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Abstract: In this paper, remote and in situ techniques to estimate the dynamic response of a building
to ambient vibration are reported: data acquired through a real-aperture radar (RAR) interferometer
and conventional accelerometers are analyzed. A five-story reinforced concrete housing building,
which was damaged during the May 11th 2011 Lorca (Spain) earthquake, is used as a case study.
The building was monitored using both types of instruments. The dynamic properties of the building
are estimated first taking acceleration measurements using a set of 10 high-precision accelerometers
installed on the roof of the building. Further, the displacement–time histories, recorded with the
RAR device pointing to a corner of the building, are analyzed. Then, the ability and shortcomings
of RAR measurements to deal with the fundamental frequencies of vibration of the structure are
investigated. The advantages and limitations of from-inside (accelerometric) and from-outside (RAR)
measurements are highlighted and discussed. A relevant conclusion is that, after strong earthquakes,
RAR may be an interesting and useful tool, as it allows surveying the structural response of mid-rise
buildings remotely, without the need to enter the structures, which may be dangerous for inspectors
or technicians in cases of severely damaged buildings. Given that the instrumented building suffered
significant damage, the ability of these kinds of measurements to detect damage is also discussed.

Keywords: real-aperture radar; modal identification; accelerometers; cross power spectrum;
magnitude-squared coherence; buildings; remote sensing

1. Introduction

Most guidelines for post-earthquake damage evaluation and traditional damage assessment
methodologies rely essentially on expert-conducted on-site visual inspections. Some examples of
guidelines developed for different countries are [1–7]. However, visual inspections are subjective and
generally slow in addition to not being feasible for use in severely damaged structures, where the
safety of inspectors is compromised. Further, the lack of specialists that are available right after an
earthquake requires the participation of non-expert building safety inspectors, which might generate a
systematic conservatism due to the lack of experience and personal and safety concerns. As a result,
buildings can remain unoccupied for long periods until a final decision regarding their structural safety
can be properly made. Any increment of the time between an earthquake and the occupancy allowance
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of buildings decreases the resilience of cities, thus increasing the need for provisional housing and the
loss of services and business opportunities.

Structural health monitoring (SHM) has positioned itself as an objective solution to take rapid
post-earthquake decisions regarding structural safety. For this reason, in the past decade, the use
of SHM has become a common practice in important buildings and increase the structural safety
and to reduce maintenance cost, as well as economic and human loses [8,9]. At the same time, the
technological advances of the sensors used for SHM (e.g., accelerometers and displacement or velocity
transducers) allow for improvements in the accuracy of the structural monitoring, achieving significant
developments in vibration-based damage detection (VBDD). These high-precision sensors have proven
to be accurate enough for assessing the dynamic response of structures to strong and weak motions
through continuous monitoring [8,10]. However, permanent monitoring requires costly installations
and continuous maintenance; hence, this type of monitoring is carried out in a few cases and, generally,
in new high-rise buildings, where the owners or the administrations consider it necessary.

In addition, contact devices for SHM must be positioned inside the structure. This can not only be
problematic, due to accessibility restriction and installation requirements, but also dangerous after
an earthquake. When the structure has symptoms of damage and the risk of collapse as well as
likely events such as aftershocks, gas leaks, chemical hazard, exposed electrical wiring and falling
non-structural objects is unknown, entrance to the structures should remain restricted. This makes
it impossible to install and manipulate any device inside the structure as well as enabling visual
inspection. Therefore, the use of non-invasive or remote sensing techniques emerges as a reliable, safer
and faster alternative, especially in, but not limited to, post-earthquake scenarios.

In the same way, the idea of punctual or non-continuous monitoring is proposed to evaluate the
structure only at specific times, for example, after the construction, in order to identify the dynamic
properties in the healthy state, and after a seismic event to estimate whether the structure has been
damaged. Remote sensing not only reduces the cost of monitoring significantly, but it can be carried
out safely without the need to enter a structure. These advantages are of the utmost importance, so that
periodic monitoring can be implemented in a large number of buildings, and this is of great interest to
the government as it has a direct impact on the resilience of the cities and the costs involved in the
assessment and retrofitting of damaged buildings.

The use of a real-aperture radar (RAR) interferometer is proposed as a good candidate to perform
this punctual monitoring. The RAR is a high-sensitivity remote sensing device with a maximum
sampling frequency of up to 200 Hz. These types of sensors have exhibited good performance in urban
environments under different atmospheric, meteorological and lighting conditions. Noticeably, these
devices perform better than other types of contactless sensors, e.g., Laser Doppler devices [11].

