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Abstract: Accurate information about the spatiotemporal patterns of rice paddies is essential for the 
assessment of food security, management of agricultural resources, and sustainability of 
ecosystems. However, accurate spatial datasets of rice paddy fields and multi-cropping at fine 
resolution are still lacking. Landsat observation is the primary source of remote sensing data that 
has continuously mapped regional rice paddy fields at a 30-m spatial resolution since the 1980s. 
However, Landsat data used for rice paddy studies reveals some challenges, especially data quality 
issues (e.g., cloud cover). Here, we present an algorithm that integrates time-series Landsat and 
MODIS(Moderate-resolution Imaging Spectroradiometer) images with a phenology-based 
approach (ILMP) to map rice paddy planting fields and multi-cropping patterns. First, a fusion of 
MODIS and Landsat data was used to reduce the cloud contamination, which added more 
information to the Landsat time series data. Second, the unique biophysical features of rice paddies 
during the flooding and open-canopy periods (which can be captured by the dynamics of the 
vegetation indices) were used to identify rice paddy regions as well as those of multi-cropping. This 
algorithm was tested for 2015 in Nanchang County, which is located on the Poyang Lake plain in 
southern China. We evaluated the resultant map of the rice paddy and multi-cropping systems 
using ground-truth data and Google Earth images. The overall accuracy and kappa coefficient of 
the rice paddy planting areas were 93.66% and 0.85, respectively. The overall accuracy and kappa 
coefficient of the multi-cropping regions were 92.95% and 0.89, respectively. In addition, our 
algorithm was more capable of capturing detailed information about areas with fragmented 
cropland than that of the National Land Cover Dataset (NLCD) from 2015. These results 
demonstrated the great potential of our algorithm for mapping rice paddy fields and using the 
multi-cropping index in complex landscapes in southern China. 
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1. Introduction 

Rice paddy fields account now for more than 12% of the global cultivated land area [1] and yield 
food for approximately half of the global population, particularly in monsoon Asia [2,3]. With the 
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global population rapidly increasing, there has been growing pressure on agricultural systems due 
to the rising demand for food, especially rice [2]. Within the context of climate change and rapid 
economic development and urbanization, however, the increasing area of rice paddy fields has been 
threatened. This has led to an intensified rice paddy cropping cycle in some areas with limited rice 
paddy lands [4,5], while it has caused a decrease in the rice paddy planting areas of some developing 
countries [6]. In addition, the continuous modification and intensive management of rice paddy 
agriculture has also substantially influenced the biogeochemical and hydrologic cycles, climate 
change, and biodiversity [7]. Thus, achieving an increase in rice paddy yield to ensure food security 
and minimize the negative environmental influence of rice paddy agriculture is still one of the current 
challenges [8,9]. Timely and accurate information about where, when, and how much paddy rice is 
planted is a key step in food security assessment, agricultural resource management, and ecosystem 
sustainability. 

Remote sensing with satellite imagery is considered an effective and valuable tool for rice paddy 
mapping [10,11], typically superior to conventional ground-based surveys [6,12]. Various efforts to 
map global and regional crop areas have employed coarse resolution MODIS satellite images, owing 
to their high revisit frequencies (i.e., daily) [5,13]. However, some studies have noted that MODIS 
and AVHRR pixels generally contain different crop types in the areas with patchy and fragmented 
fields, particularly in countries such as China, and thus, small rice paddy field patches are ignored 
[13–15]. Comparatively, long-term Landsat satellite images with 30-m spatial resolution provide 
unmatched resources to monitor and map rice paddy fields in fragmented landscapes. However, the 
accuracies of recent methods for mapping rice paddies largely depend on the availability of Landsat 
time series images [13], which are primarily limited by the long revisit interval (16 days) and by 
weather conditions, particularly those that occur during the rice growing season, which is often 
contaminated by frequent cloud coverage [12,13]. Overall, it is difficult for MODIS satellite images 
alone or Landsat satellite images alone to meet the requirements for mapping complex and 
fragmented rice paddy areas [14]. Data fusion algorithms provide a method for bridging between 
medium-resolution Landsat images and high temporal resolution MODIS images [16,17,18]. A spatial 
and temporal adaptive reflectance fusion model (STARFM) and its updated version—the enhanced 
STARFM (ESTARFM) approach—have been widely used to synthesize high spatio-temporal 
resolution fused Landsat–MODIS imagery [19,20]. One important advantage of ESTARFM is the 
application of a conversion coefficient to improve the accuracy of the reconstruction in areas with 
heterogeneous landscapes [20,21]. 

