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Abstract: Traditional classification methods used for very high-resolution (VHR) remote sensing
images require a large number of labeled samples to obtain higher classification accuracy. Labeled
samples are difficult to obtain and costly. Therefore, semi-supervised learning becomes an effective
paradigm that combines the labeled and unlabeled samples for classification. In semi-supervised
learning, the key issue is to enlarge the training set by selecting highly-reliable unlabeled samples.
Observing the samples from multiple views is helpful to improving the accuracy of label prediction
for unlabeled samples. Hence, the reasonable view partition is very important for improving
the classification performance. In this paper, a hierarchical multi-view semi-supervised learning
framework with CNNs (HMVSSL) is proposed for VHR remote sensing image classification. Firstly,
a superpixel-based sample enlargement method is proposed to increase the number of training
samples in each view. Secondly, a view partition method is designed to partition the training set into
two independent views, and the partitioned subsets are characterized by being inter-distinctive and
intra-compact. Finally, a collaborative classification strategy is proposed for the final classification.
Experiments are conducted on three VHR remote sensing images, and the results show that the
proposed method performs better than several state-of-the-art methods.

Keywords: semi-supervised learning; VHR remote sensing image classification; multi-view partition;
collaborative classification

1. Introduction

The classification of very high-resolution (VHR) remote sensing images faces great challenges with
the rapid development of remote sensing technologies. The purpose of classification is to assign each
spectral pixel over the observed scene with a certain thematic class. Early classification approaches
focused on spectral-based classification; for instance, the support vector machine (SVM) [1,2], linear
discriminant analysis (LDA) [3,4], maximum likelihood (ML) [5], and random forest (RF) [6]. However,
these methods easily lead to noisy classification maps. To overcome this problem, spectral-spatial
classification methods have become the mainstream in the last decades. The typical spectral-spatial
classification methods include Markov random fields (MRFs) [7], dictionary learning [8], multi-kernel
learning [9], extended multi-attribute profiles (EMAPs) [10], and edge-preserving filtering [11].
Compared with the spectral classification methods, the performance of spectral-spatial classification
methods has been improved significantly.
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Recently, rapid development of deep learning technology has also prompted the further
exploration of remote sensing image classification. Chen et al. [12] first introduced stack autoencoders
(SAEs) into hyperspectral image (HSI) classification. After that, many researchers have done in-depth
studies on DNNs based VHR remote sensing image classification. Cheng et al. [13] proposed a
remote sensing scene classification method that uses bag of convolutional features. To improve
the performance of the model, they further proposed a unified metric learning-based framework
for HSI classification via adding a metric learning regularization term into an SVM classifier [14].
Zhou et al. [15] proposed a compact and discriminative stacked autoencoder for HSI classification.
Considering the 3D characteristics of remote sensing images, Chen et al. [16] proposed 3D deep feature
extraction method via 3D convolutional neural networks (CNNs), and proved the superiority of 3D
CNNs for classification. Mirzaei et al. [17] combined the non-negative tensor factorization and 3D
convolutional neural networks (CNNs) for HSI classification. Seydgar et al. [18] proposed two-stage
methods to integrate 3D CNNs and convolutional lone-short-term memory (CLSTM). CLSTM
combined spectral-vector learning and spatial sequence learning in HSI classification. Qi et al. [19]
incorporated the 3D cascaded CNNs with CLSTM for spectral-spatial sequence learning. Considering
the multi-scale characteristics of the land-cover objects, Zhao et al. [20] proposed the multi-scale-based
CNNs (MCNN) to deal with scale-dependent objects. Zhang et al. [21] proposed diverse region-based
CNNs (DR-CNNs) for HSI classification. Six different area representations were designed to capture
object features at different scales and positions. Cui et al. [22] integrated both multiple receptive fields
features and multiscale spatial features for HSI classification. In particular, this research proposed
an image-based classification framework that is different from the commonly-used patch-based
classification methods.

The performances of the aforementioned supervised classification methods rely heavily on
the quality and quantity of the labeled samples. The labeled samples are expensive to obtain
and time consuming. Hence, several studies have been conducted to alleviate the human effort
involved and have provided promising classification performances with limited training samples.
Semi-supervised learning is an effective tool that works by combining the limited labeled samples with
the highly-reliable unlabeled samples. Semi-supervised learning has been widely applied in remote
sensing image classification; for instance, see the semi-supervised random forest [23], semi-supervised
deep fuzzy C-mean clustering [24], transudative SVM [25], semi-supervised multinomial logistic
regression (MLR) [26], semi-supervised SAEs [27], and ladder networks [28]. In [29], Zheng et al.
proposed a geometric low-rank Laplacian regularized semi-supervised classifier to exploit the spatial
and spectral structure of HSI data. In addition, the research based on multi-view semi-supervised
learning methods has attracted lots of interest. Multi-view semi-supervised learning relies on multiple
sets of features. The typical semi-supervised learning methods are co-training methods [30]. In a
co-training method, two learners are trained independently from two distinct views, and some
highly-reliable unlabeled samples are labeled by each to augment the training set and improve the
performance of the classifier. For co-training semi-supervised classification methods, the main problem
is to construct two distinct views. In [31], original spectral features and the 2D Gabor features are used
as two distinct views, and in [32], Romaszewski et al. introduced tracking-learning-detection (TLD)
co-training framework for HSI classification, and designed two types of "experts" for classification.
In [33], the labeled and unlabeled samples are used together to create several diverse prototype sets,
and each prototype set can represent a different visual concept. The pseudo-labels are assigned to
the images within the same prototype. In [34], Dai et al. introduced the sample partition method into
remote sensing image classification, and proposed semi-supervised remote sensing image classification
based on convolutional neural networks and ensemble learning.

In co-training methods, the two views are required to be independent of each other under given
conditions. The greater the differences between the two views, the lower the possibility that the
two learners will mislabel the same sample simultaneously. However, a significant disadvantage of
co-training is that the assumption about the existence of sufficient and redundant views is a luxury
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hardly met in most real-case scenarios [35,36]. The view partition methods presented recently mainly
consist of two categories: extracting different features from the original sample set, and single view
partitioning (partitioning of the original sample set into several subsets). The former makes it difficult
to obtain two distinct views, while the latter leads to the further reduction of labeled samples in each
partition, and is usually applied under the conditions of sufficient labeled samples. In this paper,
we present a methodology for splitting the feature set into two independent sets utilizing K-means
and propose a hierarchical multi-view semi-supervised learning framework with CNNs (HMVSSL)
for VHR remote sensing image classification to achieve effective and independent view partitioning
with the limited labeled samples. The merits of our work are mainly twofold: (1) effective sample
enlargement before view partition and (2) construction of a view partition set. The former usually
requires sufficient labeled samples to guarantee the reliability of the prediction. For limited labeled
samples, a superpixel-based sample enlargement process is designed to enlarge the training set first.
In this way, the number of labeled samples in each partition set will not decrease sharply. The latter one
ensures that the differences between two views should be large enough to confirm the effectiveness of
the decision. The ideal partition subset should be inter-distinctive and intra-compact. According to
this principle, we designed a novel view partition method. Through the calculation of intra-class and
inter-class distances, the diversity of the view partition can be effectively improved.

