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Abstract: Separating foliage and woody components can effectively improve the accuracy of
simulating the forest eco-hydrological processes. It is still challenging to use deep learning models to
classify canopy components from the point cloud data collected in forests by terrestrial laser scanning
(TLS). In this study, we developed a convolution neural network (CNN)-based model to separate
foliage and woody components (FWCNN) by combing the geometrical and laser return intensity
(LRI) information of local point sets in TLS datasets. Meanwhile, we corrected the LRI information
and proposed a contribution score evaluation method to objectively determine hyper-parameters
(learning rate, batch size, and validation split rate) in the FWCNN model. Our results show that:
(1) Correcting the LRI information could improve the overall classification accuracy (OA) of foliage
and woody points in tested broadleaf (from 95.05% to 96.20%) and coniferous (from 93.46% to 94.98%)
TLS datasets (Kappa ≥ 0.86). (2) Optimizing hyper-parameters was essential to enhance the running
efficiency of the FWCNN model, and the determined hyper-parameter set was suitable to classify all
tested TLS data. (3) The FWCNN model has great potential to classify TLS data in mixed forests with
OA > 84.26% (Kappa ≥ 0.67). This work provides a foundation for retrieving the structural features
of woody materials within the forest canopy.

Keywords: point cloud classification; deep learning model; Terrestrial Laser Scanner (TLS);
convolution neural network (CNN); hyper-parameter optimization

1. Introduction

Separating foliage and woody components within the forest canopy is a key step toward
better simulating various eco-hydrological processes including canopy storage [1,2], stemflow [3],
and throughfall [4]. Moreover, the separation of foliage and woody components will be beneficial
to improve the estimation accuracy of forest biophysical parameters such as leaf area density [5],
woody-to-total area ratio [6], effective leaf area index (LAIe) [7], and aboveground woody biomass [8].
The detail 3-D structural information of a forest stand recorded by terrestrial laser scanning (TLS) makes
it possible to spatially locate the individual foliage elements and twigs within the forest canopy. Thus,
existing researches have used TLS data to classify foliage and woody components at plot level [8–11].

Two commonly used approaches for separating foliage and woody points from TLS data are the
local geometrical feature- [8,9,12] and LRI-based methods [11,13]. The linear (e.g., branches and twigs),
surface (e.g., broadleaves), and random (e.g., needle clusters) distribution of local points in TLS data
can be used to distinguish foliage and woody points [9,14,15]. However, it is still challenging to classify
TLS data in a natural forest based on geometrical features alone due to the complex forest 3-D structure
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resulting from the mixed tree species and the interlacing branches and foliage within the tree crowns.
The laser return intensity (LRI), which is the backscatter strength of an emitted laser beam at a given
wavelength [16], could be recorded point-wise to show the difference between woody components
and foliage [17,18] in TLS data. Existing researches verified that combining the geometrical and LRI
information was a feasible way to improve the classification accuracy of foliage and woody points
from TLS data [11,13,17]. However, various factors affect the LRI and prevent it from being used as
backscatter reflectance information in relation to laser pulse, including the leaf chlorophyll and water
content [19], the footprint sizes of laser beams [20], and the surface roughness of target objects [21].
Therefore, it is necessary to correct TLS-based LRI information before applying it in specific fields of
study [22,23]. Some studies tested using the pointwise true color information recorded in TLS data to
separate foliage and woody components [11,16]. However, the variation in light conditions—due to
shadows—may bias the final classification results [9].

The geometrical and LRI-related features of local points in TLS data could be extracted by
various methods—such as the sphere searching-based [24], voxel-based [25,26], patch-based [27], KD
tree-based [28], or K nearest-based [29] methods—for classifying woody and foliage points. Among
these methods, the sphere searching method is a well-accepted and broadly applied method due to
its robustness [15,24] in keeping the local structural feature of discrete point cloud data. However,
the selection of the optimal radius of searching sphere should be carefully conducted for better local
feature extraction.

The local features extracted from point cloud data are the theoretical foundations and inputs for
the classification models. Some supervised classification models have been successfully developed,
such as the Random Forest (RF) algorithm [11], Gaussian Mixed Model (GMM) [30], and Support
Vector Machine (SVM) algorithm [31], and have achieved high classification accuracy. In the meantime,
unsupervised clustering methods, such as the DBSCAN algorithm [10] and LeWoS model [32], have
been proposed for separating foliage and woody points in TLS datasets collected in forests.