In recent decades, a variety of rice paddy mapping approaches have been developed (e.g., the 
reflectance data and image statistic-based approach and the phenology-based approach) [13]. The 
phenology-based approach can monitor different crop growth properties and detect the unique 
signals of the rice paddies through their differences in their respective crop schedule or management 
[22]. Recently, phenology-based approaches have been increasingly applied to map rice paddy 
planting areas [6,10,23]. Rice paddy fields are a mixture of surface water and planted rice during the 
flooding and open-canopy periods (i.e., after rice transplanting) and exert unique biophysical 
characteristics, which could be captured by the relationship between the normalized difference 
vegetation index (NDVI), enhanced vegetation index (EVI), and land surface water index (LSWI) 
[10,24]. Based on the NDVI, EVI, and LSWI, a transplanting-based algorithm can effectively detect 
phenological information about the rice paddy and recognize the key phenological periods from time 
series imagery [10]. This straightforward algorithm has been widely used and become one of the most 
representative phenology-based approaches for rice paddy mapping [13,25]. However, the periods 
of flooding and transplanting are very short, and many regions are in the rainy season during this 
period, particularly in southern China; thus, transplanting-based algorithms require adequate 
availability of high-quality observations to achieve high accuracy [13,25]. Additionally, a recent 
fusion and phenology-based rice paddy mapping algorithm has been used in northeast Asia, where 
there is one single cropping season [14]. However, previous studies noted that the extended 
application of the mapping algorithm to southern China required additional case studies and 
algorithmic improvement [24]. 
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Southern China is one of the most famous rice production bases over the world. However, 
accurate mapping of the rice paddy fields at fine resolutions in southern China is still a challenge 
[13,26]. First, the cropland-filled are in southern China is quite small, and the landscape is 
heterogeneous. Meanwhile, several crops grow during the growing season of rice, which forms a 
very complex cropping structure in areas with fragmented and patchy fields, and the rice paddy 
areas are easily confused with other types of vegetation cover [23,27]. Second, the multiple cropping 
systems superimposed with prevailing cloud cover make it difficult to characterize a crop’s 
phenological metrics [28]. Furthermore, the rice-wetland coexistence areas also present a challenge 
[22]. Both rice paddies and wetlands have similar spectral signals within growing seasons, which 
tends to result in misclassification of natural wetlands as rice paddies [10,29]. To overcome the 
limitations mentioned above, we present a feasible strategy of integrating a spatiotemporal fusion 
approach and phenology-based approach to map the rice paddy planting fields and multi-cropping 
patterns in southern China. The objectives of this study were to: (1) develop a robust phenology-
assisted rice paddy planting area and multi-cropping system through the fused Landsat–MODIS time 
series images, and (2) assess the fusion- and phenology-based approaches for mapping rice paddies 
and cropping intensity in the fragmented areas of diverse land-cover types in southern China. 

2. Study Area and Data sources 

2.1. Study Area 

The study area is located in Nanchang County, which is a part of the Poyang Lake plain in 
southern China (Figure 1). This plain is one of the famous (and important) grain production bases in 
China and is dominated by traditional double cropping systems. The study area neighbors Poyang 
Lake and is largely flat. It occupies an area of approximately 1800 km2 and belongs to the subtropical 
climate type. Major annual crops in the study area include single- and double-cropping rice, rapeseed 
oil, vegetable gardens, and lotus ponds. Meanwhile, smallholders dominate rice paddy agriculture 
in Nanchang County, resulting in a mixed agricultural landscape with small fields. According to the 
Jiangxi Statistical Yearbooks, the area of sown rice paddy accounts for above 90% of the total area of 
sown crops [30]. 

 
Figure 1. Location of field survey sites in the study area and photos that show examples of (a) single-
cropping rice, (b) double-cropping rice, (c) lotus root, and (d) a water pool.  
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2.2. Data Sources 

2.2.1. Remote sensing images 

Landsat 7 (ETM+) and Landsat 8 (OLI) images that cover our chosen study area (path/row of 
Landsat imagery: 121/40) for 2015 were obtained from the USGS Earth Explorer data portal 
(http://earthexplorer.usgs.gov/). In total, 46 Landsat images were collected, which include 23 Landsat 
ETM+ images and 23 Landsat OLI images. These images were produced with terrain and atmospheric 
corrections, and the land surface reflectances were derived. Cloud cover and cloud shadow detection 
are critical concerns for optical remote sensing images processing; Therefore, we applied the Fmask 
software to generate cloud and cloud shadow layers to each processed image [31]. The SLC-off strips 
within the Landsat ETM images were classified as “no-observation” using this software. Once the 
clouds, cloud shadows, and SLC-off strips were excluded, we end up with high quality Landsat 
images suitable for our purposes. We also obtained eight-day 500-m MODIS reflectance images 
(MOD09A1) for 2015 from the USGS Earth Resources Observation and Science (EROS) data center 
(https://lpdaac.usgs.gov/). 

