% smaller than ALS data. 
UAVs showed the potential for the inventory of forest stands under regeneration, due to the high 
accuracy of data and the time saving compared to traditional field techniques. Imangholiloo et al. [127] 
investigated the use of UAV-based photogrammetric point clouds and hyperspectral imagery for 
characterizing seedling stands in leaf-off and leaf-on conditions by estimating tree density and height, 
in young seedling stands in the southern boreal forests of Finland. A CHM using an ALS DTM was 
created, then, watershed segmentation was used to delineate the tree canopy boundary at individual 
tree level, obtaining its height and spectral information. Moreover, several vegetation indices were 
calculated and used in species classification process, based a random forest model. Considering the plot 
level, the tree density and the mean tree height were estimated. Regarding the results, the tree density 
was underestimated by 17.5% and 20.2% in leaf-off and leaf-on conditions, respectively. The mean tree 
height was underestimated by 20.8% and 7.4% in leaf-off and leaf-on conditions, respectively. The 
results indicated that UAVs have the ability to characterize seedling stands and can be used to 
supplement or replace the in-field inventories. Automatic detection of conifer seedlings along 
recovering seismic lines in UAV-based imagery was addressed by Fromm et al. [126] using CNNs. Of 
the different implemented CNN architectures, the faster region-CNN (R-CNN) was highlighted with 
the best performance (mean average precision of 81%). Considering the results obtained, UAV imagery 
can be used to detect conifer seedlings in regenerating sites with high accuracy. 

Considering studies related to soil disturbance assessment, Talbot et al. [159] presented an UAV-
based approach for soil disturbance assessment after forest harvesting operations. For this purpose, 
a multi-rotor UAV equipped with an RGB sensor was used to perform flights in six different sites 
after forest harvesting, using a cut-to-length system. Photogrammetric processing was used to create 
orthophoto mosaics, which in turn, were used to delineate the wheel tracks and machine trails 
damage, per site (in three classes: light, moderate and severe). From the 33 ha analysed, 15% showed 
traces of vehicle traffic and 63% was categorized as light. Traffic intensity varied from 787 to 1256 
m/ha (weighted mean of 956 m/ha). An overall weighted mean of 4.7% of the total area was 
compromised by severe rutting. A similar study was conducted by Pierzchała et al. [160], to estimate 
soil displacements after logging operations in steep slope terrain. Data was compared against a pre-
harvest ALS-DTM. This way, UAVs can be used as a cost-effective alternative for post-harvest 
surveying, constituting a rapid assessment of the disturbance extent and erosion risk mapping in a 
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wide range of sites. Nevalainen et al. [161] assessed the rut depth distribution and measurement of a 
logging site using photogrammetric point clouds form UAV-based RGB imagery. The proposed 
method can classify rut depths into two categories: insignificant depression and harmful rut depth. 
The Pearson correlation between rut depths manually measured and by UAV photogrammetry was 
r = 0.67 with 65% of accuracy in classifying deep ruts (depth of over 20 cm). 

Ota et al. [162] assessed the impact of selective logging in tropical forests using a multi-rotor 
UAV equipped with a RGB sensor. Two 9 ha plots were surveyed. Acquired data was subjected to 
photogrammetric processing to compute the DSM and orthophoto mosaics. Flights were conducted 
before and after logging and DSMs from both epochs were subtracted. This study demonstrated the 
ability of UAVs to estimate changes in AGB in selective logging and can be applied for quantify 
impacts of legal and illegal logging in tropical forests. 