However, a potential shortcoming of the RAR technique is that the motion of the soil the RAR
system is installed on is combined with the motion of the building, so that the relative motion
between the building and the RAR device may be unknown and/or blurred on the recorded signals.
Nevertheless, the structural response clearly enhances the modal frequencies of the building, thus
making their identification and isolation easy in the RAR recorded signals using advanced methods for
signal analysis—narrow band pass Butterworth filtering, in our case. This issue would be particularly
relevant if measurements were taken during strong ground motion due to great earthquakes, since
the device’s base is not fixed, and the ground motion would be important. Considering these effects,
up-to-date RAR devices incorporate an accelerometer, allowing RAR operators to properly address this
issue. In any case, the RAR device used in the case study shown in this article may not be suitable for
use during great earthquakes. As this method is also intended to be used after damaging earthquakes,
in these cases, people with responsibilities for emergency management, usually including firemen, civil
protection personnel and other authorities, should identify buildings that require study and suggest
proper locations that are stable, safe and proper for the easy and fast installation of the equipment in
front of the buildings/structures to be surveyed.
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The use of the RAR to determine the dynamic properties of buildings is a present and actual
issue [12,13]. Remote RAR measurements have been widely and successfully used for monitoring
large civil structures including bridges and towers [14–18], wind turbines [19,20], chimneys [21–24],
and heritage and high-rise buildings [25–28]. However, combined accelerometric- and RAR-based
applications to damaged low- and mid-rise conventional buildings are not so frequent nor so successful,
mainly because of the low periods (high frequencies) and very low displacements involved, which
may compromise the ability of techniques based on RAR technology to help in these cases. In this
article, both methods are applied to a mid-rise building that was severely damaged during an actual
earthquake, providing insight into the ability of RAR to properly address these kinds of problems.
Extending the use of RAR to mid-rise buildings is of great importance, not only because this typology
of buildings represents a large amount of the structures built in the world but also because it is among
the most vulnerable structures in seismic scenarios.

The signal analysis techniques often used to analyze the acceleration and displacement–time
histories are the power spectral density (PSD), periodogram, and peak picking method (PPM). In this
article, other methods such as the cross power spectral density (CPSD) and the magnitude-squared
coherence (MSC) are investigated. These advanced methods may help to overcome issues from high
noise amplitudes compared to the very low amplitudes of the building displacements, significantly
improving the resolution and the quality of the obtained results.

Finally, joint synchronous analyses of the acceleration–time histories will allow us to identify not
only the main modal frequencies but also the type of motion involved, which, in our case, are rotation
and translation, respectively, for the first and second modes of vibration. In addition, the joint analysis
of the synchronous displacement–time histories of the Rbins, corresponding to microwaves reflected
at different heights of the building, will indicate the ability of RAR measurements dealing with the
corresponding modal shape.

In this study, the use of RAR for the identification of fundamental frequencies in a building that
suffered severe damage during the May 11th 2011 earthquake is analyzed and discussed. To this
end, first, the dynamic response to ambient vibrations of this building has been evaluated through
a network of ten high-precision axial accelerometers. Time–frequency domain analysis is used to
identify the natural frequencies and modal shapes of the building. These results are compared with
those obtained from remote monitoring through RAR.

To improve the modal property recognition with RAR, the capability of this device to
simultaneously measure different parts of the building [14,25,29,30] is studied. In addition, in
the processing of the displacement samples with respect to more classical methods, such as the power
spectral density and periodograms, the use of other signal analysis methods, in the frequency domain,
is proposed. In particular, methods based on the CPSD and the MSC that allow us to search for
common frequency contents of signals with high levels of noise [31–35]. All calculations of these
analyses were made with programs developed in MATLAB® [36] software. Figure 1 shows a scheme
of the research methodology. A detailed description of each module is given in the following section,
devoted to the methodology and to its application to a case study.
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Finally, based on the analyzed experimental results, the main advantages and limitations of the use
of RAR to characterize the dynamic properties of conventional buildings are discussed. Other issues
related to the frequency domain analyses of the obtained displacement–time histories are also presented.
The potential of this device to detect structural damage, by comparing the fundamental period of
structures in their undamaged and damaged state, is also discussed.

2. Materials and Methods

2.1. Case Study

The studied structure is a five-story reinforced concrete (RC) building with masonry infill walls,
damaged during the May 11th 2011 Lorca earthquake (MW = 5.2). The building has a constructed
area of 2408 m2 and consists of a ground floor for commercial use and four floors with 16 apartments.
The longitudinal axis (L) of the surveyed building has an orientation of N 28◦E and its transversal
(T) axis is orientated N 62◦W. The floor plan dimensions are 17.9 m in width by 25.0 m plus a 1 m
cantilever in both directions in the upper floors. The height of each story on the first floor is 3.5 m, and
2.7 m for the upper floors. The total height of the building is 17.1 m. Figures 2 and 3 show the L and T
façades and the geometry of the “La Viña” building, respectively.
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Figure 2. Main façades of the “La Viña” building: (a) longitudinal orientation, L; (b) transversal
orientation, T.
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Figure 3. Geometry of the “La Viña” building: (a) floor plan view; (b) elevation view.