2.2.2. Validation data 

Field surveys within the study area were performed on the period of May–August from 2015 to 
2018. The survey questions included information on the land-cover type, crop type, and crop calendar 
of each site in 2015. The sampling distance between each site was approximately 2 km, and the width 
and length of each field site were larger than 100 m. Five classes of land-cover type were used: rice 
paddy (single- and double-cropping rice), wetland, lotus, dry land, and others. Water bodies, built-
up or barren land, and forest were classified as “others.” In the wetland locations, we did our 
surveying on the road running through the large wetland area. For the sites of croplands and other 
land-cover types, we travelled more than 60 m from the border in each direction in order to take 
accurate georeferenced photographs. The total number of field survey sites was 200 (Figure 1). 

Previous studies have indicated that combining field photographs with Google Earth images is 
a reliable technique for the validation of land cover classification [32]. Thus, we combined the field 
survey data with high-resolution images from Google Earth to generate validation points. A total of 
2040 pixels were generated for this validation. Even though some field survey data were collected 
from 2016 to 2018, the survey in 2015 provided a reference for the validation points generated from 
the high-resolution images taken from Google Earth. The images we used in this study were mostly 
from April to July 2015. We divided all validation points into three categories: single-cropping rice, 
double-cropping rice, and “others” (e.g., wetland, forest, water bodies, etc.). 

2.2.3. Other Land Cover Datasets Used for Comparison 

The National Land Cover Dataset (NLCD) for 2015 was obtained from the Resource and 
Environment Data Center, Chinese Academy of Sciences [33]. The NLCD datasets at a scale of 
1:100,000 were derived from Landsat TM/ETM+/OLI images using the human-computer interactive 
interpretation method. The NLCD divides the land cover into six primary categories with 25 
subcategories. The cropland includes “rice paddy land” and “dry cropland” categories, and the rice 
paddy land is primarily distributed in southern China. 

3. Methodology 

3.1. Overview 

An overview of the methodology for the current study is shown in Figure 2. The fusion- and 
phenology-based approaches for mapping rice paddies and multi-cropping lands included three core 
modules: (1) the remote sensing image preprocessing module (Section 3.2), (2) the pixel- and 
phenology-based rice paddy and multi-cropping mapping module (Section 3.3), and (3) the accuracy 
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assessment (Section 3.4). To study the methodology, we selected one county-level administrative 
region (path/row of Landsat imagery: 121/40) on the Poyang Lake plain in China as the study area. 

 
Figure 2. Flowchart illustrating the algorithm used for mapping rice paddies and multi-cropping areas. 

3.2. Preprocessing of Remote Sensing Image  

3.2.1. Calculation of Spectral Indices 

The reflectance data from the Landsat-ETM, Landsat OLI, and MODIS (MOD09A1) data were 
used to calculate the normalized difference vegetation index (NDVI) [34], enhanced vegetation index 
(EVI) [35], and land surface water index (LSWI) [10], using the land surface reflectance values of the 
blue (𝜌 ), red (𝜌 ), NIR (𝜌 ), and SWIR (𝜌 , 1570–1650 nm) bands. These indices have proven 
to be helpful in studies of vegetation canopies, water content, biomass, and phenology. 

𝑁𝐷𝑉𝐼 = 𝜌 − 𝜌𝜌  + 𝜌 , (1) 
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𝐸𝑉𝐼 = 2.5 × 𝜌 − 𝜌𝜌  + 6 × 𝜌 − 7.5 × 𝜌 + 1, (2) 

𝐿𝑆𝑊𝐼 = 𝜌 − 𝜌𝜌   𝜌 , (3) 

Even after steps are performed to improve the data quality (e.g., maximum value composition 
method (MVC)) of the MODIS (MOD09A1) data [36]), atmospheric contamination in the images may 
still exist. We therefore employed a Savitzky–Golay filtering procedure to further reduce 
contamination by clouds, and to reconstruct the vegetation indices’ (MOD09A1) time series [37]. 

3.2.2. Fusion of Landsat OLI and MODIS images 

Two sets of vegetation indices were generated from Landsat ETM+/OLI images; however, some 
images had serious cloud contamination, and SLC-off strips were not available. This made the 
temporal interval long in some months, especially during the growing season (Figure 3). This 
phenomenon can result in incomplete crop phenology and can limit the accuracy of rice paddy 
mapping. To increase the available data for the growing season, this study applied the ESTARFM 
approach to disaggregate the 500-m vegetation index images (MOD09A1) to a 30-m pixel size to 
coincide with the vegetation indices from the Landsat OLI images [16,20,38,39]. Recently, several 
studies used the ESTARFM approach to generate synthetic imagery to track the phenological changes 
and found that fused Landsat–MODIS data could deduce the land surface phenology at sub-field 
scales more accurately than using the MODIS data alone [16,20,39,40]. 