Making use of the high spatial resolution of UAVs, Puliti et al. [163] used a multi-rotor UAV to 
acquire RGB imagery in a post-harvest site for tree-stump detection. This way, stumps were 
automatically detected, segmented, classified and measured. Photogrammetric processing of the 
acquired RGB imagery resulted into orthophoto mosaics and a DSM. The DSM was used to create a 
DTM based on the local minima filter, then both were subtracted to obtain the stump height model. 
Height values of non-discarded pixels were multiplied by the red bad of the orthophoto mosaic, then 
the area was divided into a100 m2 grid and the local maxima search was applied. A region growing 
procedure was implemented for tree-stump detection, followed by refinement at a single stump level. 
The authors assessed the possibility to detect root- and butt-rot on the stamps, using a machine 
learning approach based on a RF classifier. The accuracy obtained ranged from 68% to 80%, and in 
the detected stumps the root- and butt-rot was detected with 82.1% accuracy. Pixels with height lower 
than 2 cm or greater than 1 m were discarded. 

4. Discussion 

In this section it is intended to analyse previously mentioned studies to provide insights towards 
UAV type usage (fixed-wing or rotary-wing), the sensor type, the more significant outcomes, and the 
region where the studies where performed. Figure 3 presents the percentage of studies found in the 
literature regarding each of these parameters. 

 
Figure 3. Distribution of the reviewed studies per: (a) unmanned aerial vehicle type; (b) sensing 
payload type (CIR: colour infrared; MSP: multispectral; HSP: hyperspectral; TIR: thermal infrared); 



Remote Sens. 2020, 12, 1046 18 of 33 

 

(c) most relevant outcomes used; (d) and continents were the studies were performed (EU: Europe; 
NA: North America; SA: South America; AS: Asia; OC: Oceania; AF: Africa). 

Regarding UAV type usage (Figure 3a) there is a clear prevalence of rotary-wing UAVs over 
fixed-wing UAVs, with a percentage of 71% and 29%, respectively. This fact can be related with 
different conditions related with availability and/or by their characteristics. Considering that rotary-
wing UAVs are usually more affordable than fixed-wings, in fact some of the used UASs were 
commercially available of-the-shelf solutions with integrated sensing payloads. An example of such 
a UAV is presented in Figure 4c. Moreover, the requirement of a corridor needed for take-off and 
land operations from fixed-wing UAVs are challenging to find in some contexts, especially in forested 
areas where there can be a lack of such areas along with terrain topography. While, in turn, rotary-
wing UAVs do not need as much space for such operations since they have the ability of VTOL, 
making mission planning with such UAVs easier, with a few square meters with no aerial obstacles 
being enough. Another aspect is the UAV payload capacity in which, usually, rotary-wing UAVs 
provide higher payload capacity. For instance, UAVs presented in Figure 4a and Figure 4c have a 
small payload capacity, being only able to carry small cameras. On the other hand, the UAVs shown 
in Figure 4b and Figure 4d support higher payloads such as hyperspectral and LiDAR sensors. 
However, the number of rotors and propeller size play a crucial role in payload capacity [12]. 

 

Figure 4. Some of the most used unmanned vehicle types: (a) fixed-wing, SenseFly eBee; (b) 
PrecisionHawk Lancaster; (c) rotary-wing, DJI Phantom 4 and (d) DJI Matrice 600 Pro. 

Considering sensing payloads (Figure 3b), there is a clear tendency in the usage of RGB sensors 
(63%), which were used in all reviewed areas. LiDAR sensors were the second most commonly used 
sensor (11%), being mostly used for forestry parameters extraction and in comparative studies. The 
preference for RGB sensor over LiDAR can be justified by the costs associated with both systems. It 
is clear that UAV-based RGB imagery is a cost-effective approach when compared to LiDAR [89,97]. 
The remaining sensing payloads were categorized into colour infrared (CIR), multispectral (MSP), 
hyperspectral (HSP) and thermal infrared (TIR) sensors. CIR sensors that are composed by modified 
RGB sensors, by removing the infrared filters, enable the acquisition of spectral data from 
NIR/RedEdge parts of the electromagnetic spectrum [10]. Around 9% of the reviewed studies used 
this type of sensor, especially for classification tasks. Multispectral sensors were considered as 
sensors used for spectral information acquisition at certain relatively narrow bands of the 
electromagnetic spectrum and were found in 6% of the reviewed studies. Hyperspectral sensors were 
used in 7% of the studies, and can provide a wider number of bands, usually covering the visible and 
NIR parts of the electromagnetic spectrum (400–1000 nm). Most hyperspectral sensors used in the 
reviewed studies were classified as push-broom or Fabry-Perot interferometer sensors—for more 
information towards hyperspectral imagery acquisition refer to [164]. TIR sensors enable to acquire 
thermal imagery and were the least sensing payload used, with only 4% usage. 