As one type of deep learning model, convolution neural network (CNN)-based models have
shown high accuracy in digital image identification and semantic recognition due to their excellent
self-abstraction and generalization abilities in extracting features from large volume datasets [33,34].
However, only a few studies have focused on the applications of deep learning models in discriminating
foliage and woody components from TLS data of forests and crops, where the plants were always
with complex structure features [26,35]. Existing deep learning models, such as PointNet [33] and
PointNet++ [24], were based on global or local geometrical features to classify point cloud data.
Moreover, some models were tested to extract multi-scale local geometrical features from point cloud
data to improve classification accuracy [15,36,37]. However, the above deep learning models did not
use the LRI-based features to classify and segment point cloud data. Meanwhile, the hyper-parameters
(e.g., learning rate, batch size, and validation split rate) used in current deep learning models were
always empirically determined [38]. The learning rate controls the convergence rates of the loss
function and validation loss function during the model training process. The batch size and validation
split rate determine the size of training and validation samples in every epoch during the model
training process [39]. However, it is still challenging to quantitatively investigate their effects on the
results of using the deep learning models and objectively determine the optimal hyper-parameter set.

Thus, we aimed to improve the existing deep learning model to classify the discrete TLS data
collected from forests. The specific goals of the current study are to:

(1) Develop a CNN-based model to separate foliage and woody components by combining 3-D
geometrical and LRI information recorded by TLS data.

(2) Investigate the time efficiency and classification accuracy of foliage and woody components using
the proposed model in coniferous and broadleaf plots.

(3) Explore the effects of LRI correction and hyper-parameters (the learning rate, batch size, and
validation split rate) optimization on the final classification results, and the application possibilities
of the proposed classification model in data of mixed forest stand.
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2. Materials and Methods

2.1. Study Sites

The study site comprises three human-planted plots with homogeneous tree species (Figure 1).
We set up two broadleaf plots in the Baima research and experimental forest site in Nanjing (31◦36′51”
N, 119◦11′8” E), Jiangsu province, China. The topography of the Baima site is relatively flat with shrubs
and grasses, and the mean annual precipitation and temperature are 979 mm and 15.9 ◦C, respectively.
The tree species grown in two plots are the Wheel wingnuts (Cyclocarya paliurus, CP) and Chinese
aspens (Populus adenopoda, PA), respectively. The mean slope of the CP and PA plots are lower than 5◦.

The coniferous plot with the tree species of Masson’s Pine (Pinus massoniana, PM) is in the red soil
ecological experimental station of the Institute of Soil Science, Chinese Academy of Sciences (28◦12′21”
N, 116◦55′42” E) in Yintan, Jiangxi province, China. The slope of the PM plot is 8◦ with a few grasses.
The local mean annual precipitation and temperature are 1795 mm and 17.6 ◦C, respectively.

The canopy structure features of the three plots are different. Trees grown in the PA plot always
had lateral branches attached to the middle and lower parts of their trunks. However, there were few
lateral branches attached to the middle and lower parts of stems in the other two plots. More detailed
characteristics of the three plots can be found in Table 1.
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Figure 1. The study area. The subfigures (a) and (b) show the location of three plots (CP, PA, and PM).
The subfigures (c), (d), and (e) are pictures of three plots. The subfigures (f) to (k) show the side views
of three TLS datasets (colorized with point-wise height values and normalized LRI within [0, 1]).

Table 1. Summary statistics of the three plots. The DBH means the diameter at breast height, which
was measured at 1.3 m upper on the ground. The std means the standard deviation of data.

Plots Dimensions (m2) Number of Trees
Height (m) DBH (m)

Tree Age (Years) Canopy Cover (%)
mean std mean std

PA 15×15 22 10.25 1.81 0.09 0.03 8 57
CP 15×15 25 6.84 0.27 0.08 0.01 7 84
PM 10×10 54 9.72 0.74 0.11 0.02 15 72

2.2. TLS Data

We collected discrete point cloud data using the Leica HDS 3000 TLS (Leica Geosystems AG,
Heerbrugg, Switzerland) for the PA, CP, and PM plots on 26 July 2017, 21 July 2019, and 8 April
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2019, respectively. The laser scanner worked at a height of 1.5 m above the ground with the 532 nm
wavelength and a predefined angular resolution of 0.005 m at 10 m. The largest scan range of the TLS
instrument was set as 20 m during the data collection.