For the Landsat ETM+ images that had striping lines due to SLC failure, we only applied the 
fusion method to process the Landsat OLI images. The ESTARFM input format protocol dictated that 
all MODIS images were re-projected into the same projection as the Landsat images and resampled 
to a 30-m resolution by nearest-neighbor interpolation. We assumed that the clouds would not 
coincide completely in the different images. Therefore, we used more pairs of the observed 
Landsat/MODIS vegetation indices with available pixels for the same day to predict the vegetation 
indices on the same scale as the Landsat images for the other MODIS observation dates. We then 
compared the predicted vegetation indices at the Landsat-scale with the Landsat OLI indices for the 
same date and only replaced the pixels that emerged from clouds and cloud shadows with fusion 
data (Figure 2). In this way, we tried to reduce the influences of the clouds and increased the available 
Landsat-scale pixels during the rice growing season. 

 
Figure 3. Percentages of cloud cover present in the Landsat images (path/row 121/40) from 2015 used 
in the study. 

0

20

40

60

80

100

120

0 30 60 90 120 150 180 210 240 270 300 330 360

Pe
rc

en
ta

ge
 o

f c
lo

ud
 c

ov
er

 (
%

)

DOY (day)

Landsat8 OLI Landsat7 ETM



Remote Sens. 2020, 12, 1022 7 of 19 

 

3.3. Pixel- and Phenology-based Paddy Rice Mapping Algorithms 

3.3.1. Crop calendar 

The croplands in the study area were mainly planted with rice, and oilseed rape cultivation uses 
a different cropping calendar from other crops (Figure 4). Rice seeds are generally germinated in 
small seedbed nurseries; rice seedlings are then transplanted to the paddy fields in one month. 
Flooding is one of the key practices of rice paddy agriculture and often occurs a few weeks before 
rice transplantation [41]. The rice paddies are often planted with single-cropping rice and double-
cropping rice. Double-cropping rice systems consist of early rice and late rice; the early rice is sown 
in late March, transplanted in late April, and harvested in late July. This is followed by the 
transplantation of the late rice (sowing in small seedbed nurseries in late June), which is harvested in 
late October. Compared with the double-cropping rice, the single-cropping rice plants were 
transplanted once per year in late May and harvested in early October (Figure 4). Rapeseed oil plants 
are sown in the autumn of the first year and then harvested in the spring of the next year. In addition 
to the crops mentioned above, there were many lotus ponds in the region, which began to germinate 
in early April and withered in late September. 

Our study area is located in a subtropical region, where the forests are dominated by a mixture 
of evergreen and deciduous forests which (along with wetlands) have a longer growing season than 
rice. The plants in the natural wetlands begin to germinate in mid-March. When wetlands are in the 
leafing stage and have closed canopies in early or middle April, the early and single-cropping rice 
paddies are still not transplanted. Meanwhile, natural wetlands are often inundated in the summer 
when the rainy season occurs. The asynchrony of rice paddy and wetland growth phases makes it 
possible to distinguish between them in satellite images that cover multiple times. 

 
Figure 4. Phenology of land-cover types found in our study area. Rice: 1—sowing, 2—seedling, 3—
flooding/transplanting, 4—tillering to stem elongation, 5—panicle initiation to heading, 6—
filled/milky, 7—maturity and harvest. Oilseed rape: 1—sowing, 2—seedling, 3—fifth true leaf, 4—
transplanting, 5—flower bud, 6—bolting, 7—flowering, 8—mature. Deciduous forest: 1—dormancy; 
2—budburst, 3—leaf unfolding, 4—total leaf expansion, 5—leaf coloration, and 6—defoliation. 
Natural wetland: 1—dormancy, 2—germination, 3—trophophase, 4—flowering, 5—withering 
period. Lotus root: 1—dormancy, 2—germination, 3—trophophase, 4—flowering, 5—fruiting, 6—
withering period. 