2.2. Accelerometer Instrumentation

Acceleration–time histories of the response of the building to ambient vibration were
simultaneously recorded at five sites on the roof of the building: at a central point (P1) and at
the four corners, north (P2), east (P3), south (P4), and west (P5). These locations were chosen in order to
capture the first modes of vibration of the structure. At each point, one high-sensitivity accelerometer
(Brüel and Kjær 8340) was placed for each direction, giving a total of ten accelerometers measuring
simultaneously. The measurements in the longitudinal direction (L) of the building correspond to
the orientation N 28◦E, while the measurements in the transversal direction (T) coincide with the
orientation N 62◦W. The arrangement and location of the sensors are shown in Figure 4.
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Acceleration data were recorded, continuously and synchronously, for 25 min at each of the
five points on the roof. A sampling frequency of 200 Hz was set for the acceleration records.
Baseline correction was performed, and a Butterworth band-pass filter was applied in the frequency
range of interest (1–5 Hz). Figure 5 shows six-second sections (0.1 min) of the ten processed signals.
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Natural Frequencies: The Accelerometric Technique

In order to detect the natural frequencies of a structure, the frequency of the recorded vibration
was investigated using the power spectral density (PSD); the Welch method [37] has been used in this
case. The signal analysis on the frequency range was focused between 1 and 5 Hz (periods between 0.2
and 1 s); for this, a band-pass Butterworth filter was applied to the measured displacement–time and
acceleration–time histories. The natural frequencies that appear as peaks in the PSD can be picked in
an easy way. This frequency domain method, also known as the peak picking method (PPM) [38,39],
has been extensively used for its simplicity, showing good results, especially for finding the frequencies
of the first modes of vibration.

Table 1 shows the PSDs for the ten channels. Peaks with similar spectral shapes can be observed
in all channels. The first two peaks of approximately 2.49 and 2.79 Hz are clearly identified in both the
T and L directions. The presence of the same resonant frequencies in both directions may indicate
the existence of flexural–torsional modes. A third peak, minor in most of the channels, is found at a
frequency of 3.98 Hz. Figure 6 shows the three frequency peak values with the highest PSD. At this
point, it is difficult to assign these values to the modes of vibration of the building.

Table 1. The first three peaks in order of increasing frequencies, picked in the L and T directions.

Direction 1 2 3

f (Hz) T (s) f (Hz) T (s) f (Hz) T (s)

L 2.49 0.40 2.79 0.36 3.98 0.25
T 2.49 0.40 2.79 0.36 3.98 0.25
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2.3. The Real-Aperture Radar (RAR)

The RAR used in this study was designed by the Italian company IDS (Ingegneria dei Sistemi SpA).
The device is portable and is mounted on a tripod, allowing the rotation and tilt to easily point towards
the target structure (see Figure 7). This system consists of a sensor, a coherent radar, connected to a
portable computer through Universal Serial Bus (USB) and powered by an external battery that allows
up to 5 h of continuous use. The sampling parameters can be adjusted with the provided software.
More details on the use and specifications of the RAR used in this study can be found in [13,14].
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2.3.1. RAR Interferometry

The RAR measures displacements by interferometry. The principle entails the measurement
of the phase difference between the transmitted microwave signals and signals back reflected from
the moving target building. Then, the radial displacement in the line of sight (LOS) of the RAR is
calculated according to Equation (1).

d =
λ

4π
(ϕ2 −ϕ1) (1)

where λ is the wavelength and ϕ1 and ϕ2 are the phases acquired at the different times. The expected
precision is in the order of tens of micrometers, when good phase stability is achieved with high SNR.
A detailed description of the working principle of the RAR can be found in [13,14].

One main feature of the radar is that it can simultaneously capture the movement of different
objects that are in the field of view (FOV) of the RAR antenna. Objects separated from each other by
more than 0.5 m can be captured in different so-called Range bins (Rbin) [14]. In the case of buildings,
the radar allows recording the displacement at different heights of the building, depending on the
height of the building and on the measuring distance. However, the vibration of non-structural objects
on the facades and any other objects in the FOV of the RAR can also be captured. Therefore, the
interpretation of the time histories corresponding to each Rbin must be performed carefully. It is
necessary to bear in mind that: (a) the structure must be spatially located within the range profile in
order to select and study only the bins containing the structure displacement and, (b) the building
displacement signal must be distinguished from the noise produced by non-structural elements and
other objects within the RAR LOS.

In order to help in this careful interpretation, the range profile expresses the quality of the received
signals, in terms of SNR, as a function of the Rbin number. In this case, high SNR peaks, within the
bins corresponding to the structure, indicate that the time history recorded corresponds well to the
displacement of the building. Thus, the range profile is very useful in locating Rbins that more likely
correspond to the true displacement of the structure.