The main contributions of the proposed HMVSSL model are summarized as follows:
(1) A hierarchical semi-supervised learning framework is proposed. The proposed model

consists of three levels: superpixel-based sample enlargement, construction of view partition set,
and collaborative classification.

(2) Initial sample expansion via initial classification and superpixel segmentation is proposed to
enlarge the partitioned sample set.

(3) A novel view partition strategy is proposed to promote the inter-distinctiveness and
intra-compactness for the view partition sets.

The rest of the paper is organized as follows: Section 2 shows the related works. The details of the
proposed method are described in Section 3. Section 4 presents the experimental results and analysis,
followed by a conclusion of our work.

2. Related Works

2.1. Deep Convolutional Neural Networks

One of the most important deep learning models is the convolution neural network (CNN),
which is widely used in VHR remote sensing image classification [37,38]. In general, traditional CNNs
consist of five fundamental structures: the convolutional layer, non-linear mapping (NL) layer, pooling
layer, full connection (FC) layer, and classification layer. The deep structure of CNNs is achieved by
alternating a series of convolutional, NL, and pooling layers. The general CNN structure is shown in
Figure 1.

Input Image
Convolutional 

layer

Pooling 

layer

Convolutional 

layer

Pooling 

layer

Full connection 

layer

Classification 

layer

Figure 1. Typical CNN structure with seven layers.
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In the convolutional layer, the output convolution features are obtained by convolving the
trainable convolution kernel and the input sample or feature. Assume the input feature is xl−1, and l is
the lth layer of the CNNs. The output convolution feature is expressed as [39]:

xl = xl−1 ∗ Fl + Bl (1)

where ∗means the convolution operator, and Fl and Bl refer to the lth convolution kernel and biases,
respectively.

After the convolutional layer, an NL layer follows to enhance the non-linear capability of the
network. In this paper, the ReLU function is used as the non-linear activation function [40].

ReLU(xl) = max(xl , 0) (2)

The purpose of pooling layer is to enhance the invariance of the learned feature by reducing the
size of the features. Then, the output pooling features are rearranged as a feature vector and input to
the FC layer. Finally, a softmax classifier is connected at the end of the CNNs for classification.

2.2. Superpixel Segmentation

Superpixel segmentation can adaptively segment the image into several homogeneous regions
according to the intrinsic spatial structure [41]. Figure 2 shows the superpixel segmentation maps
with different scales. In VHR remote sensing image classification, it is generally assumed that the
pixels within each superpixel belong to the same category. Based on this assumption, Fang et al. [42]
exploited the multi-scale superpixel features via multi-kernel learning. Jiao et al. [43] proposed a
collaborative representation-based multiscale superpixel fusion method for HSI classification. Feng
et al. [44] proposed a superpixel tensor sparse coding model for HSI classification. In our previous
work, we proposed superpixel-based 3D CNNs for HSI classification [45]. A spatial feature map is
extracted from HSI data to suppress the noisy pixels in classification results. Zheng et al. [46] proposed
superpixel-guided training sample enlargement. Similar to our work, superpixel, which contains
training samples belonging to only one class, was researched, and all the pixels within this superpixel
were assigned to the class of the training samples it contained. All these pixels were used together with
the initial training samples to train the classifiers. However, in superpixel segmentation, the mixed
pixels may cause inaccurate positioning of land-cover boundaries, resulting in mislabeled samples
that are added into the training set. Hence, in our method, we only assign the label to the center pixel
of the superpixel to reduce false labeling.

(a) (b) (c)

Figure 2. Superpixel segmentation map: (a) Superpixel number is 500. (b) Superpixel number is 1000.
(c) Superpixel number is 1500.

3. Proposed Method

In this paper, a hierarchical multi-view semi-supervised classification method for VHR remote
sensing image classification is proposed. The proposed method mainly includes three stages:
superpixel-based sample enlargement, the construction of a view partition set, and collaborative
classification. In the first two stages, we will generate three classification maps from different views,
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which provide effective support for the final collaborative classification. The framework of the
proposed method is shown in Figure 3.

Unlabeled samples set

Initial training set

Trained CNNs

Initial classification 

map

Superpixel 

segmentation map
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Figure 3. Framework of the proposed method. The proposed method consists of three stages:
(1) Superpixel-based sample enlargement, which is to enlarge the training set initially. (2) Construction
of view partition set, which is to generate two independent partition views for high-reliable sample
selection. (3) Collaborative classification. Combine the category prediction results of the previous
stages for classification.

3.1. Superpixel-Based Sample Enlargement

Initial training set Ω = {D, L} is extracted by using a rectangular window on randomly selected
pixels; D is the training sample and L is the label. The purpose of this section is to provide more
reliable samples for subsequent view partition. Superpixel can segment the VHR remote sensing image
into several homogenous regions. It is commonly assumed that the pixels within each superpixel share
the same label. Hence, superpixel is always used in pseudo sample labeling. In fact, the rich details in
VHR remote sensing images can interfere with extraction of object boundaries, because of such things
as shadow occlusion. At the same time, due to the existence of the mixed pixels, the boundaries of the
superpixel do not exactly match the object. To avoid the problem of mislabeled samples caused by the
error extraction of boundaries, only the center pixel within each superpixel is selected and added into
the training set. In the following, we will describe how to assign the pseudo label to the center pixels,
in detail.
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To assign a pseudo label to center pixels, the initial training set is used to train the CNNs, and the
initial classification map can be obtained by the trained CNNs.

Ff = g{D, L}(D f ), L f = So f tmax(Ff ) (3)

where g(∗) means the CNNs trained by the initial training set, D f represents all unlabeled samples, Ff
is the predicted feature, and L f represents the predicted labels. According to the predicted label, the
initial classification map G1 is obtained.

We perform superpixel segmentation on the VHR remote sensing image, and project the
segmentation map onto the initial classification map. This process is shown in Figure 4. If the
pixels within the superpixel have the same predicted label, the center pixel of this superpixel and its
predicted label are added into the training set. In the proposed method, entropy rate segmentation [47]
is adopted for superpixel segmentation. The other available superpixel segmentation methods can also
be used here. The new training set Ω = {D, L; D1, L1}, and {D1, L1} consists of the selected unlabeled
samples and their predicted labels.