In each plot, we set up one center and four corner scan locations to obtain five comprehensive
field-of-view (i.e., horizontal: 0◦ to 360◦; vertical: −45◦ to 90◦) TLS scan. Three black-and-white targets
were also set up at a height of 1.8 m to assist the multi-station data registration process. All point cloud
data from five different locations were registered into a comprehensive TLS dataset for each plot using
the Cyclone 9.0 software [40] with the registration error of less than 6 mm. Moreover, we normalized
the pointwise LRI values from 0 to 1. Once the comprehensive TLS data of three plots were obtained,
we filtered out the ground points using the Cloth Simulation Filter (CSF) tool [41] embedded in Cloud
Compare (http://cloudcompare.org) software and manually removed the points of tripods and other
objects except for points of trees and shrubs. To verify the robustness of the FWCNN model to data
with diverse point density, we subsampled the PM and CP data. The average point density was: 552
points/unit for PA data, 68 points/unit for CP data, and 171 points/unit for PM data. Here, one unit
means a sphere searching unit. The data subsampling tool embedded in the Cloud Compare software
could help us to subsample the original TLS data.

In addition, we manually selected the foliage and woody points from the original TLS data based
on the visual inspection. Two types of test points were manually labeled: 0 being foliage test points
and 1 being woody test points. They were saved as the test point sets to evaluate the final classification
results of the FWCNN model.

2.3. A CNN-Based Foliage and Woody Separation Model (FWCNN)

We propose a CNN-based foliage and woody separation (FWCNN) model in this study. The major
steps are as follows: (1) we selected the training point sets from the original TLS data and computed the
local features based on the geometrical and LRI information. (2) The hyper-parameter sets (i.e., learning
rate, batch size, and validation split rate) of the FWCNN model were objectively determined and optimized.
(3) The final classification results of foliage and woody components in forest TLS data were achieved based
on the optimized FWCNN model. In addition, we quantitatively assessed the classification accuracy of the
FWCNN-based approach in three forest stands including two broadleaved plots and one coniferous plot.
The flowchart and architecture of the FWCNN model are shown in Figure 2.
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2.3.1. The Architecture of FWCNN Model

To classify the TLS data, we modified the architecture of existing PointNet model [33] as follows:
(1) Instead of only the spatial coordinates of discrete points, we input a feature matrix into the FWCNN
model with three parameters including the morphological detection coefficient (MDC), the LRI values
of each point and the averaged LRI values of local point sets within a certain sphere searching region
around each point. (2) For the new proposed FWCNN model, we changed the CNN layers from 2-D to
1-D as we characterized the feature of each point based on a row matrix with three elements (MDC,
the pointwise LRI and local mean LRI values) rather than the multiple 3-D coordinates of its local
nearby points. (3) We removed the pooling layer to avoid learning invalid feature during the model
training process. Moreover, we reset a smaller kernel size in each 1-D CNN layer than those in the
PointNet model and removed a Dropout layer to improve the running efficiency of the FWCNN model.
(4) In addition, we added the RMSprop optimizer [42] and binary cross-entropy function [39] to reduce
the swing amplitude of loss function and assess the loss and validation loss rate in every epoch during
the model training process.

By doing so, we obtained the final classification results based on the classification scores analyzed
by the Sigmoid function in the last dense layer. We implemented the FWCNN model in Python 3.5
language programming environment based on the open-source software package Keras 2.2 [43].

2.3.2. Training Point Sets Selection

After removing the ground points, we divided each TLS data into multiple voxels with a fixed
distance interval (D) based on their horizontal projection area. Without subdividing the point cloud
data in the vertical direction, the height of one voxel equals the height difference of points inside
it. In each voxel, the highest and lowest points were identified as Hmax and Hmin points. Then,
we extracted points whose heights ranging from Hmax m to (Hmax − 0.5) m and from (Hmin + 1)
m to (Hmin + 1.5) m as the candidate foliage and woody training sample points, respectively. The
recommended value of D should be larger than the average range between neighbor stems to ensure
that each voxel can contain stem points for choosing woody sample points (D was set as 3 m in this
research). Then, we manually double-checked the selection results and removed the misidentified
training sample points. The selected foliage and woody sample points were labeled as 0 and 1 in
the training point sets (0 = foliage and 1 = woody training points), respectively. To evaluate the
classification accuracy, we removed the intersection between the training and test point sets for each
TLS dataset.