Figure 8 depicts a scheme of a typical RAR measurement: (a) the radar sends and back receives the
signal from different parts of the building in different Rbins located at a distance Dbin; (b) the amplitude
of the radar echoes according to the different Rbins is plotted into a range profile in terms of SNR,
allowing Rbin selection according to the range of the structure and the SNR; and (c) the interferometric
phase of the selected Rbins is converted to a displacement–time recording using Equation (1) [25].
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selection; (c) displacement–time recording of the selected Rbins (see explanation above).
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It is required to record a displacement history long enough to obtain sufficient frequency resolution
that allows investigating the buildings harmonics. In addition, filtering the signal also serves to set
aside the vibration frequencies of objects that are not within the range of interest. Although the above
precautions may be sufficient for high-rise buildings with long periods/very low frequencies, in the
case of mid- and low-rise buildings with short periods/high frequencies, as discussed later in this
article, the resonant frequency estimation by these traditional frequency domain techniques can be
a difficult task. Therefore, it is necessary to explore different techniques for signal analysis. Several
techniques such as multiple coherence are discussed below.

2.3.2. In-Field RAR Remote Monitoring

For the purpose of this research, only the displacement on the east corner of the building, which
corresponds to the transversal direction, was measured. To remotely monitor the structure, the RAR
system was positioned on the other side of the south-eastern street at a distance of R0 = 18.9 m
(D0 = 25 m) from the base of the structure. R0 and D0 were as defined in Figure 8. The inclination
angle was α = 41◦ above the horizontal. The RAR antennas were pointed to the upper part of the
building (see Figures 7 and 8). The measurements lasted 36 min, with an output sampling frequency of
149 Hz.

Figure 9 shows the Range bin profile of the RAR campaign of the “La Viña” building. According to
the distances to the building, it was estimated that the bins Rbin38, Rbin39, Rbin40, Rbin41, Rbin42
and Rbin43 contain information on the structure. It can also be observed that the SNRs are the highest
among the selected Rbins recorded.
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Figure 9. Range bin profile of the “La Viña” building campaign. Dashed blue and red lines enclose the
Rbins between Rbin38 and Rbin43.

Once the structure is located within the range profile, we obtain the time history of displacements
corresponding to the selected Rbins. Figure 10a shows the as-recorded signals of the five selected
Rbins; Figure 10b displays a six-second (0.1 min) fragment. As part of the signal processing, the
baseline was corrected. Vibrations outside the range of frequencies of interest were removed using
a band-pass Butterworth filter. Figure 10c shows the processed signals. Finally, Figure 10d shows a
six-second fragment.
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Figure 10. As-recorded time series obtained by RAR remote sensing: (a) the complete recording; (b) a
six-seccond fragment. Processed time series obtained by RAR remote measurements: (c) the complete
recording; (d) a six-second fragment.

2.3.3. Natural Frequencies: The RAR Technique

To investigate the feasibility to find resonant frequencies using the PPM, the PSDs were calculated
for each Rbin (Figure 11). To do this, a Hamming window with 50% overlap was used. As can
be seen, there are no clear outstanding peaks in the PSDs of the selected Rbins that could indicate
resonant frequencies as they have been straightforwardly found using accelerometers and the PPM.
Although the Rbins shown are those with a higher SNR, the same peaks are not present in all the
different bins and are not clear outstanding peaks. Rbin41 and Rbin42, however, present clearer peaks
near the frequencies identified with the accelerometers, indicated with blue and red dashed lines in
Figure 11, and they have similar PSDs. This may be due to the greater precision that can be obtained
with these Rbins since they are the ones with the highest SNR. Note that Rbin 41 and Rbin 42 are in the
highest peak of the Range bin profile of Figure 9, corresponding to the highest SNR.
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Figure 11. PSDs calculated by the Welch method for the signals recorded from Rbin38 to Rbin43.
The dashed lines indicate the frequencies 2.49 Hz (red) and 2.79 Hz (blue), identified with the
accelerometric data.
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2.4. Other Techniques for Resonant Frequencies Identification

Because of difficulties using RAR in rigid structures, other signal analysis tools based on the
similarity/dissimilarity of the recorded signals using the correlation have been utilized in this work.

This way, the linear correlation between the signals of the selected Rbins has been calculated using
the Pearson linear correlation coefficient (PLCC) [40]. The PLCC is a statistical quantity that estimates
pairwise linear correlation between two signals. The coefficient ranges from −1 to 1, indicating negative
and positive total correlation, respectively, and 0 indicates no correlation at all.

Figure 12 shows the PLCC correlation matrix, where it is observed that all the signals show
positive correlation. Only the Rbin41 and Rbin42 are highly correlated, with a PLCC of approximately
95%, as can be intuited from Figure 11, where the similarity of the PSDs is shown. Among the other
Rbins, the correlation is relatively low. We can attribute the high correlation to the displacement of the
building with a higher SNR recorded by both bins.
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With the above, we have focused on the Rbin41 and Rbin42 to analyze their frequency content in a
narrower band (Figure 13). As mentioned before, we can appreciate that the main peaks correspond to
frequencies of 2.49 and 2.71 Hz, similar to those frequencies identified with the accelerometric network,
and which more likely correspond to the first and second mode of the structure. However, only
analyzing the PSDs does not make clear whether these frequency bands correspond to the resonant
frequencies of the building. In addition, the third resonant frequency of 3.98 Hz, identified with the
accelerometric network, is not present in the PSDs of the RAR Rbin signals.
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Thus far, we have focused on data recorded from each Rbin and tried to obtain features of
the dynamical properties of the structure based on separately studying the outputs. However,
the RAR allows synchronously measuring different points of the structure. This advantage is
studied by two different multisignal analysis methods: the cross-power spectral density and the
magnitude-squared coherence.