Initial classification map 

and superpixel 

segmentation

Unlabeled samples set

Initial training set

Superpixel-based 

training set

Mapping

 segmentation

 results 

onto

the

 initial 

classification

 map

Center of pure superpixel 

classification block 

Figure 4. Superpixel-based sample selection. Segment the VHR image with superpixel segmentation,
and the center pixel of superpixel with “pure” classification is selected to enlarge the training set.

3.2. Construction of a View Partition Set

In this section, two partition sets are constructed from different views of the feature domain.
The purpose of view partitioning is to make each partition set have the characteristics of
inter-distinctiveness and intra-compactness; meanwhile, the correlation between different views
is as low as possible. For this purpose, we designed a two-step partition method for view partitioning.

Through the trained CNNs in Section 3.1, the features of each training sample can be obtained.
Assume the feature set of the training set Ω is FΩ; in the following, we will partition the feature set FΩ
into two views. Figure 5 shows the view partitioning process. Notice that the partition process is only
applied on the feature set of the training samples.

Unlabeled samples set

Initial training set

Superpixel-based 

training set

Training set

Class 1

Class 2

Class N

 known 

label
K-means

K-means

K-means

Class 1

Class 2

Class N

Class N

Class 1 Class 2

Partition set 1 Partition set 2

Intra-class 

partition

Inter-class 

partition Select class 

group with a 

large intra-class 

distance

The rest two class 

groups to form the 

new class group

Figure 5. The view partitioning process. Two independent view partition sets are constructed based on
the training set.
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The proposed view partitioning process consists of two parts: intra-class partitioning and
inter-class partitioning. The purpose of intra-class partitioning is to enhance the intra-compactness
of each partition and the difference between the two partitions. According to the labels of the
training samples, the feature set FΩ can be divided into N subsets; N is the class number, and
FΩ = {F1, F2, ..., FN}. K-means [48] is an unsupervised cluster algorithm, which can achieve better
clustering results with a lesser time cost. Hence, K-means is applied on each class for clustering,
respectively. Since two view partition set is constructed in this section, each class is divided into two
subsets, FΩ = {{F1

1 , F1
2 }, {F2

1 , F2
2 }, {F3

1 , F3
2 }, ..., {FN

1 , FN
2 }}.

In the second part, the feature set FΩ is merged into two partition sets. The principle of the
merging is to enlarge the inter-distinctiveness within each partition set. The merge process is carried
out class-by-class. Assume the two partition sets are Ω1 = {F1

1 } and Ω2 = ∅. For Class 1 and Class 2,
the corresponding intra-class partition feature sets are {F1

1 , F1
2 } and {F2

1 , F2
2 }. For each feature subset,

the feature center is calculated via averaging the features of each feature subset, which are denoted
as {C1

1 , C1
2} and {C2

1 , C2
2}. For the feature center C1

1 , calculate its euclidean distances from C2
1 and C2

2 ,
and select a feature set with larger distance to join the partition Ω1. Assuming that C1

1 and C2
1 have a

smaller difference, then Ω1 = {F1
1 , F2

1 }, and the other two feature subsets are merged into partition
Ω2 = {F1

2 , F2
2 }. Similarly to the merging process of Classes 1 and 2, the feature subsets {Ω1, Ω2} and

{F3
1 , F3

2 } will be merged as described above. Until the feature subsets {FN
1 , FN

2 } are merged into the
two partition sets, the view partitioning process is finished. Equation (4) shows the whole merging
process.

Initial : Ω1 = {F1
1 } Ω2 = ∅

Step1 : Ω1 = {F1
1 , F2

1 } Ω2 = {F1
2 , F2

2 }, i f d(C1
1 , C2

1) > d(C1
2 , C2

2)

Step2 : Ω1 = {F1
1 , F2

1 , F3
2 } Ω2 = {F1

2 , F2
2 , F3

1 } i f d(CΩ1 , C3
2) > d(CΩ2 , C3

1) (4)

... ... ... ...

StepN − 1 : Ω1 = {F1
1 , F2

1 , F3
2 , ..., FN

2 } Ω2 = {F1
2 , F2

2 , F3
1 , ..., FN

1 } i f d(CΩ1 , CN
2 ) > d(CΩ2 , CN

1 )

The inter-class partition and inter-class merge process can enable us to obtain two partition sets
with different views. Although the partitioning process is not completely orthogonal, the proposed
method can make the two partition sets far apart.

The CNNs are trained via partition sets Ω1 and Ω2, respectively. Two classification maps G2 and
G3 with large differences can be obtained for the final decision.

3.3. Collaborative Classification

In Sections 3.1 and 3.2, the classification maps of G1, G2, and G3 were obtained, respectively.
Since these three classification results were obtained from three different training sets, in this section,
the three classification maps are combined for final classification.

The collaborative classification process is shown in Figure 6. The final training set is constructed
based on all the samples needed to be classified, which is irrelevant to the previously assigned
pseudo-label. If the classification results of the sample in the three classification results are the
same, then add this sample and its pseudo label to the training set. Because the training sets are
large, computational complexity is increased; this also exacerbates the problems of sample imbalance.
Therefore, we take the category with the fewest samples as the benchmark, and randomly select the
corresponding number of samples from the other categories to form the new training set. Train the
CNNs with the new training set and get the final classification result. The algorithm execution process
of the proposed method is shown in Algorithm 1.
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Class 1

Class 2

Class 3

Class N

Randon select

Sample select for each class

Initial training set 

The first partition training set 

The second partition training set 

Collaborative training set Final training set

Figure 6. Construction of the final training set based on the samples selected in the previous stages.
The green markers are the positions of the selected training samples.

Algorithm 1 Hierarchical multi-view semi-supervised learning for VHR remote sensing image
classification.
Input: Training set Ω = {D, L} and unlabeled testing set.
Output: Label predicted for the unlabeled samples.

Level 1: Superpixel-based sample enlargement
1: Train the CNNs with training set Ω = {D, L} and get the initial classification map G1.
2: Segment the VHR image with superpixel segmentation method.
3: Select appropriate unlabeled samples based on steps 1 and 2 to enlarged the training set Ω .

Level 2: View partition
4: According to the trained CNNs (step 1), obtain the feature set FΩ of training set Ω .
5: Intra-class partition for feature set FΩ by K-means.
6: Intra-class partition for feature set FΩ by K-means.
7: Train the CNNs with the two partition sets, respectively.
8: Two classification maps G2 and G3 are obtained according to the trained CNNs (Step 7).

Level 3: Collaborative classification
9: Select unlabeled samples with the same label prediction on G1, G2, G3 to enlarge the training set.

10: Train the CNNs with the new training set.
11: Predict the labels of the unlabeled samples using the trained CNNs (Step 10).