2.3.3. Point Feature Extraction

We extracted three different features of each point by combing the local geometrical and LRI
information in TLS data as follows: (1) Morphological detection coefficient (MDC)—a geometrical
feature to represent the 3-D distribution pattern of a local point set P =

{
p i(x i, yi, zi), i = 1, 2, · · · , n}

that can be computed as:

MDC =
1

1 + e(λa−λb)
· e(λc−λb)

, (1)

where λa, λb, and λc (λa ≥ λb ≥ λc) are three non-negative eigenvalues of the covariance matrix (Ccov)
of P,

Ccov =
1
n

(⇀
pi −

⇀
p
)T(⇀

pi −
⇀
p
)
. (2)

The row matrix
⇀
p is computed as:

⇀
p =

1
n

n∑
i=1

(
xi, yi, zi

)T
, (3)
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where T means the transposed matrix and
⇀
p is the row matrix of the mean coordinates for the n points

in the given local point set P. The ordered eigenvalues of Ccov are the distribution morphological
indices to represent the spatial distribution patterns of P [14]. When λa= λb= λc, the MDC equals
0.5 suggests that the n points in P are randomly distributed in 3-D space; If λa> λb ≈ λc, the MDC
is larger than 0.5 indicating a linear distribution pattern of points in P. The n points in P exhibit a
surface distribution pattern when λa ≈ λb> λc, and the MDC is smaller than 0.5. (2) Corrected LRI:
We firstly sorted the LRI values of n points in the order from low to high within the given local point
set P centered with point pc. Then, we computed the local LRI reference range [LRImin, LRImax]:

LRImin= LRIq1−1.5 · IQR, (4)

LRImax= LRIq3+1.5 · IQR, (5)

where LRIq1 means the lower (i.e., 25%) quartile of LRI values for n points, LRIq3 means the upper (i.e.,
75%) quartile of LRI values for n points, and IQR means the interquartile range of LRI values for n
points [44]. The LRI value of pc will be kept if its LRI is within the local LRI reference range, otherwise,
the LRI value of pc will be replaced by the median LRI of n points in P. (3) Mean LRI of local points:
The mathematical mean LRI values of the n points in P was added as an additional attribute of the
center point pc. Three categories of features were normalized into the range from 0 to 1 to form a 3-D
feature matrix and input into the FWCNN model. Before the FWCNN running stage, we computed
the feature matrixes for the TLS dataset and training point set of each plot, respectively.

2.3.4. Hyper-Parameters Determination

We determined the values of batch size, learning rate, and validation split rate using the
cross-validation method by the following steps: (1) We first randomly selected the initial values for
batch size (B) and validation split rate (V) each ranging from 0 to 100% and learning rate (LR) to form
a hyper-parameter set. The value of B means using B percentage of all training samples to form a
batch to train the FWCNN model in every epoch, while the value of V indicates the V percentage of
samples in one batch input into the FWCNN model to validate the classification accuracy after every
epoch during the model training process [39]. In terms of the LR, we determined its tested range
based on the method proposed by Smith [45]. (2) Then, we recorded the validation loss ratio (VLR)
in each epoch and calculated the absolute difference values between n-th and (n-1)-th elements in
VLR to form a data matrix (DVLR). If the k-th element in DVLR approached to 0, the (k-1)-th element
in the corresponding VLR was chosen as a candidate convergence point (CONp) for the validation
loss function of a given hyper-parameter set. By doing so, a group of CONp points was selected for
a given validation loss function. (3) In the next step, we determined the convergence point of the
given validation loss function. For a group of CONp points, the first 3-number-continuous data values
indicated the starting convergence point of the validation loss function. Hence, the first number of
3-number-continuous data would be determined as the convergence point (C). For example, for a group
of candidate CONp list {6, 9, 10, 17, 18, 19}, the subset {17, 18, 19} was the first 3-number-continuous
data, within which the first number 17 would be determined as the convergence point of the validation
loss function. (4) Finally, we used the following function to compute the contribution score (S) for the
given hyper-parameter set:

S =


(1− Llow)

c (E ≥ C ≥ E/4 & Llow < 1)
0 (C < E/4)
−1

(
CONp= { })

−2 (Llow ≥ 1)

, (6)
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where Llow is the C-th element in VLR; E means the initial epoch times during the FWCNN model
training stage (E was set as 20 in this research). The fitted FWCNN model using the given
hyper-parameter set will be an over-fitting one if S = 0, while it will be an invalid model if S =

−2. In the case of S = −1, it indicates that the validation loss function is not convergent by using the
given hyper-parameter set (the CONp is a null list), and the FWCNN model was under-fitting. Finally,
all positive S were normalized into the range from 1 to 10 and saved as integers.

Besides, we optimized the epoch time of the model training process based on the mode of
parameter C to improve the running efficiency of the FWCNN model. After running the FWCNN
model using the optimized hyper-parameter set, we obtained the point-wise classification scores
analyzed by the Sigmoid function. The pointwise classification scores were still needed to reclassify
into two categories to denote foliage or woody points. We used the Natural Breaks method [46]
embedded in the open-source Pysal package [47] to determine the reclassification threshold (RT).
Finally, we denoted the points whose classification scores were higher than RT as the woody points
and the rest points in the same TLS dataset as the foliage points.

2.4. Sensitivity Analysis

To evaluate the effects of searching radius to the final classification accuracy of the FWCNN model,
we extracted the local features of each point in three TLS datasets using the searching radii changing
from 0.03 m to 0.1 m with an increment of 0.01 m.

Moreover, we evaluated the effects of point density variations on the robustness of the FWCNN
model. The point cloud data of each plot was subsampled into 7 ranks: from 552 points/unit to 79
points/unit for PA data, from 68 points/unit to 10 points/unit for CP data, and from 171 points/unit
to 26 points/unit for PM data. Here, the unit means one sphere searching region with a fixed radius.
Finally, we used the FWCNN model to classify subsampled TLS data of each plot and compared their
classification accuracy using the original TLS data.

2.5. Accuracy Assessment

To evaluate the final classification accuracy, we calculated the overall classification accuracy (OA),
the producer’s accuracy of foliage points (FPA), the producer’s accuracy of woody points (WPA) and
the Kappa coefficient based on the following Equations (Equations (7)–(12)):

OA =
Vf+Vw

Tf+Tw
, (7)

FPA =
Vf

Tf
, (8)

WPA =
Vw

Tw
, (9)

where Vf and Vw are the numbers of true classified foliage and woody points in one test point set; Tf

and Tw are the numbers of foliage and woody points in the same test point set. The Kappa coefficient
is computed as:

Kappa =
P0 − Pc

1 − Pc
, (10)

P0 =

r∑
i=1

Xii

N
, (11)

Pc =

r∑
i=1

(Xi+ ·X+i)

N2 , (12)
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where P0 means the relative observed agreement among N samples in error matrices with r rows,
which is equal to the ratio of the sum of the correct identification samples of all samples belonging
to the same type; the Pc is the hypothetical probability of chance agreement; Xi+ and X+i are the row
probabilities and the column probabilities, respectively.

To assess the contribution of combining the LRI and geometrical information in distinguishing
TLS data, we used the LeWoS model [32] and LWCLF model [15], which are only based on geometrical
features, to classify the TLS datasets, and evaluated their classification accuracy for foliage and woody
components. Additionally, we compared the FWCNN-based results with those obtained using the
Random Forest (RF) algorithm [48], Gaussian Mixed Model (GMM) [30], and Support Vector Machine
(SVM) algorithm [49] in terms of classification accuracy and running efficiency. These four classifiers
used the same features extracted from TLS data to classify woody and foliage components. Moreover,
we evaluated the effects of LRI correction on the final classification results. The McNemar’s test [11,50]
was used to evaluate the statistical significance between the results obtained using the FWCNN model
and those obtained using another classifier (SVM, RF, GMM, LeWoS, or LWCLF), and using original and
post-corrected LRI information. The codes of the LeWoS model and LWCLF model can be downloaded
from https://github.com/dwang520/LeWoS.git and https://github.com/sruthimoorthy/leaf_wood_clf.git,
respectively. The other three classifiers (RF, GMM, and SVM) were programmed using Scikit-Learn
0.21.3 [51]. All classifiers were run on the same computer system with a 3.40GHz Intel Core i7-3770
processor with 16 GB memory.