2.4.1. Cross-Spectrum Method

The cross-power spectral density (CPSD) is used to determine the similarity or relationship of the
linear dynamic properties, between two different time series, as a function of frequency. This technique
is especially useful when a high level of noise is present in the signals and it is not possible to find
significant peaks in the power spectra that allow indicating the related periodicities among the signals.
Because ambient noise can be considered as random Gaussian noise, there should not be correlation
between the noise and the harmonics corresponding to the movement of the building. This is the case
with the measured radar signals and only the shared harmonics between the signals will be present in
the CPSD.

To estimate the CPSD, the averaged Welch [37] method can be used. To do so, we first divide the
signals x and y in K overlapped and windowed segments of length (L). Then, we compute the Fourier
Transform of the respective pair of segments, xi and yi, via Discrete Fourier Transform (DFT) as follows:

Pi
xy( f ) =

1
L

L−1∑
k=0

Xi( f )Yi ∗( f ), n = 0, 1 . . . ., L− 1 (2)

where Xi( f ) and Yi ∗( f ) are the DFTs of the respective windowed segments and the superscript asterisk
denotes the complex conjugate. Finally, we compute the CPSD, as in the Welch method, as follows

Px( f ) =
1
K

K∑
i=1

Pi
xy( f ) (3)

Figure 14 shows the CPSDs of the combinations between P3 and the other four points, in the
same direction, for both L (a) and T (b) directions, i.e., between P3-L and P1-L, P2-L, P4-L and P5-L.
The mean CPSD is highlighted in black. It can be seen that peaks in the frequencies of 2.487 and
2.786 Hz, indicated with dashed red and blue lines, respectively, are emphasized while the other peaks
tend to attenuate.
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Figure 14. The cross power spectral densities (CPSD) (grey lines) of the combination between the
longitudinal (a) and transversal (b) signals in point P3 and the rest of the signals in the same directions.
The black lines correspond to the mean CPSD and the frequencies 2.49 and 2.79 Hz are indicated with
red and blue dashed lines, respectively.
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Similar results can be seen with the RAR signals. In Figure 15, the CPSD estimates for the RAR
measurements are presented. The CPSDs for all combinations between the selected Rbin and the rest
of the Rbins are shown in grey, i.e., for Rbin38, the CPSDs between Rbin38 and Rbin39, Rbin38 and
Rbin40, Rbin38 and Rbin41, Rbin38 and Rbin42 and Rbin38 and Rbin43 are plotted together in grey.
Finally, the mean value of the CPSD combinations is highlighted in black. The peaks at the resonant
frequencies of 2.491 and 2.708 Hz clearly stand out. The peaks of different frequencies in the range
from 1 to 2 Hz are also visible in most of the CPSDs. However, these peaks are outside the frequency
range of interest for this building and do not appear to be stable in all the CPSDs.
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Figure 15. The CPSDs (grey lines) of the combination between the selected Rbin and the rest of the
Rbins and the mean CPSD (black). The frequencies 2.49 and 2.71 Hz are indicated with red and blue
dashed lines, respectively.

2.4.2. Magnitude-Squared Coherence Method

The magnitude-squared coherence (MSC) indicates the correlation of two signals at a certain
frequency. The MSC is 1 when there is complete similarity in the spectral content at a given frequency
and 0 when the signals are fully uncorrelated in that frequency band. One major advantage of the MSC
is that a different amplitude in harmonics does not affect the MSC between the signals. In addition, the
MSC is phase independent. This is important for analyzing superior modes of vibration, where two
or more levels of the structure vibrate with the same harmonics but with different phases. However,
external sources of vibration that were detected at the different measurement points may cause high
MSCs at the frequencies of the origin of vibration. This happens for example when the structure is
excited with some device (reference) or with different types of machinery working, i.e., air conditioning
systems. In the case of the building under study, there was no source of noise and the structure was
evicted so that ambient noise was the only source of excitation of the structure.

The coherence spectrum is analogous to the conventional correlation coefficient and is defined
as follows:

Cx,y( f ) =

∣∣∣Px,y( f )
∣∣∣2

Px( f )Py( f )
(4)
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where Px( f ) and Py( f ) are the power spectral densities, and Pxy( f ) is the cross-power spectral density
between the signals x and y. In other words, the coherence is a statistical indicator which specifies
whether or not two signals are correlated. For cases in which the correlation degree between a selected
signal s and a group of signals Z = {z1, z2, . . . , zn} is to be estimated, the Multiple Magnitude Coherence
Method (MMSC) [33] can be used. The multiple coherence is defined as:

MZs( f ) =
P∗Zs( f )P−1

ZZ( f )PZs( f )
Ps( f )

=
[

P∗z1si
( f ) · · · P∗znsi

( f )
]

Pz1z1 · · · Pz1zn
...