4. Experimental Results

4.1. Datasets

The following three VHR remote sensing images are used in our experiments.
(a) Aerial data [49] was acquired by an ADS80 remote sensor on a plane. The spatial resolution

of this scene is 0.32 m with three bands. The Aerial data are 560 lines by 360 samples; there are six
classes available, including grass, water, road, trees, building, and shadow. The image data and its
ground-truth map are shown in Figure 7a,b, respectively.
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(a) (b)

Grass

Water

Road

Trees

Building

Shadow

Figure 7. Aerial data: (a) Image data. (b) Available ground-truth.

(b) JX_1 data were collected from UVA platform and Canon EOS 5D Mark II camera, and the
flight elevation was 100 m. JX_1 data are a small subscene of JX image [49]. The size of the JX_1 data
in pixels is 500× 700 with a spatial resolution of 0.1 m. JX_1 data have three bands with six classes
available. Figure 8a,b show the image data and the ground-truth map, respectively.

(a) (b)

Farmland

Building

Road

Trees

Grass

Shadow

Figure 8. JX_1 data: (a) Image data. (b) Available ground-truth.

(c) Pavia University data (http://www.ehu.eus//ccwintco/index.php?title=Hyperspectral_
Remote_Sensing_Scenes.) were collected by the reflective optical system imaging spectrometer
(ROSIS-3) optimal sensor on July, 8, 2002. The original HSI contains 115 spectral bands; after removing
the noisy bands, only 103 bands are remained. This scene, with a size of 610× 340, has a spatial
resolution of 1.3 m. In this data set, nine classes are available for classification. The false color image
data and its ground-truth are shown in Figure 9a,b, respectively.

(a) (b)

Asphalt

Meadows

Gravel

Trees

Mental sheets

Bare Soil

Bitumen

Bricks

Shadows

Figure 9. Pavia University data: (a) False-color map. (b) Available ground-truth.

http://www.ehu.eus//ccwintco/index.php?title=Hyperspectral_Remote_Sensing_Scenes
http://www.ehu.eus//ccwintco/index.php?title=Hyperspectral_Remote_Sensing_Scenes
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4.2. Experiment Setup

In this paper, we compare the performance of our method with several start-of-the-art VHR
remote sensing image classification methods, including a supervised classification method and
semi-supervised classification methods.

The supervised classification method is a CNN [12]. CNNs are an effective feature extraction tool
and have been widely used in VHR remote sensing image classification.

The semi-supervised classification methods include TSVM [25], semi-supervised MLR
(SemiMLR) [26], a semi-supervised SAE (SemiSAE) [27], and a ladder network [28].

TSVM is an iterative algorithm, which incorporates the unlabeled samples into a training phase,
and tries to search a much reliable separating hyperplane (in the kernel space).

SemiMLR combines the labeled samples and the unlabeled samples to improve the performance
the multiple logistic regression classifier.

SimiSAE uses the large number of unlabeled samples to pre-train the unsupervised autoencoder,
and fine-tunes the networks with the small labeled samples. The size of each hidden layer in the
pre-trained autoencoder is: 3− 30− 30− 30− 6 (for Aerial data and JX_1 data), and 103− 300− 300−
300− 9 (for Pavia University data).

The ladder network is a recently proposed semi-supervised classification network. It consists of
two encoders and one decoder, and during the training process, a supervised and an unsupervised
cost are combined together for training. The supervised cost is to exploit the deep features of the
labeled samples, and the unsupervised cost is to constraint reconstruction error of unlabeled samples.
The architecture of the ladder network is 3− 30− 30− 30− 6 (for Aerial data and JX_1 data), and 103−
300− 300− 300− 9 (for Pavia University data).

In addition, to present the advantages of the proposed view partition method, we replaced the
proposed two views with spectral feature and 2D Gabor feature [31] in the proposed framework, which
is called spectral-spatial view in the following experiments.

The other parameters of the compared methods were set as the defaults from their papers. For the
proposed method, the parameters were: the window size of the sample is 21× 21, the superpixel
number is 1000; and for CNNs, the first convolutional layer had 20 filters of size 6× 6, the second
convolutional layer had 40 filters of size 5× 5. The full connection layer had 100 units, the iteration
number was 1000, and the learning rate was set as 0.01. The numbers of the initial training samples are
shown Table 1, and the average values of overall accuracy (OA) and average accuracy (AA), and the
kappa coefficient, were used to evaluate the classification results.

Table 1. Numbers of the initial training and testing samples.

Class
Aeria Data JX_1 Data Pavia University Data

Training Testing Training Testing Training Testing

1 100 14,719 100 46,276 100 6631
2 100 37,022 100 45,278 100 18,649
3 100 5791 100 20,347 100 2099
4 100 4077 100 27,849 100 3064
5 100 3374 100 14,956 100 1345
6 100 3374 100 8019 100 5029
7 100 1330
8 100 3682
9 100 947

total 1200 100,463 1200 162,785 1800 42,776

4.3. Experimental Results on Aerial Data

In this experiment, the performance of the proposed HMVSSL method was evaluated by using
Aerial data. Figure 10 describes the classification results, and Table 2 tabulates the classification
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accuracies of the compared methods. The initial training and final training pixels are shown in
Figure 10a with red and green markers, respectively. It is clear that the number of training samples
increased significantly. In order to assess the label prediction accuracy for the selected unlabeled
samples, we calculated the accuracy of these samples within ground-truth regions, and the accuracy is
100%.

(b) (c) (d)

(e) (f) (g) (h)

(a)

Figure 10. Classification results of the methods for Aerial data: (a) Selected training samples (red
markers are the initial selected training points, and the green markers are the final selected training
points). (b) CNNs. (c) TSVM. (d) SemiMLR. (e) SemiSAE. (f) Ladder network. (g) Spectral-spatial view.
(h) HMVSSL (proposed).

Compared with CNNs, the advantages of unlabeled samples are clearly revealed in the proposed
method. The classification results of road and water have been improved significantly. Meanwhile,
as can be shown from Table 2, the classification accuracies of road and water are increased 1.05%
and 0.98%, respectively, and the OA value is increased by 1.6% compared to CNNs. For other
semi-supervised learning methods, TSVM has lower classification performance for road, trees, and
shadow, and Table 2 also reports that the classification accuracy of road is only 4.84%. SemiSAE has
a lower classification performance in grass, and the OA value of grass is 28.28%. The classification
maps of semiSAE and the ladder network appear to be obviously noisy. The SemiMLR method shows
obvious advantages in smooth areas, such as water, road, and building, and the classification accuracies
of these three categories are higher than that of the proposed method. However, for the non-smooth
regions and small details, e.g., trees and shadow, the classification accuracy is significantly reduced.
The classification accuracies of trees and shadow are 19.94% and 18.5% lower than that of the proposed
method. In the proposed HMVSSL method, the classification accuracy of each category is above
94%, and there is no bias to one category. Because Gabor wavelet has obvious advantages for texture
extraction, the spectral-spatial view gets higher classification accuracies on trees and roads. However,
the redundancy between spectral and spatial views is large, and results in misclassified samples added
into the training set. Hence the classification accuracy of spectral-spatial views is slightly lower than
that of the proposed views, especially at the boundary of the building regions.
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Table 2. Classification accuracies of the compared methods on Aerial data.