3. Results

3.1. Extracted Point Features

To train the FWCNN model, we chose 490,633 points (6.81% of all points in TLS dataset) from the
PA data, 136,829 points (7.52% of all points in TLS dataset) from the CP data, and 620,057 points (2.82%
of all points in TLS dataset) from the PM data as the training point sets. Meanwhile, we obtained the
optimal searching radius as 0.05 m to extract the point features based on the methods described in
Section 2.4. After point-wise extraction of the local MDC and the two LRI-related features from the
comprehensive TLS dataset and training point sets, we obtained two types of 3-D feature matrices to
run the FWCNN model. The training point sets selected from each TLS dataset and the three matrices
extracted from each TLS dataset, including the MDC, the corrected LRI information of each point
(LRI-Corrected), and the pointwise local mean LRI (LRI-Mean), are shown in Figure 3.

3.2. Determination of the Optimal Hyper-Parameter Set

We randomly selected the learning rate within (0.0001, 0.0019), the batch size within (5%, 50%)
of the number of all training samples, and the validation split rate within the range (10%, 90%) to
form test hyper-parameter sets. In total, 3260 hyper-parameter sets (for CP data: 1074 sets, for PA
data: 1157 sets, for PM data: 1029 sets) were selected and evaluated based on the method described
in Section 2.3.4. The contribution scores of all tested hyper-parameter sets are shown in Figure 4.
In Figure 4, the number in each grid is the average contribution score of the tested hyper-parameter
sets which were randomly chosen within the related range of the given grid.

Based on a comparison of these scores, the learning rate was set as 0.0015, the batch size as 10% of
the number of training samples in one batch, and the validation split rate was 20% in the FWCNN
model. If the validation split rate was set as <50% and over 50% of samples in one batch were used to
train the FWCNN model, the contribution scores of the tested hyper-parameter sets were more likely
to be greater than 7. Meanwhile, if the validation split rate was set as ≥ 50% and over 50% of samples
in one batch were used to train the FWCNN model, the scores of the related hyper-parameter sets
were almost all equal to −1 when processing the CP and PA data. For the tested hyper-parameter sets
with a learning rate ≥ 0.0009, setting the validation split rate to above 50% caused model under-fitting.
However, for PM data, setting the validation split rate ≥ 50% caused model instability, and the scores

https://github.com/dwang520/LeWoS.git
https://github.com/sruthimoorthy/leaf_wood_clf.git
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of the related tested hyper-parameter sets changed between 0 and −1. Thus, the optimal validation
split rate should be set lower than 50% when using the FWCNN model to classify three TLS datasets.Remote Sens. 2020, 12, x FOR PEER REVIEW 9 of 22 
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Figure 4. Heat maps showing the contribution scores of the tested hyper-parameter sets. The number
shown in each grid of heat maps means the average contribution score of tested hyper-parameter sets
which were randomly chosen within the given range. The heat maps in different colors denote three
TLS datasets (orange: PA, blue: CP, green: PM). LR: learning rate, which was tested within [0.0001,
0.0019). V: validation split rate, which was tested within the range [10%, 90%). B: batch size, as a
percentage of the number of all training samples in one batch, which was randomly selected within
[5%, 50%).
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We tested various batch sizes less than or equal to 50% of training samples in each TLS dataset to
train the FWCNN model. The scores of the hyper-parameter sets were almost all lower than 1 when
setting the learning rate at < 0.0009 and the batch size in one epoch at > 20% of all training samples
to classify the PA and PM data. Keeping the learning rate constant and only increasing the batch
size could not significantly raise the scores of the tested hyper-parameter sets, but reduced the model
training efficiency for the PA and PM data. For the hyper-parameter sets with a learning rate ≥ 0.0009,
setting the batch size to ≤20% was more likely to obtain scores ≥ 7. Thus, using batch sizes of ≤ 20% of
training samples selected from the TLS dataset was suitable to train the FWCNN model.