. . .
...

Pznz1 · · · Pznzn




Pz1si
...

Pznsi

 1
Psi ( f )

(5)

where MZs( f ) is the multiple coherence function between the signal s and the array of signals Z, PZs( f )
is the n-dimensional vector of the cross-power spectral densities between the signal s and the series of
signals Z, P−1

ZZ( f ) is the inverse matrix of n x n dimension of the PSD and the CPSD of the series of
signals Z and Ps( f ) is the PSD of the signal s.

Figure 16 shows the MSC estimate for point 3 as an example. The gray lines represent the
MSC of the different combinations between the selected channel and the other channels for the
same direction—that is, between P3-L and P1-L, P2-L, P4-L and P5-L for the longitudinal direction
(Figure 16a) and between P3-L and P1-L, P2-L, P4-L and P5-L for the transversal direction (Figure 16b).
The mean spectra of the MSC is shown in black. It can be observed that, as in the CPSDs, there are
predominant peaks in the frequencies corresponding to 2.49 and 2.79 Hz, highlighted with dashed red
and blue lines, respectively.
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(grey lines), i.e., between Rbin41 and Rbin38, Rbin39, Rbin40, Rbin42 and Rbin43, and the mean MSC 
is shown in black. It can be observed that the highest MSC peaks are present in frequencies 2.49 and 
2.71 Hz. The same frequencies are found in the peaks of both the PSD of Rbin41 and Rbin42 and in 
the mean cross-spectrum peaks. It can also be seen that the lower frequency peaks, between 1 and 2 
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Figure 16. The MSCs (grey lines) of the combination between the longitudinal (a) and transversal
(b) signals in point P3 and the rest of the signals in the same directions. The black lines correspond
to the mean MSC and the frequencies 2.49 and 2.79 Hz are indicated with red and blue dashed
lines, respectively.

Figure 17 shows the MSC between the combinations of Rbin and the rest of the selected Rbins
(grey lines), i.e., between Rbin41 and Rbin38, Rbin39, Rbin40, Rbin42 and Rbin43, and the mean MSC
is shown in black. It can be observed that the highest MSC peaks are present in frequencies 2.49 and
2.71 Hz. The same frequencies are found in the peaks of both the PSD of Rbin41 and Rbin42 and in the
mean cross-spectrum peaks. It can also be seen that the lower frequency peaks, between 1 and 2 Hz,
are attenuated. Remarkably, the resonant frequencies identified with the CPSD and the MMSC are
virtually the same as those found with the traditional techniques using accelerometers.
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Figure 17. Mean MSCs between each Rbin signal and the array of the rest of the selected signals (black).
A 1 indicates high coherence and 0 indicates no coherence at all; the grey lines indicate the different
MSCs for each of the combinations of signals. The frequencies 2.49 and 2.71 Hz are indicated with red
and blue dashed lines, respectively.

3. Results

3.1. Modal Identification by Accelerometer Array

The first two modal shapes at each measurement point are recognized by the particle movement
technique [41] using accelerometer array. This technique requires filtering the signals on a narrow
(e.g., 0.01 Hz) band-pass and setting the identified resonant frequencies as the center of the band-pass.
For this purpose, a Butterworth band-pass filter was used. The width of the band-pass was sufficiently
narrow to prevent nearby frequencies from contaminating the analyzed natural frequencies.

The modal shape for the first resonant frequency of 2.49 Hz was estimated for each of the measured
points. For this, a third-order Butterworth band-pass filter was applied in all the channels between
frequencies 2.485 and 2.495 Hz. Figure 18a shows the particle movement of the acceleration signals in
both directions for each of the points.

The mode corresponding to the aforementioned frequency is torsional, generating greater
accelerations along the T-axis of the N–W façade, corresponding to the axis of the more flexible
direction of the structure. The rotational mode can explain the presence of the same resonant
frequencies in the PSD of the signals in both directions. It can also be observed that point P5 has
the lower accelerations in this frequency range. This fact could be due to the possible coupling with
another building on the S–W façade, or superior stiffness in the S–W and N–W façades due to the
absence of windows and openings.