Class CNNs TSVM SemiMLR SemiSAE Ladder
Networks

Spectral-
Spatial View

HMVSSL

1 0.9948 0.9766 0.9808 0.2828 0.9811 0.9906 0.9963
2 0.9320 0.9421 0.9643 0.8356 0.7908 0.9401 0.9600
3 0.9168 0.0484 0.9698 0.9686 0.9444 0.9606 0.9418
4 0.9588 0.5013 0.7589 0.7331 0.6762 0.9674 0.9583
5 0.9306 0.8057 0.9750 0.8595 0.8866 0.9374 0.9410
6 0.9677 0.6037 0.7825 0.8459 0.8554 0.9766 0.9775

OA 0.9421 0.8182 0.9564 0.7669 0.8588 0.9501 0.9581
AA 0.9501 0.6463 0.9052 0.7542 0.8554 0.9621 0.9625

Kappa 0.9202 0.7444 0.9389 0.6896 0.8099 0.9311 0.9419

4.4. Experimental Results on JX_1 Data

In this section, the classification performance is evaluated on JX_1 data. The classification maps
and accuracies are illustrated in Figure 11 and Table 3, respectively. JX_1 data contains not only
homogeneous regions with smaller intra-class differences, such as farmland, buildings, and roads,
but also land-cover areas with large intra-class differences, such as trees and grass.

(c)

(e) (f) (g) (h)

(d)(a) (b)

Figure 11. Classification results of the compared methods for JX_1 data: (a) Selected training samples
(red markers are the initial selected training points, and the green markers are the final selected training
points). (b) CNNs. (c) TSVM. (d) SemiMLR. (e) SemiSAE. (f) Ladder network. (g) Spectral-spatial view.
(h) HMVSSL (proposed).
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Table 3. Classification accuracies of the compared methods on JX_1 data.

Class CNNs TSVM SemiMLR SemiSAE Ladder
Networks

Spectral-
Spatial View

HMVSSL

1 1.0000 0.9992 0.9990 0.9923 0.9976 0.9985 0.9984
2 0.9548 0.8884 0.9943 0.9251 0.9922 0.9942 0.9990
3 0.9987 1.0000 1.0000 0.9996 1.0000 0.9975 0.9989
4 0.9545 0.8515 0.9794 0.9123 0.9192 0.9674 0.9598
5 0.9712 0.7967 0.8024 0.7904 0.7676 0.8970 0.9319
6 0.9759 0.9399 0.9428 0.9608 0.9337 0.9592 0.9694

OA 0.9757 0.9217 0.9736 0.9409 0.9587 0.9800 0.9820
AA 0.9759 0.9126 0.9530 0.9302 0.9350 0.9679 0.9747

Kappa 0.9691 0.9004 0.9664 0.9251 0.9474 0.9746 0.9771

As can be seen from Figure 11, the compared methods show different classification performances
for trees and grass. The classification maps of TSVM, SemiSAE, and ladder networks methods show
obvious misclassifications within these two categories. In Table 3, the classification accuracies of grass
(class 5) in these three methods are 79.67%, 79.04%, and 76.76%; meanwhile, for CNNs, SemiMLR, and
the proposed method—97.12%, 80.24%, and 93.19%. CNNs, SemiMLR, and the proposed methods
show better regional consistency. Although SemiMLR obtains a competitive OA value, its classification
performance for small details are poorer, such as shadow (94.28% for SemiMLR and 96.94% for
the proposed method). This case is similar to the former analysis on Aerial data. The proposed
method achieves better performance in both visuals and classification accuracy. For the spectral-spatial
view, the proposed method presented higher initial classification accuracies on the JX_1 data, and
hence the probability that the same sample is mislabeled from the two views is small. Therefore,
the spectral-spatial view also achieves better classification results. However, two independent views
can obtain more high-reliability unlabeled samples, and therefore, the classification accuracy is slightly
higher than that of the spectral-spatial view-based classification method.

4.5. Experimental Results on Pavia University Data

Pavia University data is a well-known HSI data which contains 103 bands. For CNNs and the
proposed methods, PCA is performed first, and the first three PCs are maintained for the following
classification. For the other methods, the input samples are extracted from the original HSI data. Pavia
University data contains building and roads with rich details, and grass and soil areas with noisy
information, which increases the difficulty of accurate land-cover interpretation.

Figure 12 and Table 4 present the classification maps and classification accuracies, respectively.
TSVM and SemiSAE present classification maps with obvious salt-and-pepper noise, especially for
SemiSAE—the classification accuracy is only 60.22%. After the incorporation of the spatial information,
CNNS, SemiMLR, and the proposed method show better anti-noise performance. Due to the use
of unlabeled samples, the OA value obtained by the proposed method is 2.64% higher than that
of CNNs. For spectral-spatial view-based classification, reduced initial accuracy can lead to the
probability of two views mislabeling the same sample. Hence, compared with CNNs, the increase of
the classification accuracy is not significant. Therefore, when the accuracy of the initial classification
is low, the independence of the two views has an important influence label decision process of the
unlabeled samples. Hence, the proposed method performs better than the compared approaches in
classification metrics, detail preservation, and region smoothness.
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Table 4. Classification accuracy of the compared methods on Pavia University data.

Class CNNs TSVM SemiMLR SemiSAE Ladder
Networks

Spectral-
Spatial View

HMVSSL

1 0.9143 0.6265 0.8085 0.6233 0.6373 0.9020 0.9385
2 0.9089 0.7522 0.9045 0.5186 0.3995 0.8946 0.9309
3 0.8833 0.7751 0.9252 0.7851 0.4493 0.8218 0.9419
4 0.9703 0.9367 0.9507 0.9076 0.8580 0.9768 0.9758
5 0.9985 0.9963 0.9948 0.9606 0.9896 1.0000 0.9970
6 0.7600 0.7447 0.9978 0.4983 0.8288 0.8039 0.8540
7 0.8211 0.8203 0.9910 0.7857 0.9195 0.9308 0.9361
8 0.8506 0.6070 0.8724 0.4723 0.6043 0.8786 0.8509
9 0.9905 0.9894 0.9958 0.9958 1.0000 0.9937 1.0000

OA 0.8923 0.7487 0.9097 0.6022 0.5878 0.8927 0.9237
AA 0.8997 0.8053 0.9378 0.7275 0.7429 0.9114 0.9361

Kappa 0.9905 0.6806 0.8829 0.5251 0.6080 0.8593 0.8995

(b) (c)

(e) (f) (g) (h)

(d)(a)

Figure 12. Classification results of the compared methods for Pavia University data: (a) Selected
training samples (red markers are the initial selected training points, and the green markers are the
final selected training points). (b) CNNs. (c) TSVM. (d) SemiMLR. (e) SemiSAE. (f) Ladder network.
(g) Spectral-spatial view. (h) HMVSSL (proposed).