The learning rate was tested within [0.0001, 0.0019) in different hyper-parameter sets. As shown
in Figure 4, over half of the hyper-parameter sets had scores < 1 when using learning rates < 0.0011.
This means that using learning rates < 0.0011 was more likely to result in over-fitting (i.e., scores =

0), under-fitting (i.e., scores = −1), or an ineffective model (i.e., scores = −2) during training. For a
hyper-parameter set with a batch size of ≤ 20% and a validation split rate of < 50%, using learning
rates within [0.0011, 0.0017) was more likely to obtain scores of ≥ 7. When setting the batch size to 10%
and the validation split rate to 20%, the scores of the tested hyper-parameter sets with a learning rate
within [0.0011, 0.0017) were similar. Thus, slightly changing the learning rate did not seriously affect
the classification accuracy of the FWCNN model.

Figure 5a–c show the validation loss rate of the FWCNN model during the model training process
within 20 epochs (a total of 150 tested hyper-parameter sets, 50 sets for each TLS dataset). From these
three subfigures, it is evident that the convergence points of the validation loss functions could be
accurately detected, where the validation loss functions of high-scoring sets (score >7) always converge
before 10 epochs during the model training process (Figure 5d). In order to increase the training
efficiency of the FWCNN model, we reset the epoch time to 10.Remote Sens. 2020, 12, x FOR PEER REVIEW 11 of 22 
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Figure 5. The subfigures (a), (b) and (c) show the variation of validation loss rate by using 150 tested
hyper-parameter sets to train the FWCNN model. The color of each curve denotes the convergent
point of the validation loss function (within 20 epochs) by using a given hyper-parameter set to train
the FWCNN model. The subfigure (d) shows the relationship between the contribution scores and
the convergent points of validation loss functions during the model training process for all tested
hyper-parameter sets with positive contribution scores.
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3.3. Point-Wise Classification Results

The OA of using the FWCNN model was 98.64% for PA data, 96.20% for CP data, and 94.98%
for PM data (all with Kappa ≥ 0.89 for LRI-corrected data). The classification results of three TLS
datasets are shown in Figure 6. To evaluate the classification accuracy, we manually selected 1475939
points (826,062 woody points and 649,877 foliage points) from PA data, 913,081 points (265,594 woody
points and 647,487 foliage points) from CP data, and 937,688 points (567,889 woody points and
369,799 foliage points) from PM data (shown in Figure 6) as the test point sets. The details about
time cost, the producers’ accuracy of foliage (FPA) or woody (WPA) points from three TLS datasets,
and the reclassification threshold (RT) of FWCNN results (classification scores) are shown in Table 2.
Meanwhile, the classification accuracy of using the FWCNN model to separate the LRI-corrected
data was compared with those of five other classifiers for the separation of woody and foliage points
from TLS data and using the original TLS data without LRI correction. By the McNemar’s test,
the differences between using the FWCNN model and another classifier (GMM, RF, SVM, LeWoS,
or LWCLF), and using original and post-corrected LRI information, were statistically significant with
p < 0.05.Remote Sens. 2020, 12, x FOR PEER REVIEW 12 of 22 
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Figure 6. The classification results of foliage and woody points by using the FWCNN model.
The subfigures (a), (e), and (i) show the side views of classification results at the plot level. The subfigures
(b), (f), and (j) show the woody points in the classification results. The subfigures (c), (g), and (k) show
the foliage points in the classification results. And the subfigures (d), (h), and (l) show the test point
sets selected from three TLS datasets to evaluate the classification accuracy.

3.4. The Results of Sensitivity Analysis

In this research, the optimal searching radius to extract features from three TLS datasets was
determined as 0.05 m. As shown in Figure 7, the OA varied markedly when using different searching
radii to extract features from the PM data, however was steady when classifying the PA data. For all
tested TLS data, the highest OA were obtained when using a searching radius of 0.05 m to extract
features (PM data: 94.98%, Kappa = 0.89; CP data: 96.20%, Kappa = 0.91; PA data: 98.64%, Kappa =

0.97). When setting the searching radius > 0.05 m, the OAs for the PA and PM data decreased slightly
compared to the OAs for a searching radius of 0.05 m (with Kappa > 0.80). Meanwhile, setting the
searching radius < 0.04 m dramatically decreased the OA for PM data compared to the OA for a
searching radius of 0.05 m. The WPAs of the PM data were over 90% when using different searching
radii, while its FPAs were lower than 90%. More foliage points were misclassified as woody points in
PM data when the searching radius was set > 0.06 m compared to when the radius was set at 0.05 m.
The FPAs for the two broadleaf (PA and CP) point cloud data were similar (> 95%) when the searching
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radius was set < 0.09 m. However, more than 10% of woody test points were misclassified as foliage
points in the CP data when the searching radius was set < 0.09 m.