For the second frequency identified, the acceleration component corresponding to the frequency
of 2.79 Hz was isolated using a band-pass filter between the cutoff frequencies of 2.785 and 2.795 Hz.
In Figure 18b, the acceleration particle motion results for each of the five points measured on the
roof of the studied building are shown. It can be observed that this frequency relates to a combined
translational mode between both the L and T directions. The amplitude of the acceleration for this
mode is similar in the five measured points of the structure and follows an E–W direction.
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The modal shapes are described in Figure 19, where the first and second modes of the building
are depicted. The first mode (Figure 19a), corresponding to a frequency of 2.49 Hz, is mainly rotational
and the second mode (Figure 19b) is a combined translation mode with a frequency of 2.79 Hz.
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Figure 19. Modal shapes of the first (a) and second (b) modes of the “La Viña” building, corresponding
to a frequency of 2.49 and 2.79 Hz, respectively, determined by the particle motion method. The blue
and red lines indicate the positive and negative maximum acceleration of one vibration cycle.

Finally, in order to find the fundamental frequencies and modes of the structure, it was necessary
not only to find the highest energy peaks of the PSD by applying the widely used PPM, but also to isolate
and study the dynamics corresponding to each of the selected frequencies. This is required to find out
whether the natural frequencies correspond to the structure motion and not to an isolated or external
element, inducing high-energy peaks in the PSD. In fact, the isolation of these two frequencies for all
of the acceleration sensors allows us to depict the particle motions corresponding to each frequency
(Figure 18) at different sites of the structure, which, in this case, are located on the roof. This allows
us to link the recorded motion and the vibration modes. The first frequency clearly corresponds to a
rotation mode, while the second frequency corresponds to a translation mode. The results of the first
two frequencies and modes, corresponding to the studied building, are shown in Table 2.
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Table 2. Modal results of the “La Viña” building.

Mode Type f (Hz) T (s)

1 Rotational 2.49 0.40
2 Combined translational 2.79 0.36

3.2. Modal Identification by RAR

Recent advances in remote sensing techniques confirm the possibility of extract the modal shapes
with the use of RAR in high-rise buildings [28]. The greater displacements shown by these types of
structures simplify the extraction. To investigate the possibility of estimating the modal shapes of the
studied structure using RAR, the following assumptions were considered: (1) the RAR measures the
movement of the structure at different elevations on each Rbin, (see Figure 8a); (2) the motion recorded
from the different Rbins is synchronized and (3) the relative displacement between the RAR and the
base of the structure is negligible.

Figure 20a shows a cycle of 0.4 s (from 60.25 to 60.65 s) from the history of the displacement
measured by each of the bins for a frequency of 2.49 Hz, corresponding to the first identified mode of
the “La Viña” building. For this, a Butterworth band pass filter was used between 2.490 and 2.492 Hz.
The five different time instants are represented by the circles. Figure 20b shows the five displacement
instants of each of the bins. The movement of the base has been set to zero. Due to the resolution of
the Rbins of the RAR, it is difficult to assign a measurement point to each of the Rbins, and so the
vertical axis is not exactly related to the height of the building. It can be seen that the motion is similar
at the different measured points and that the amplitude of the motion varies with each of the bins.
Noticeably, similar motion patterns can be observed among these Rbins. This is because, once the
period has been isolated by filtering, the corresponding displacement–time histories are associated
with the motion of points at different heights (see Figure 8) of the façade of the building, due to, in this
case, the first mode of vibration, so that, under adequate conditions and highly accurate measurements,
even the modal shapes can be observed. Further, Rbin41 and Rbin42 present the higher displacements,
and this is maybe related to the better SNR that those Rbins presented. The motion is likely related
to the projection in the RAR LOS of the first modal shape of the building. More research on the use,
resolution and capabilities of the radar is necessary. Further, a comparison with other techniques, for
example, a vertical array of accelerometers, at the different levels of the structure could validate the
results presented herein.
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Figure 20. (a) Displacement–time histories of the Rbins, from 60.25 to 60.65 s (0.4 s), corresponding to
a period of the fundamental frequency of the structure (2.49 Hz). The colored circles represent five
different time instants. (b) Displacement of the five time instants for each of the Rbins; the black lines
correspond to the maximum and minimum displacements of the 0.4 s fragment.

4. Discussion

Analyzing the results of the different frequency domain methods, the PSD, the CPSD and the
MMSC, we can identify the frequencies corresponding to the first and second mode of the building.
The CPSD and the MMSC lead to better results by taking advantage of simultaneous measurements.
Table 3 shows a comparison of vibrating frequencies obtained with both on-site accelerometers and the
non-invasive RAR technique.

Table 3. Comparison of the resonant frequencies and periods corresponding to the first and second
mode, obtained with the contact method, using accelerometers, and the remote sensing technique,
using RAR.

Mode ACC RAR Difference

f (Hz) T (s) f (Hz) T (s) (%)

1 2.49 0.40 2.49 0.40 0.2
2 2.79 0.36 2.71 0.37 2.8

The first two fundamental frequencies obtained via RAR are virtually the same, with differences
of less than 3% compared to those obtained with the accelerometer network. On the other hand, in
this particular case study, it was possible to find the first two resonant frequencies with RAR sensing
because the first and second modal shapes of the building have components in the LOS of the RAR.
In order to achieve better understanding of the dynamic characteristics of buildings, measurements in
both directions of the structures must be performed. It was not possible to find the third and further
modes using the RAR, probably due to limitations in the displacement resolution of the device used in
this study.