5. Discussion

In the proposed method, the number of training samples is first enlarged by superpixel
segmentation. The center pixel of the superpixel with “pure” classification is selected to enlarge
the training set. Therefore, the superpixel number determines the correctness of the unlabeled sample
selection. Figure 13 shows the classification results with different numbers of superpixels. The number
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of superpixel ranges from 50 to 2000. For Aerial data and JX_1 data, the effect of superpixel number
on the classification accuracies is not obvious. But the situation is different for the Pavia University
data. For Pavia University data, when the superpixel number is less than 500, the OA values are slight
reduced, because a small number of unlabeled samples is selected. However, when the superpixel
number is larger than 2000, the OA value also decreases due to the mislabeling of the unlabeled samples.
Therefore, the classification evaluation metrics on the Pavia University data are more sensitive to the
superpixel number.

50 250 500 1000 2000 4000
0.89

0.90

0.91

0.92

0.93

0.94

0.95

0.96

0.97

0.98

C
la

s
s
if
ic

a
ti
o

n
 a

c
c
u

ra
c
y
(O

A
)

Diffetent number of superpixels

 Aeria

 JX_1

 Pavia University

Figure 13. Classification results with different numbers of superpixels.

The other analysis is about the influence of the number of labeled samples on the classification
accuracy. Figure 14 shows the classification performance of the compared and proposed methods.
To further analyze the performance of these methods with the limited training sample, the number
of labeled samples per class ranges from 10 to 100. Since the sample selection process is related to
the initial classification map, the proposed method does not achieve good performance when the
number of training samples is less than 30. However, as the number of training samples increases,
the OA values are higher than that of the compared approaches. Therefore, the proposed method has
superiority over the other methods when handling the problem of limited training samples.

(a) (b) (c)

Figure 14. Classification accuracies of the comparisons with different numbers of labeled samples per
class: (a) Aeria data. (b) JX_1 data. (c) Pavia University data.

6. Conclusions

This paper proposed a novel hierarchical multi-view semi-supervised learning framework for
VHR remote sensing image classification. The proposed method consists of three levels: The first level
is the enlargement of the training set, which may prevent the sharp reduction in the number of training
samples after view partition. The second level is view partitioning, which can obtain two different
views with the characteristics of inter-distinctiveness and intra-compactness. The designed view
partitioning method can effectively improve the reliability of unlabeled sample selection. The third
level is to combine the classification results of the previous levels for collaborative classification.
Experiments were conducted on three VHR remote sensing datasets containing various land-cover
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classes, such as water, building, road, and grass. The experimental results verify the effectiveness of
the proposed method compared to several state-of-the-art approaches.

There are two improvements that can be considered in future work. On the one hand, in the
classification problem, most of the samples belong to “simple samples” that can be classified correctly.
The remaining few samples are difficult to classify. These samples can be called “difficult samples.”
In our work, the unlabeled samples are selected based on the correctly classified samples, and therefore,
the improvement of classification performance is still limited for the “difficult samples.” Hence our
further work is to effectively distinguish the difficult samples. On the other hand, the main contribution
of the proposed method is view partitioning. Although self-training, co-training, and tri-training
are all well-known semi-supervised classification frameworks, the reasons that we introduce view
partitioning into co-training are: (1) Multi-view is always combined with co-training in most published
multi-view-based remote sensing image classification methods. The main contribution of the proposed
method is view-partitioning. In order to better understand to the background of view partitioning,
we incorporate the proposed method by utilizing co-training. (2) For self-training, it mainly focuses on
single-view learning. For tri-training, it usually uses the bootstrap sampling method to generate three
different views. And for co-training, view construction is an important process. Hence, we evaluated
the proposed method by utilizing co-training. In fact, the proposed view partitioning can also be
utilized in self-training and tri-training methods. Perhaps that method can achieve better results.

Author Contributions: C.S. was primarily responsible for the original idea and experimental design. Z.L. and
X.Y. contributed to the experimental analysis. P.X. provided important suggestions for improving the quality of
the paper. I.B. provided suggestions for the revised paper. All authors have read and agreed to the published
version of the manuscript.

Funding: This research was funded by the National Natural Science Foundation of China (61902313, 61701396,
61973250, 61801380) and the Natural Science Foundation of Shaan Xi Province (2018JQ4009).

Acknowledgments: The authors would like to express their gratitude to the editor-in-chief, the associate editor,
and the reviewers for their insightful comments and suggestions.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Bazi, T.; Melgain, F. Toward an optimal SVM classification system for hyperspectral remote sensing images.
IEEE Trans. Geosci. Remote Sens. 2006, 44, 3374–3385. [CrossRef]

2. Patra, S.; Bruzzone, L. A novel som-svm-based active learning technique for remote sensing image
classification. IEEE Trans. Geosci. Remote Sens. 2014, 52, 6699–6910. [CrossRef]

3. Li, W.; Prasad, S.; Fowler, J.E.; Bruce, L.M. Locality-preserving dimensionality reduction and classification
for hyperspectral image analysis. IEEE Trans. Geosci. Remote Sens. 2012, 50, 1185–1198. [CrossRef]

4. Xanthopoulos, P; Pardalos, P.M. Linear Discriminant Analysis; Springer: New York, NY, USA, 2007;
pp. 237–280.

5. Shafri, H.Z.M.; Suhaili, A.; Mansor, S. The performance of maximum likelihood, spectral angle mapper,
neural network and decision tree classifiers in hyperspectral image analysis. J. Comput. Sci. 2007, 6, 419–423.
[CrossRef]

6. Ham, J.; Chen, Y.C.; Crawford, M.M.; Ghosh, J. Investigation of the random forest framework for classification
of hyperspectral data. IEEE Trans. Geosci. Remote Sens. 2007, 43, 492–501. [CrossRef]

7. Pan, C.; Gao, X.B.; Wang, Y.; Li, J. Markov random field integrating adaptive interclass-pair penalty and
spectral similarity for hyperspectral image classification. IEEE Trans. Geosci. Remote Sens. 2018, 57, 2520–2534.
[CrossRef]

8. Flores, E.; Zortea, Z.; Scharcanski, J. Dictionaries of deep features for land-use scene classification of very
high spatial resolution images. Pattern Recognit. 2019, 89, 32–44. [CrossRef]