Considering the products used for data analysis (Figure 3c), there is a clear usage of products 
containing height information (60%), rather than products based on spectral information. This shows 
the importance of height data from point cloud and raster data for forestry applications purposes. On 
the other hand, considering the products encompassing spectral information (orthophoto mosaics, 
vegetation indices and spectral information), 26% of the studies used orthophoto mosaics for data 
processing, while spectral information was present in 5% of the studies. Given the lower number of 
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studies using UAV hyperspectral sensors, this was expected. Vegetation indices were used in 12% of 
the studies, especially for classification and post-fire related studies. 

Considering the geographical area were the studies were conducted (Figure 3d), 56% were in 
Europe, followed by North America (18%), Asia (17%) and Oceania with 8%. Only four studies were 
conducted in South America and Africa, two in each region. Regarding the areas where those studies 
were focused, the studies conducted in the European continent were spread through all of them; 
studies conducted in North America were focused in parameters extraction and classification, while 
most of Asian studies focused in parameters extraction. Studies performed in Oceania were dedicated 
to selection of optimal data acquisition and processing parameters, and comparison of UAV-based 
photogrammetry with UAV LiDAR or ALS data. This general overview provided a context 
throughout the reviewed studies, and in the next sub-sections the specific applications presented in 
Section 3 are discussed. 

4.1. Forest Structural Parameters Estimation 

The estimation of forest parameters is crucial for forest management. Indeed, 37% of the 
reviewed studies were focused on this topic. Considering parameters estimation two approaches 
were observed, at the stand-level and at the tree-level (refer to Table 1 and Table 2 for more 
information about these studies). Considering only the stand-level studies, height metrics were the 
most used. The volumetric estimations were also an evaluated parameter since most of reviewed 
studies used point clouds for this purpose. The BA and AGB parameters were also widely estimated 
in these studies. Considering the tree-level studies, height metrics were clearly the most estimated 
parameters, followed by AGB and DBH. Height parameters were widely estimated, once it easily can 
be obtained using point cloud or raster data (CHM). On the other hand, AGB and DBH estimations 
are dependent of the allometric equations [85,88,91,95] and/or using regression 
[37,84,85,88,91,98,103,105,165], since these parameters cannot be directly estimated from UAV-based 
data. 

Regarding the results obtained in these studies, UAV-based data provided good estimations 
with low error rates for height metrics when comparing to ground-truth data. However, it is 
important to distinguish the performance of the sensing payloads used in these studies. In both 
approaches (stand-level and tree-level), the RGB sensor was the most used, followed by LiDAR and, 
then, CIR sensors (Tables 1 and 2). Considering the results from Cao et al. [84] (UAV-LiDAR R2 = 0.90; 
UAV-RGB R2 = 0.82) in the height metrics, it can be noted the higher accuracy obtained by the LiDAR 
sensor over the RGB sensor. Another comparative study was performed by Wallace et al. [101], which 
obtained better results using LiDAR (R2 = 0.84) than RGB (R2 = 0.68). Cao et al. [84] argued that UAV-
RGB point clouds were limited to the upper canopy, lacking the ability to penetrate below the canopy 
as UAV-LiDAR point clouds. Wallace et al. [101], in turn, referred that LiDAR proved to be the best 
solution to estimate the vertical distribution of vegetation, once it better penetrates the upper canopy. 
The situation experienced by the authors could be related to the type of forest and species analysed. 
Cao et al. [84] inventoried poplar (broadleaved) species, characterized by their irregular tree crown 
and shape. In the study performed by Wallace et al. [101], the plot analysed consisted of Eucalyptus 
pulchella trees, varying in age and ranging in height from 4.7 m to 16.2 m, which complicates the 
acquisition of high-density point cloud data of the vertical distribution of vegetation. 