An important requirement to obtain good dynamic displacement measurements with RAR is good
reflectivity on the surface where the transmitted microwaves fall on. Usually, good SNRs in the Rbin
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range profile indicate adequate quality of reflected signals. Surface roughness, geometry and shape of
the structure and even the material of the buildings affect the quality of the back-scattered signal, but
adequate signals correspond to the overall motion of the point where the signal back-scatters, whatever
the quality of the materials of the wall. Before beginning to take the RAR profiles, it is important to
analyze the SNR in the Rbin range profile, searching for adequate reflectors. In special cases, ad hoc
artificial reflectors may be carefully installed at selected points of the structure to improve the SNR and
the quality of the recordings [14,25].

That less clear results were obtained with the RAR technique may be due to the low amplitude of
the displacement signals produced by environmental excitations in mid-rise buildings, compared to
the acceleration signal amplitudes. The use of radar in structures with high fundamental frequencies
may be limited due to the resolution of the RAR. This drawback, however, does not occur in tall or
flexible structures where the radar has given excellent results [14,28]. More research into RAR limits
and capabilities is necessary.

The results confirm the capacity to find at least the fundamental frequency of the building using
RAR in a straightforward way. However, uncertainty increases with the frequency complicating the
detection of the higher resonant frequencies.

Finally, the fundamental frequencies obtained herein, are consistent with the damage level of the
structure. It is commonly known that structural damages cause changes in the dynamic response of
the structure. Generally, the stiffness degradation induced by the damage lead to a decrease in the
natural frequency. In recent years, damage assessment in terms of changes in modal parameters has
been widely studied.

One example of the former is presented in [42]. The fundamental period of healthy and damaged
Spanish buildings, according to the damage grade in the European Macroseismic Scale (EMS-98) [43],
was estimated according to the following empirical equations:

TG0 = (0.054 ± 0.002) N (6)

TG1 = (0.065 ± 0.002) N (7)

TG2 = (0.077 ± 0.002) N (8)

TG3 and G4 = (0.089 ± 0.008) N (9)

where N is the number of stories of the building and T is the period of the building at the corresponding
damage grade, described in Table 4. These formulas are based on acceleration monitoring of 59
undamaged RC buildings and 34 damaged RC buildings, after the May 11th 2011 Lorca earthquake
(Spain). The monitored buildings shared similar structural characteristics to the “La Viña” building
studied in this work. According to Equations (6)–(9), it is estimated that the fundamental periods and
frequencies of the “La Viña” building, in terms of the damage grade in the EMS-98 scale, are as follows:

Table 4. Classification of damage grades according to the EMS-98 and estimation of the fundamental
period/frequency of the “La Viña” building as function of the damage grade.

EMS Damage Grade Damage Ratio (%) T (s) f (Hz)

G0: No damage 0 0.27 3.70
G1: Negligible to slight damage; 0–1 0.34 3.07

G2: Moderate damage 1–20 0.39 2.59
G3: Substantial to heavy damage 20–60

0.45 2.24G4: Very heavy damage 60–100
G5: Destruction 100 - -

According to the official damage report [44], the “La Viña” building presented moderate to severe
structural and no structural damage in agreement to the EMS-98 damage grade 2 and 3. Hence, the
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fundamental frequency of the building is estimated to be in the range of 2.24 to 2.59 Hz, consistent with
the fundamental frequencies found with both the accelerometric and RAR methods. More research in
this subject is necessary. However, estimating damage using equations such as those presented in [42]
may be feasible.

5. Conclusions

A remote sensing technique using a real-aperture radar to perform displacement-based dynamic
monitoring under environmental excitations was presented. The capability of this technique to estimate
the fundamental frequency of a damaged mid-rise building was studied. For this, the resonant
frequencies of the structure were estimated with a traditional method, using accelerometer array, and
later compared with the contactless method.

In order to estimate the resonant frequencies of low and rigid structures with these types of
remote displacement-based measurements, it is necessary to optimize the capacity and resolution of
frequency domain methods, taking advantage of the multiple synchronized measurements that the
RAR is able to perform. The results showed that the use of different techniques, such as the MSC and
the CPSD, improve identification of the fundamental frequencies. Despite the shortcomings using
RAR in mid-rise buildings, such as sensitivity to ambient noise and low displacement amplitude, for
this structural typology, it is possible to find, with precision, at least the fundamental frequency of the
structure by remote sensing with RAR. The fundamental frequency of the studied damaged structure
is also consistent with estimations by empirical formulas.

The RAR technique presents a clear advantage over traditional methods by not requiring contact
with the structure. It is possible to relate the structural damage in conventional buildings to the
fundamental frequency shift, which can be monitored accurately using remote sensing with RAR.
This suggests the possibility of remotely assessing damage in buildings, which could be especially
useful after a strong earthquake.
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