3.3.2. Maps of Rice Paddy Fields and Multi-cropping Areas 

There are several land-use types that are not croplands, which include built-up and bare land, 
evergreen vegetation, natural deciduous vegetation, water bodies, and natural wetlands. To 
minimize the potential impacts of these regions on our rice paddy maps, we initially designed a 
procedure to mask these factors (see Figure 2). The built-up and bare land have a LSWI < 0 throughout 
the year [42]. However, the built-up area is often interspersed with vegetation (e.g., forest or 
grassland), which results in LSWI values above 0 in the mixed pixels. We used the “trial and error” 
method and found that the conditions with LSWI < 0.1 could extract the built-up area well. We 
calculated the number of observations of LSWI < 0.1 in one year and divided them by the total number 
of high quality observations in the pixels; i.e., the yearly frequency of observations with LSWI < 0.1. 
The pixels with frequencies of >50% were classified as built-up and/or bare land. Evergreen plants 
and trees have green leaves throughout the year and have a LSWI > 0 in all high quality records [43]. 
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Our study area is located in a subtropical region, and the forests are dominated by a mixture of 
evergreen and deciduous forests. Based on random sampling, we ascertained the characteristics of 
the yearly curves of the forest vegetation indices (Figure 5a and Figure 6a), and then designed a rule 
to exclude the forestland-cover type as follows. First, we counted the number of observations in 
which a pixel had LSWI > 0.1 from the set of all high quality observations, and then divided it by the 
total number of high quality records. The pixels with a ratio of > 95% were subsequently identified 
as forest. The water pool usually displayed low NDVI and EVI values and high LSWI values (Figure 
5b and Figure 6b). The water pools were extracted by capturing the pixels with NDVI < 0.1 and LSWI > 
NDVI (or EVI) for each Landsat image [10]. The water pools were labeled as persistent if these pixels 
have a ratio of > 80% in all high quality observations [24]. 

Of all the dominant land-cover types, rice paddies, lotus root ponds, and natural wetlands are 
sensitive to flooding/inundation events in our study area. Several studies suggested that LSWI ≥ 
NDVI or LSWI ≥ EVI are representative of flooding events [10,44]. These phenomena are also 
displayed in Figure 5b–f and Figure 6b–f. Pixels that were identified as flooded throughout a year 
might be pure water or mixtures of water and vegetation in which the water dominates the pixel 
(Figure 5b and Figure 6b). 

 
Figure 5. The seasonal dynamics of NDVI, EVI, and LSWI of major land-cover types from the 
MOD09A1 product in 2015. (a) A forest site (28.3291°N, 116.0492°E). (b) A water pool site (28.7244°N, 
116.0859°E). (c) A natural wetland site (28.8878°N, 116.2718°E). (d) A lotus root site (28.9019°N, 
116.2244°E). (e) A single-cropping rice site (28.4675°N, 116.0179°E). (f) A double-cropping rice site 
(28.6680°N, 116.2759°E). All sites were selected according to the field sampling sites and are 
representatives of major land-cover types. 
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Pixels that were identified as seasonally flooded included natural wetlands, lotus ponds, and 
rice paddies. Based on the remaining research area, and after excluding the built-up and barren land, 
forest, and pure water from the research region, we extracted the seasonally flooded pixels by 
identifying the pixels with LSWI > NDVI (or EVI) for each Landsat image if these pixels were obtained 
in all high quality observations from March to October. The natural wetlands and lotus ponds 
displaced the water body phenomena (Figure 5c–d and Figure 6c–d) after September, in which a 
single grain of rice appears filled/milky, and later rice shows panicle initiation phenology (Figure 4) 
without flooding. We counted the number of records in which a pixel had LSWI > EVI out of all the 
high quality records occurring after September. The pixels that showed a ratio (frequency) value 
of >50% were identified as natural wetlands and lotus fields. 
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Figure 6. As in Figure 5, but for the seasonal dynamics of NDVI, EVI, and LSWI of the major land-
cover types from fused Landsat–MODIS data. 

After excluding natural wetland and lotus ponds from the flooding or inundated pixels, most of 
the remaining research area is constituted by rice paddies. Using the remaining pixels combined with 
the phenology of different trice paddy types, we designed a set of rules to differentiate between 
single- and double-cropping rice paddies. Single-cropping rice was identified by pixels with LSWI > 
NDVI (or EVI) from mid-May to mid-June and NDVI > 0.8 in August (Figure 5e and Figure 6e). In 
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comparison, double-cropping rice was identified by pixels with LSWI > NDVI (or EVI) from mid-
April to mid-May and NDVI > 0.8 in September (Figure 5f and Figure 6f). 