Considering the other parameters estimated, at the stand-level studies, Sn, BA and DBH were 
mostly estimated with a good correlation. On the other hand, V parameter, in most studies were 
estimated with a strong correlation. Regarding the AGB parameter, studies presented good and 
strong correlations. According to the tree-level studies, the CD, DBH, V and AGB were mostly 
estimated with a strong correlation. 

4.2. Tree Species Mapping and Classification 

Tree species classification is an important step towards forestry inventory. However, in order to 
perform such a task using remotely sensed data, some challenges emerge, such as high data 
dimensionality, which makes the selection of the most relevant variables a time-consuming [166], 
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error-prone and subjective task [167]. In the scope of this review, 20% of the studies performed tree 
classification varying the forest type and species. The most used outcome was orthophoto mosaics 
followed by CHMs/DSMs and VIs. Regarding sensing payloads RGB, CIR and Hyperspectral were 
the most used. These outcomes and sensors, contrasting with parameter estimation studies, such as 
LiDAR sensors and point clouds, had a lower usage rate. 

Most of the studies concerning this topic focused on individual tree detection using different 
outcomes, then OBIA algorithms are applied [67,116–118,121,123,124], creating a set of clusters. 
Properties of these clusters were then used to create datasets with different extracted parameters. 
Those datasets were then used for classification, using different approaches (Table 3). By analysing 
the used methods, RF appears as the most frequently used method. Indeed, this ensemble classifier 
produces multiple decision trees, by using a random subset of training samples and variables, having 
the capacity to handle high data dimensionality and multicollinearity in a rapid manner and being 
insensitive to overfitting [167]. Moreover, the study performed by Nevalainen [71] compared 
different classifiers (k-NN, decision trees, naïve bayes, and RF). The best results were obtained by RF. 
Considering the overall accuracy of the reviewed studies, it depends on several factors, and is also 
related to the data source and acquisition parameters. Nevertheless, only one study relied on the 
usage of deep learning [122], revealing that this field is relatively unexplored in UAV remote sensing. 

4.3. Forest Fire and Post-fire Monitoring  

Regarding fire scenarios, it is notorious that most of the studies focused in the post-fire forest 
rehabilitation. However, some points must be raised towards a real-time monitoring system, the most 
important being the complexity of such systems to cover big areas along with drawbacks on flight 
endurance due, which makes small-sized UAVs not suitable for such operations. On the other hand, 
large UAVs with higher payload capability can be used to monitor wildfires on a regional-scale. An 
example of such an approach is NASA’s Ikhana UAS [168]. However, the complementary usage of 
small-sized UAVs, as suggested by Hristov et al. [131], can reduce false positives, improving the 
management of field teams. Another aspect is that only one study was found covering wildfire 
prevention [49], which proved that the usage of UAV LiDAR data can be beneficial for mapping areas 
with higher fuel concentration. Once again, UAVs could be employed to assess the risk of forests 
when exposed to fire. Nevertheless, the importance of forest restauration and recovery in post-fire 
scenarios is important to improve/study its recovery and to measure fire severity, for taking measures 
in a quicker manner. Regarding this, sensing payloads TIR sensors proved to be useful for real-time 
fire monitoring, while multispectral shown potential in post-fire forest rehabilitation. As for the used 
outcomes, VIs, CHMs and orthophoto mosaics were the most used. 