9. Deng, C.; Liu, X.L.; Li, C.; Tao, D.C. Active multi-kernel domain adaptation for hyperspectral image
classification. Pattern Recognit. 2018, 77, 306–315. [CrossRef]

10. Benediktsson, J.A.; Palmason, J.A.; Sveinsson, J.R. Classification of hyperspectral data from urban areas
based on extended morphological profiles. IEEE Trans. Geosci. Remote Sens. 2005, 43, 480–491. [CrossRef]

http://dx.doi.org/10.1109/TGRS.2006.880628
http://dx.doi.org/10.1109/TGRS.2014.2305516
http://dx.doi.org/10.1109/TGRS.2011.2165957
http://dx.doi.org/10.3844/jcssp.2007.419.423
http://dx.doi.org/10.1109/TGRS.2004.842481
http://dx.doi.org/10.1109/TGRS.2018.2874077
http://dx.doi.org/10.1016/j.patcog.2018.12.019
http://dx.doi.org/10.1016/j.patcog.2017.10.007
http://dx.doi.org/10.1109/TGRS.2004.842478


Remote Sens. 2020, 12, 1012 17 of 18

11. Kang, X.D.; Li, S.T.; Benediktsson, J.A. Spectral-spatial hyperspectral image classification with
edge-preserving filtering. IEEE Trans. Geosci. Remote Sens. 2014, 52, 2666–2677. [CrossRef]

12. Chen, Y.S.; Lin, Z.H.; Zhao, X.; Wang, G.; Gu, Y.F. Deep learning-based classification of hyperspectral data.
IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2014, 7, 2094–2107. [CrossRef]

13. Cheng, G.; Li, Z.P.; Yao, X.W.; Guo, L.; Wei, Z.L. Remote sensing image scene classification using bag of
convolutional features. EEE Geosci. Remote Sens. Lett. 2017, 14, 1729–1735. [CrossRef]

14. Cheng, G.; Li, Z.P.; Han, J.W.; Yao, X.W.; Guo, L. Exploring hierarchical convolutional features for
hyperspectral image classification. IEEE Trans. Geosci. Remote Sens. 2018, 56, 6712–6722. [CrossRef]

15. Zhou, P.C.; Han, H.W.; Cheng, G.; Zhang, B.C. Learning compact and discriminative stacked autoencoder
for hyperspectral image classification. IEEE Trans. Geosci. Remote Sens. 2019, 57, 4823–4833. [CrossRef]

16. Chen, Y.S.; Jiang, H.; Li, C.; Ghamisi, P. Deep feature extraction and classification of hyperspectral images
based on convolutional neural networks. IEEE Trans. Geosci. Remote Sens. 2016, 57, 6232–6251. [CrossRef]

17. Mirzaei, S.; Hamme, H.V.; Khosravani, S. Hyperspectral image classification using non-negative tensor
factorization and 3D convolutional neural networks. Signal Process. Image Commun. 2019, 76, 178–185.
[CrossRef]

18. Seydgar, S.; Naeini, A.A.; Zhang, M.M.; Li, W.; Satari, M. 3-D convolutional-recurrent networks for
spectral-spatial classification of hyperspectral images. Remote Sens. 2019, 11, 883. [CrossRef]

19. Qi, W.C.; Zhang, X.; Wang, N.; Zhang, M.; Cen, Y. spectral-spatial cascaded 3D convolutional neural network
with a convolutional long short-term memory networks for hyperspectral image classification. Remote Sens.
2019, 11, 2363. [CrossRef]

20. Zhao, W.Z.; Du, S.H. Learning multiscale and deep representations for classifying remotely sensed imagery.
ISPRS J. Photogramm. Remote Sens. 2016, 113, 155–165. [CrossRef]

21. Zhang, M.M.; Li, W.; Du, Q. Diverse region-based CNN for hyperspectral image classification. IEEE Trans.
Image Process. 2018, 27, 2623–2634. [CrossRef]

22. Cui, X.M.; Zheng, K.; Gao, L.R.; Zhang, B.;Yang, D.; Ren, J.C. Multi-scale spatial-spectral convolutional
networks with image-based framework for hyperspectral imagery classification. Remote Sens. 2019, 11, 2220.
[CrossRef]

23. Lestner, C.; Saffari, A.; Santner, J.; Bischof, H. Semi-supervised random forests. In Proceedings of the IEEE
12th International Conference on Computer Vision, Kyoto, Japan, 29 September–2 October 2009.

24. Arshad, A.; Riaz, A.; Jiao, L.C. Semi-supervised deep fuzzy C-mean clustering for imbalanced multi-class
classification. IEEE Access 2019, 7, 28100–28112. [CrossRef]

25. Bruzzone, L.; Chi, M.; Marconcin, M. A novel transductive SVM for semisupervised classification of
remote-sensing images. IEEE Trans. Geosci. Remote Sens. 2006, 44, 3363–3373. [CrossRef]

26. Li, J.; Bioucas-Dias, J.; Plaza, A. Semi-supervised hyperspectral image segmentation using multinomial
logistic regression with active learning. IEEE Trans. Geosci. Remote Sens. 2010, 48, 4085–4098.

27. Fu, Q.Y.; Yu, X.C.; Wei, W.P.; Xue, Z.X. Semi-supervised classification of hyperspectral imagery based on
stacked autoencoders. In Proceedings of the Eighth International Conference on Digital Image Processing
(ICDIP 2016), Chengu, China, 29 August 2016; Volume 10033, p. 10032B-1.

28. Rasmus, A.; Berglund, M.; Honkala, M.; Valpola, H.; Raiko, T. Semi-supervised learning with ladder
networks. In Advances in Neural Information Processing System 28 (NIPS 2015); 2015; pp. 3546–2554. Available
online: http://papers.nips.cc/paper/5947-semi-supervised-learning-with-ladder-networks.pdf (accessed
on 20 March 2020).

29. Feng, Z.X.; Yang, S.Y.; Wang, M.; Jiao, L.C. Learning dual geometric low-rank structure for semisupervised
hyperspectral image classification. IEEE Trans. Cybern. 2019, in press. [CrossRef] [PubMed]

30. Wang, X.Q. Research on multi-view semi-supervised learning algorithm based on co-training. In Proceedings
of the fifth International Conference on Machine Learning and Cybernetics, Dalian, China, 13–16 August
2006; pp. 1276–1280.