3.4. Validation and Comparison 

The accuracy of the ESTARFM-fusion images was evaluated by comparing them with the 
corresponding real Landsat images in the 3000 random samples, where the observation had good 
quality. The correlation coefficient (r), mean absolute error (MAE), and root mean square error 
(RMSE) were estimated as evaluation indicators to assess the accuracy of the fused NDVI/EVI/LSWI 
values, according to the following functions: 

𝑟 = ∑ (𝑃 − 𝑃) (𝑂 − 𝑂)∑ (𝑃 − 𝑃) (𝑂 − 𝑂) ,  (4) 

𝑀𝐴𝐸 = 1𝑁 │𝑃 − 𝑂 │, (5) 

𝑅𝑆𝑀𝐸 = 1𝑁 (𝑃 − 𝑂 )  (6) 

In which N indicates the number of pixels; P and O denote the value of each pixel in the fused 
images and the corresponding real image, respectively; and P and O represent the average values of 
P and O, respectively. 

After mapping the rice paddy area and multi-cropping regions, we used the confusion matrix 
accuracy assessment to validate the product. The validation points, including the 200 field survey 
sites and the 2040 sites extracted from the high-resolution images in Google Earth, were divided into 
three categories (single-cropping rice fields, double-cropping rice fields, and non-rice paddy fields). 
Then, these validation points were applied to evaluate the accuracy of the resultant rice paddy maps 
and tillage characteristics maps. We also calculated the user accuracy and producer accuracy of the 
map categories, overall accuracy and kappa coefficient [24,45]. 

Finally, we compared the map of rice paddies derived from the fused Landsat–MODIS data in 
our study with the rice paddy land in the NLCD data (hereafter referred to as ILMP-Rice and NLCD-
Rice) for 2015 in Nanchang County. The purpose of the comparison was to verify whether multi-
source satellite imagery and fusion algorithms could effectively map rice paddy planting areas 
compared to the existing data of rice paddy areas in southern China. 
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4. Results  

4.1. Landsat–MODIS Fusion Results 

We used the ESTARFM approach to fuse the Landsat and MODIS images. Figure 7 shows the 
comparison of the fused Landsat–MODIS data and the actual Landsat data for the three indices 
(NDVI, EVI, and LSWI). The scatter plots display high correlations and small biases for the three 
indices between the fused data and actual data. The r values were above 0.93 for the NDVI and EVI 
values and 0.84 for the LSWI value; the MAE values for the three indices were within 0.07; and the 
RMSE values for the three indices were not higher than 0.10. Additionally, in these scatter plots, we 
also found that the data for the three indices (NDVI, EVI, and LSWI) were close to the 1:1 line. Figure 
8 shows that the influences of clouds and cloud shadows were almost eliminated by utilizing the 
fused data. These results indicate that the ESTARFM approach can synthesize fine resolution images 
with high accuracy. Therefore, the fusion results can add more available data to improve the ability 
to discern between the targeted land-cover types. 

 
Figure 7. Comparison between fused Landsat–MODIS data produced by the ESTARFM method and 
real data in 3000 random samples. (a-c) The values of NDVI, EVI, and LSWI, respectively. 

 

Figure 8. Elimination of the influence of clouds by replacing the regions contaminated by clouds and 
cloud shadows with fusion EVI values. (a) The raw EVI value and (b) the fused EVI value. 
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We generated a map of rice paddy planting areas from the fused Landsat–MODIS data with a 
30-m spatial resolution for Nanchang County in 2015 (Figure 9). The results showed that the rice 
paddy planting area was 540.59 km2. The rice paddy regions were mainly distributed on flat terrain 
with relative large patches in the northern part of Nanchang County, while a few were distributed in 
the southern part of the region where some topographic relief exists. Using these rice paddy planting 
areas, we extracted the cropping intensity. The areas of single- and double-cropping rice were 266.87 
and 273.72 km2, respectively, indicating that the planting areas of single-cropping rice were close to 
those of double-cropping rice in 2015 and that the multiple cropping index was approximately 150%. 
Spatially, the planting areas of the double-cropping rice were mainly located in the northern part of 
Nanchang County, while the single-cropping rice areas were primarily distributed in the middle of 
Nanchang County. 

 

Figure 9. Map of rice paddy planting areas and multi-cropping pattern in Nanchang County in 2015. 
The inset at top left shows the total land area of each category. 

4.3. Accuracy Assessment of Rice Paddy Planting Areas and Cropping Intensity in 2015 

The ILMP-Rice map used here was compared with validation points from high-resolution 
images via Google Earth and the in-situ ground-truth data (Tables 1 and 2). The assessment results 
showed that the kappa coefficient and overall accuracy were 0.85% and 93.66%, respectively, and that 
the user and producer accuracy were 91.86% and 99.4% for rice paddy regions, respectively (Table 1). 
This result indicated a very high agreement between the ILMP-Rice map and ground-based data of 
rice paddy areas. We further found that the ILMP-Rice multi-cropping map also has high kappa 
coefficients and accuracies. The kappa coefficient and overall accuracy were 0.89% and 92.95%, 
respectively. The user and producer accuracies were 90.30% and 99.09%, respectively, for single-
cropping rice and 91.33% and 97.77%, respectively, for double-cropping rice (Table 2). These results 
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suggested that our mapping results were reasonable and could meet the requirements of user and 
producer accuracy in the complex landscapes of rice paddies. 