4.4. Forest Health Monitoring and Disease Detection 

In the field of forest health monitoring and disease/pest detection there is a clear indication that 
rotary-wing UAVs are the most used, following the tendency of the previous discussed studies. In 
the reviewed studies only two employed fixed-wing UAVs [148,151]. From sensing payload stand of 
view, RGB sensors were the most used. Näsi et al. [140,149] used an hyperspectral sensor as main 
sensor with the addition of a RGB sensor, while Smigaj et al. [148] used a TIR sensor along with RGB 
and CIR sensors and Minařík and Langhammer [141] used a multispectral sensor. Wen et al. [151] 
aimed to detect pest infestations, more specifically rodent infestations. Minařík and Langhammer 
[141] assessed forest disturbances such as windstorms and bark beetle outbreaks. Smigaj et al. [148] 
proposed a system to detect Red Band Needle Blight infection levels caused by climate changes and 
its consequences such as the increase of pathogens. The remaining works [140,145–147,149,150] 
concentrated efforts to detect damage made by insects such as oak splendour beetle, bark beetle and 
pine processionary moth. The studies covered several tree species such as oak trees, Norway spruces, 
scots and lodgepole pine and several other pie trees. 

 
 



Remote Sens. 2020, 12, 1046 21 of 33 

 

4.5. Other Applications 

Apart from forest applications with more incidence towards tree development and its status, 
other applications in forestry contexts were explored using UAVs for: forest canopy assessment 
(canopy cover [125], canopy gaps [152–154], LAI [7,155], foliage clumping [7] and leaf angle 
distribution [156]), regeneration of forests [126,127,157,158], assessment of soil disturbances in post-
harvest areas [159–161], monitoring of logging operations [162] and tree-stump detection [163]. Most 
of the studies rely in the use of RGB sensors mounted on rotary-wing UAVs (apart from the 
multispectral sensor used in [155]), except for canopy gaps [152–154] in which a fixed-wing UAVs 
were used. Most of these studies were possible to be carried out due to the high spatial resolution 
provided by UAVs when comparing to other remote sensing platforms. The most used outcome was 
the orthophoto mosaic, followed by the CHM. 

4.6. Data Acquisition and Processing Optimization and Comparison Between LiDAR and Photogrammetry 

The studies addressed throughout this review have shown that LiDAR and photogrammetry 
techniques are both feasible solutions for measuring and monitoring aspects of complex forest 
structures. However, there are several contrasts that should be analysed. Regarding the costs 
associated with both processes, it is clear that UAV-based photogrammetry is a cost-effective 
approach when compared to LiDAR [89,97]. Analysing CHM processing, it is possible to conclude 
that imaging technology can capture spectral information that could produce a more detailed 
representation of the upper canopy. However, this technology does not provide the same level of 
canopy penetration as LiDAR data, which contributes to deteriorate the level of information on 
vertical stratification of vegetation layers and the terrain points. In addition, due to the lack of 
information about ground terrain to generate accurate canopy height, usually it is necessary to use a 
DTM. In this point LiDAR is, effectively, better because of its ability to penetrate canopy gaps and to 
record returns from the ground [169]. However, photogrammetric techniques could achieve 
interesting results in areas of mixed forest, with small trees and small-sized crowns [170]. 
Considering the different studies and reflections about these approaches, both can generate point 
clouds, but, usually, LiDAR-based point clouds have less point density and no colour information, 
unlike point clouds generated from RGB imagery. Both have problems with transparent surfaces and 
water bodies. Comparing both technologies, the main deduction is that one is not better than the 
other, having their strengths and weaknesses. There is a trade-off that must be analysed between the 
needs, costs and the characteristics of the area to be surveyed when selecting which approach to use. 