31. Zhang, X.R.; Song, Q.; Liu, R.C.; Wang, W.N.; Jiao, L.C. Modified co-training with spectral and spatial views
for semisupervised hyperspectral image classification. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2014, 7,
2044–2055. [CrossRef]

32. Romaszewski, M.; Glomb, P.; Chrolewa, M. Semi-supervised hyperspectral classification from a small
number of training samples using a co-training approach. ISPRS J. Photogramm. Remote Sens. 2016, 121,
60–76. [CrossRef]

http://dx.doi.org/10.1109/TGRS.2013.2264508
http://dx.doi.org/10.1109/JSTARS.2014.2329330
http://dx.doi.org/10.1109/LGRS.2017.2731997
http://dx.doi.org/10.1109/TGRS.2018.2841823
http://dx.doi.org/10.1109/TGRS.2019.2893180
http://dx.doi.org/10.1109/TGRS.2016.2584107
http://dx.doi.org/10.1016/j.image.2019.05.004
http://dx.doi.org/10.3390/rs11070883
http://dx.doi.org/10.3390/rs11202363
http://dx.doi.org/10.1016/j.isprsjprs.2016.01.004
http://dx.doi.org/10.1109/TIP.2018.2809606
http://dx.doi.org/10.3390/rs11192220
http://dx.doi.org/10.1109/ACCESS.2019.2901860
http://dx.doi.org/10.1109/TGRS.2006.877950
http://papers.nips.cc/paper/5947-semi-supervised-learning-with-ladder-networks.pdf
http://dx.doi.org/10.1109/TCYB.2018.2883472
http://www.ncbi.nlm.nih.gov/pubmed/30624236
http://dx.doi.org/10.1109/JSTARS.2014.2325741
http://dx.doi.org/10.1016/j.isprsjprs.2016.08.011


Remote Sens. 2020, 12, 1012 18 of 18

33. Dai, D.X.; Gool, L.V. Ensemble projection for semi-supervised image classification. In Proceedings of the
2013 IEEE International Conference on Computer Vision, Sydney, NSW, Australia, 1–8 December 2013;
pp. 2072–2078.

34. Dai, X.Y.; Wu-Dias, X.F.; Zhang, L.M. Semi-supervised scene classification for remote sensing images:
A method based on convolutional neural networks and ensemble learning. IEEE Geosci. Remote Sens. Lett.
2019, 16, 869–873. [CrossRef]

35. Livieris, I.E. A new ensemble self-labeled semi-supervised algorithm. Informatical 2019, 43, 221–234.
[CrossRef]

36. Livieris, I.E.; Drakopoulou, K.; Tampakas, V.; Mikropoulos, T.; Pintelas, P. An ensemble-basedsemi-
supervised approach for predicting students’ performance. In Research on e-Learning and ICT in Education;
Springer: Cham, Switzerland, 2018; pp. 25–42.

37. Mei, X.G.; Pan, E.; Ma, Y.; Dai, X.B.; Huang, J.; Fan, F.; Du, Q.L.; Zheng, H.; Ma, J.Y. Spectral-spatial attention
networks for hyperspectral image classification. Remote Sens. 2019, 11, 963. [CrossRef]

38. Meng, Z.; Li, L.L.; Jiao, L.C.; Feng, Z.X.; Tang, X.; Liang, M.M. Fully dense multi-scale fusion network for
hyperspectral image classification. Remote Sens. 2019, 11, 2718. [CrossRef]

39. Lecun, Y.; Bottou, L. Gradient-based learning applied to document recognition. Proc. IEEE 1998, 86, 11,
2278–2324. [CrossRef]

40. Glorot, X.; Bordes, A.; Bengio, Y. Deep sparse rectifier neural networks. J. Mach. Learn. Res. 2010, 315–323.
41. Zhang, Y.S.; Jiang, X.W.; Wang, X.X.; Cai, Z.H. Spectral-spatial hyperspectral image classification with

superpixel pattern and extreme learning machine. Remote Sens. 2019, 11, 1983. [CrossRef]
42. Fang, L.Y.; Li, S.T.; Duan, W.H.; Ren, J.C.; Benediktsson, J.A. Classification of hyperspectral images by

exploiting spectral-spatial information of superpixel via multiple kernels. IEEE Trans. Geosci. Remote Sens.
2015, 53, 6663–6674. [CrossRef]

43. Jia, S.; Deng, X.L.; Zhu, J.S.; Xu, M.; Zhou, J.; Jia, X.P. Collaborative representation-based multiscale superpixel
fusion for hyperspectral image classification. IEEE Trans. Geosci. Remote Sens. 2019, 5, 7770–7784. [CrossRef]

44. Feng, Z.X.; Wang, M.; Yang, S.Y.; Liu, Z.; Liu, L.Z.; Wu, B.; Li, H. Superpixel tensor sparse coding for
structural hyperspectral image classification. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2017, 10,
1632–1639. [CrossRef]

45. Shi, C.; Pun, C.M. Superpixel-based 3D deep neural networks for hyperspectral image classification.
Pattern Recognit. 2018, 74, 600–616. [CrossRef]

46. Zheng, C.Y.; Wang, N.N.; Cui, J. Hyperspectral image classification with small training sample size using
superpixel-guided training sample enlargement. IEEE Trans. Geosci. Remote Sens. 2019, 57, 7307–7316.
[CrossRef]

47. Liu, M.Y.; Tuzel, O.; Ramalingam, S.; Chellappa, R. Entropy rate superpixel segmentation. In Proceedings
of the 24th IEEE Conference on Computer Visual and Pattern Recognition, Providence, RI, USA,
20–25 August 2011.

48. Hartigan, J.A.; Wong, M.A. A K-means clustering algorithm. Appl. Stat. 2013, 28, 100–108. [CrossRef]
49. Lv, Z.Y.; Zhang, P.L.; Benediktsson, J.A. Automatic object-oriented, spectral-spatial feature extraction driven

by tobler’s first law of geography for very high resolution aerial imagery classification. Remote Sens. 2017,
9, 285. [CrossRef]

c© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1109/LGRS.2018.2886534
http://dx.doi.org/10.31449/inf.v43i2.2217
http://dx.doi.org/10.3390/rs11080963
http://dx.doi.org/10.3390/rs11222718
http://dx.doi.org/10.1109/5.726791
http://dx.doi.org/10.3390/rs11171983
http://dx.doi.org/10.1109/TGRS.2015.2445767
http://dx.doi.org/10.1109/TGRS.2019.2916329
http://dx.doi.org/10.1109/JSTARS.2016.2640449
http://dx.doi.org/10.1016/j.patcog.2017.09.007
http://dx.doi.org/10.1109/TGRS.2019.2912330
http://dx.doi.org/10.2307/2346830
http://dx.doi.org/10.3390/rs9030285
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Related Works
	Deep Convolutional Neural Networks
	Superpixel Segmentation

	Proposed Method
	Superpixel-Based Sample Enlargement
	Construction of a View Partition Set
	Collaborative Classification

	Experimental Results
	Datasets
	Experiment Setup
	Experimental Results on Aerial Data
	Experimental Results on JX_1 Data
	Experimental Results on Pavia University Data

	Discussion
	Conclusions
	References