Table 1. Confusion matrix between ILMP-Rice in Nanchang County and the validation points from 
the high-resolution images via Google Earth and in-situ data. 

 
Ground truth pixels Classified 

pixels 
User 

accuracy Rice Paddies Non-rice 

 
Rice paddies 1500 133 1633 91.86% 

Non-rice 9 598 607 98.52% 
Ground truth pixels  1509 731 2240 OA = 93.66% 
Producer accuracy  99.4% 81.81%  Kappa = 0.85 

Table 2. Confusion matrix between ILMP-Rice in Nanchang County and validation points from high-
resolution images via Google Earth and in-situ data. 

 
Ground truth pixels 

Classified  
pixels 

User  
accuracy Single-

cropping rice 
Double-

cropping rice Non-rice 

Classified 
results 

Single-cropping 
rice 

652 14 56 722 90.3% 

Double-cropping 
rice 

2 832 77 911 91.33% 

Non-rice 4 5 598 607 98.52% 
Ground truth 

pixels 
 658 851 731 2240 OA = 92.95% 

Producer 
accuracy 

 99.09% 97.77% 81.81%  Kappa = 0.89 

4.4. Comparison between ILMP-Rice Map and NLCD-Rice Data in 2015 

There are some notable differences between the ILMP-Rice map and the NLCD-Rice data. A 
comparison of the ILMP-Rice map and the NLCD-Rice map revealed that the NLCD-Rice map had a 
remarkable overestimation of the rice paddies compared to ILMP-Rice for 2015 in Nanchang County 
(Figure 10). The analysis of a zoomed-in image of one region showed that the NLCD-Rice 
misclassified roads, village buildings, and ditches as rice paddies. As NLCD-Rice used images 
without or with less cloud contamination for interpretation, these images were often obtained in the 
autumn and winter seasons when the rice was harvested and the ditches were dry. The rice paddy 
fields, small village buildings, and ditches were difficult to separate from each other spectrally 
(Figure 10 b–d). We utilized the same validation samples to analyze the NLCD-Rice data for 2015 and 
found that both the accuracy and kappa coefficient were lower than those of the ILMP-Rice map 
(Tables 1 and 3). Particularly, the relatively low producer accuracy and high misclassification of the 
NLCD-Rice data suggested that the abundant small village buildings, pools, roads, ditches. and 
wetlands were misclassified into rice paddy fields. The NLCD-Rice data in some areas were derived 
from the images during the peak vegetation growing season; however, there were two types of tillage 
(single- and double-cropping rice) in the study area. For example, the image used for the NLCD-Rice 
was obtained on July 12 of 2015 (Figure 10b); at this time, the early rice in the double-cropping rice 
systems was harvested, but the later rice was not yet planted, so the area of the rice paddy field was 
bare, and the NLCD-Rice may have misclassified it as upland crops or other land use types. 
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Table 3. Confusion matrix between NLCD-Rice in Nanchang County and validation points from 
high-resolution images via Google Earth and in-situ data. 

 
Ground truth pixels Classified  

pixels 
User  

accuracy Rice paddies No-rice 

 
Rice paddies 1526 107 1633 93.45% 

Non-rice 155 452 607 74.46% 
Ground truth pixels  1681 559  OA = 88.30% 
Producer accuracy  90.78% 80.86%  Kappa = 0.70 

 

Figure 10. Comparison between ILMP-Rice and NLCD-Rice for 2015 in Nanchang County. (a) The 
statistics of four types of pixel considered (non-rice in both ILMP-Rice and NLCD-Rice; rice only in 
NLCD-Rice; both rice in ILMP-Rice and NLCD-Rice; and rice only in ILMP-Rice). (b–d) The details of 
the ILMP-Rice and NLCD-Rice data in a case region. (b) The high-resolution image from Google Earth 
on July 12, 2015, (c,d) The ILMP-Rice map and the NLCD-Rice map (in orange). 