In order to illustrate the challenges experienced in some of the reviewed studies, a comparison 
of point clouds obtained with UAV LiDAR data and through photogrammetric processing of UAV-
based RGB imagery is presented in Figure 5, showing three different scenarios: a profile near the 
limits of a tree plot (Figure 5a); a dense canopy plot (Figure 5b); and an overview of relatively sparse 
trees (Figure 5c). It is noticeable that the LiDAR-based point cloud provides a better representation 
of each single tree, as in the case of Figure 5a, in turn, the photogrammetric point cloud was able to 
provide points in the terrain and for some stems. As for the case of the dense canopy plot (Figure 5b), 
the LiDAR point cloud provided, once more, a better distribution of the points, while most of the 
points of the photogrammetric point cloud were located in the top of the canopy. In the case of the 
sparse vegetation (Figure 5c), the photogrammetric point cloud provided more points, while the 
LiDAR point cloud showed a lower number of points located in the canopy. This fact can be explained 
due to the smaller tree crown diameter in this area, in the case of the LiDAR point cloud, and, in the 
photogrammetry case, the high contrast between tree canopy and ground vegetation. In all cases a 
higher number of points form the photogrammetric point cloud was verified. 

Since imagery quality is a function of the ambient light, photogrammetry techniques tend to 
perform poorly in low light conditions [108]. Texture homogeneity can cause possible lack of unique 
tie points in several images (e.g., shadowed, sandy, water or snow areas), complicating the post 
processing those areas. Figure 6a presents an overview of the DSMs obtained from both LiDAR and 
photogrammetry over the same area. Generally, it is possible that in the presence of dense canopies 
(Figure 6b and Figure 6d), the photogrammetric DSM, does not provide many ground points as the 
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LiDAR DSM and presents difficult into obtaining points in homogeneous and shadowed areas 
(Figure 6c and Figure 6e). 

 
Figure 5. Comparison of a LiDAR point cloud with a photogrammetric point cloud, both acquired 
using an unmanned aerial vehicle: (a) a profile in the limits of a tree plot; (b) a dense canopy plot; and 
(c) young coniferous trees. Data courtesy of Aeromedia. 

This way, accurate DTMs can be challenging to achieve using photogrammetry due to the 
difficulty of penetrating into vegetated areas, such as dense vegetation canopies, providing lack of 
points in all images due to perspective occlusion. To overcome this limitation, some studies used pre-
existent DTMs computed by ALS data [85,89,111,169]. Narrow objects such as tree logs and some 
branches are another issue since photogrammetry techniques perform rough approximations and 
then smoothing operations are usually applied for noise removal. On the other hand, LiDAR data is 
an expensive option, especially when surveying areas not occluded by vegetation. LiDAR itself does 
not provide any spectral information and, generally, has lower point density than photogrammetry 
techniques. Higher LiDAR costs are related to the need of high precision GNSS receivers and IMUs, 
while photogrammetry relies in post processing of the acquired imagery, which, in turn, common 
GNSS receivers and less advanced IMUs serve the needs of those techniques. 



Remote Sens. 2020, 12, 1046 23 of 33 

 

 
Figure 6. Digital surface models (DSMs) driven from LiDAR (centre) data and through 
photogrammetric processing (right) of RGB imagery in the same area. Orthophoto mosaic for visual 
interpretation (left); general overview of the area (a); and close views of the areas 1, 2, 3, and 4 (b, c, 
d, e). Data courtesy of Aeromedia. 

5. Conclusions 

In this review a detailed analysis and overview of the potential benefits derived using UAVs in 
forest applications is presented. This review has shown that LiDAR and photogrammetry techniques 
are both feasible solutions for measuring and monitoring aspects of complex forest structures. To 
achieve this, recent studies were reviewed with the focus on UAV type, sensors, data processing and 
forestry applications. Therefore, it can be stated that this review provides professional foresters with 
information to assist them in choosing the most suitable UAS for their remote-sensing purposes. 

This detailed review allowed to conclude that UAVs present several advantages when compared 
with traditional remote sensing platforms, like satellites and manned aircrafts. It is now possible to 
successfully overcome one of the main challenges in the application of remote sensing to forestry, 
which consists of collecting updated and timely data. It was also possible to provide a general context 
of the usage of UASs in forested environments, which can be used for multiple purposes ranging 
from forest structural parameters estimation to tree species classification and from forest health 
monitoring to fire and post-fire monitoring. Moreover, other studies were also reviewed, focusing in 
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the optimization of UAV data acquisition parameters and comparison of UAV-based 
photogrammetric processing with ALS or UAV LiDAR data. 