5. Discussion 

This study developed an improved rice paddy mapping approach by combining a 
spatiotemporal fusion algorithm with a phenology-based algorithm to map rice paddy fields in 
southern China. First, we employed the ESTARFM approach to fuse Landsat and MODIS images. 
The availability of higher-quality data is essential for mapping rice paddy fields and cropping 
intensity based on optical images at the regional scale. However, previous studies noted that Landsat 
ETM+ and OLI often overlook some rice paddy regions, mainly due to restrictions of data availability 



Remote Sens. 2020, 12, 1022 16 of 19 

 

and quality [13,46]. This study tested the fusion method in southern China and confirmed that the 
fusion of MODIS and Landsat images was a feasible strategy for adding more available data (Figure 
7–8) to improve the discernment capability of phenological information for rice paddy classification 
[26]. Second, pixel- and phenology-based algorithms were applied for mapping rice paddies. This 
algorithm has mostly been used in the cold temperate zones of northeast Asia, where there is one 
single-cropping season [3,14,24]. Our study extended the algorithm based on fused time series images 
into the subtropical region, where there are small cropland field sizes and multiple cropping systems 
employed. The accuracy assessment of the resultant map showed high accuracy and a high kappa 
coefficient (Table 1). Meanwhile, the comparison with the existing NLCD-Rice data revealed that the 
ILMP-Rice map displayed more details about the spatial distribution and lower misclassification in 
the fragmented areas with diverse land-cover types (Figure 10 and Table 3). A similar algorithm has 
also been proven to perform better than the conventional phenology-based algorithm based on a 
single satellite sensor in areas with a single-cropping system [14]. These results suggest that the 
fusion- and phenology-based algorithms have great potential for mapping rice paddies in the 
complex landscapes of southern China. 

Compared with previous algorithms used in areas with a single-cropping system [14], our 
approach could also be applied to improve the mapping of rice paddy cropping intensity in areas 
with complex cropping systems in southern China. Masking other land-cover types has proven 
essential for mapping rice paddies and cropping intensity [13], and improved mapping of rice paddy 
planting areas at high resolutions can improve mapping of cropping intensity [26]. Our study found 
that the multiple cropping indices were approximately 150%. Jiang et al. (2018, 2019) noted that the 
planting area of double-cropping rice and multiple cropping indices considerably decreased in 
southern China, especially in the Poyang Lake plain and Hubei and Hunan plain [6,47]. They 
employed NLCD data to generate rice paddy masks. However, abundant small village buildings, 
pools, ditches, and wetlands were misclassified into rice paddies in the NLCD data (Figure 10), which 
can lead to biased estimates of the sown areas, and hence the derived cropping intensity. In addition, 
they mapped the rice paddy planting area and cropping intensity using a phenology-based algorithm 
based on Landsat data alone. However, southern China has insufficient Landsat observations for 
annual analyses of rice paddy cropping intensity [48]. Our study has improved rice paddy mapping 
methods, as the accuracy assessment of the rice paddy cropping intensity map showed high accuracy 
and a high kappa coefficient at the county scale (Table 2). In recent years, the Google Earth Engine 
platform has provided unprecedented opportunities for geospatial analysis at the regional and global 
scales [49] and has been used to track changes in rice paddy planting area [32]. Thus, combining the 
fusion- and phenology-based algorithm with the Google Earth Engine platform in future studies 
would assist a retrospective analysis of rice paddy cropping intensity change at the regional scale, 
such as in southern China. 

The fusion algorithm could reasonably deduce the crop phenology metrics at the field scale by 
combining the VI data from multi-source satellite optical imagery. Recently, the free and open access 
Sentinel-1 and Sentinel-2 satellites have provided imagery with higher resolution than that of Landsat, 
which could be combined with the Landsat time series images for mapping rice paddies. The 
combined use of optical and radar imagery would further improve rice paddy mapping in the cloudy 
and rainy regions [50,51]. However, recent optical-SAR-synergistic rice mapping algorithms were 
generally applied to small study sites. Therefore, a retrospective analysis of rice paddy cropping 
intensity since the new millennium, at a large scale, with the fusion of multi-source optical time-series 
data, is still an effective strategy. 

6. Conclusions 

We presented a rice paddy mapping approach for the complex landscape of southern China by 
combining a spatiotemporal fusion algorithm with a phenology-based algorithm. This approach was 
tested for 2015 in Nanchang County, which is located on the Poyang Lake plain of southern China. 
The validation tests indicated a high accuracy of rice paddy fields and the multi-cropping map. The 
overall accuracy and kappa coefficient of the rice paddy planting area were 93.66% and 0.85, 
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respectively; and the overall accuracy and kappa coefficient of the multi-cropping systems were 92.95% 
and 0.89, respectively. The comparison of our map with NLCD-Rice map yielded high levels of 
consistency and indicated that our products displayed more detailed information about the spatial 
distribution of rice paddies. With the improvement of cloud contamination detection and the fusion 
method, our improved mapping approach has great potential for rice paddy mapping and 
retrospective analysis of rice paddy cropping intensity in fragmented areas with diverse land-cover 
types found in subtropical regions. 
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