Regarding the sensing payload, RGB sensors are the most commonly used, mainly due to its 
affordable price and significance of results. LiDAR and CIR sensors are respectively the second and 
third most used sensors. Considering forestry parameters estimation, two main approaches were 
found in the literature: at the stand-level and at the tree-level. Generally, height metrics were the most 
used. Regarding the results from these studies, UAV-based data provided good estimations with low 
error rates for height metrics when comparing to ground-truth data. In fact, UAV-based data 
acquisition enables forest data acquisition quicker than ground-based inventories, at lower costs and 
with more detail than other remote sensing platforms. 

Summing up, UAVs with the addressed sensors are going mainstream and its importance for 
decision support is becoming increasingly relevant for researchers and foresters, and related business 
professionals as innovative techniques are being developed for a sharpen optimization of the forestry 
underlying processes. However, and despite these promising results, some limitations can be 
identified. There is a lack of precise rule frameworks, which contributes to tedious requests for flight 
permissions [48]. Moreover, the stability of UAVs is a subject of concern, once it is dependent on the 
wind conditions in the survey location. One of the most severe limitations associated with the use of 
UAVs is related to the difficulty of fully covering forests on a large scale [171]. This constraint could 
be associated with national aviation regulations or, even, to the limitations in the payload capacity, 
which could be insufficient to cover all the surveyed area. For this reason, future improvements in 
hardware and battery technology are crucial, to increase flight endurance. However, future 
generations of UAVSs will continue to evolve and will be able to offer more autonomy and better, 
cheaper and more accurate sensors. Therefore, it is foreseeable that in the near future, forestry 
applications based on high resolution aerial images obtained by UAV will proliferate. This way, 
UAVs have the potential to play a vital role in sustainable forest management. Their flexibility 
associated with accurate and low-cost products will transform conventional forestry practices. 
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Appendix A 

Table 1. List of acronyms and abbreviations. 

Acronym Expansion Acronym Expansion 
ABA Area-Based Approach kNN k-Nearest Neighbours 
AGB Above Ground Biomass LAD Leaf Angle Distribution 
ALS Airborne Laser Scanning LAI Leaf Area Index 
BA Basal Area LiDAR Light Detection And Ranging 

CART Classification And Regression Tree MaxL Maximum Likelihood 
CD Crown Diameter ML Machine Learning 

CDC Canonical Discriminant Classifier MLP Multi-Layer Perceptron 
CFS Correlation-based Feature Selection MSI Moisture Stress Index 

CHM Canopy Height Model MSP multispectral 
CIR Colour Infrared NB Naive Bayes 

CNN Convolutional Neural Network NDRE Normalized Difference Red Edge 

DBH Diameter at Breast Height NDVI 
Normalized Difference Vegetation 

Index 
DN Digital Number NIR Near-Infrared 

DSM Digital Surface Model OBIA Object Based Image Analysis 
DT Decision Trees RF Random Forest 

DTM Digital Terrain Model RS Remote Sensing 
FPI Fabry-Pérot Interferometer SfM Structure from Motion 
GIS Geographical Information Systems Sn Stem Number 

GNSS Global Navigation Satellite Systems Sv Stem Volume 
H Height SVM Support Vector Machine 

Hdom Dominant Height TIN Triangulated Irregular Networks 
HIC Hierarchical Image Classification TIR Thermal Infrared 
HL Lorey’s Mean Height UAS Unmanned Aircraft System 
HM Maximum Height UAV Unmanned Aerial Vehicle 

HSP Hyperspectral V Volume 
IDW Inverse Distance Weighting VSW Variable-Sized Window 
INS Inertial Navigation System VTOL Vertically Take-Off and Landing 
ITC Individual Tree Crown WD Watershed Delineation 
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