Table 2. Comparing the classification accuracy of using six types of classifiers (FWCNN, GMM, RF,
SVM, LeWoS, and LWCLF) to separate woody and foliage points from (original and LRI-corrected) TLS
data. Within these classifiers, the LeWoS and LWCLF models only used the geometric-based features to
classify woody and foliage components from TLS data. The RT means the threshold to reclassify the
pointwise classification scores analyzed by the FWCNN model. The data in the time column show the
time consumption of running four types of classifiers apart from the feature extraction process. We did
not list the time cost of two geometric-based models owing to their feature extraction methods were
different from the other four classifiers. The F-T and W-T mean the number of foliage and woody points
that were correctly classified within the test sets. The OA means the overall classification accuracy.
The FPA and WPA mean the producer’s accuracy of foliage and woody points in the classification
results, respectively.

TLS Data LRI Classifiers RT Time
(s)

W-T
(Point#)

F-T
(Point#)

OA
(%)

WPA
(%)

FPA
(%) Kappa

PA

corrected

FWCNN 0.49 137 816,066 639,869 98.64 98.79 98.46 0.97
GMM - 33 808,562 631,871 97.59 97.88 97.23 0.95

RF - 32 813,432 622,106 97.26 98.47 95.73 0.94
SVM - 754 808,353 632,377 97.61 97.86 97.31 0.95

original

FWCNN 0.49 135 813,562 637,298 98.30 98.49 98.06 0.97
GMM - 31 796,810 629,770 96.66 96.46 96.91 0.93

RF - 29 808,417 616,506 96.54 97.86 94.87 0.93
SVM - 671 803,259 627,360 96.93 97.24 96.54 0.94

LeWoS - - 685,618 583,042 85.96 82.99 89.72 0.72
LWCLF - - 778,704 596,518 93.18 94.27 91.79 0.86

CP

corrected

FWCNN 0.5 54 239,251 639,109 96.20 90.08 98.71 0.91
GMM - 19 245,037 624,667 95.25 92.26 96.48 0.89

RF - 25 249,884 615,426 94.77 94.08 95.05 0.88
SVM - 392 244,075 612,920 93.86 91.90 94.66 0.85

original

FWCNN 0.49 53 250,730 617,133 95.05 94.40 95.31 0.88
GMM - 24 234,537 614,167 92.95 88.31 94.85 0.83

RF - 28 244,619 610,533 93.66 92.10 94.29 0.85
SVM - 457 244,012 612,913 93.85 91.87 94.66 0.85

LeWoS - - 242,131 515,749 83.00 91.16 79.65 0.63
LWCLF - - 260,947 514,708 84.95 98.25 79.49 0.68

PM

corrected

FWCNN 0.53 156 557,925 332,661 94.98 98.25 89.96 0.89
GMM - 42 474,793 337,737 86.65 83.61 91.33 0.73

RF - 61 555,355 309,153 92.20 97.79 83.60 0.83
SVM - 712 550,389 315,621 92.36 96.92 85.35 0.84

original

FWCNN 0.51 152 555,381 320,991 93.46 97.80 86.80 0.86
GMM - 34 457,293 320,237 82.92 80.53 86.60 0.65

RF - 58 550,377 303,886 91.10 96.92 82.18 0.81
SVM - 875 545,353 310,619 91.29 96.03 84.00 0.81

LeWoS - - 438,141 272,671 75.80 77.15 73.73 0.50
LWCLF - - 405,122 289,273 74.05 71.34 78.22 0.48

To evaluate the effect of point density on the classification accuracy, we subsampled the three
TLS datasets into seven ranks (as shown in Figure 7d–f), and distinguished foliage and woody points
from data with different point densities using the FWCNN model. It was found that, for the two
broadleaf TLS datasets, the OAs gradually decreased with decreasing point density; however, the OA
was still similar to that obtained using the original data after halving the point density. For the PA
data, the classification accuracy indices were more sensitive to the variable point density than for the
CP data. Reducing the point density led to a reduction in the WPA of PA data from over 97% to 88%.
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Figure 7. The subfigure (a), (b), and (c) show the classification accuracy of using different searching
radii (from 0.03 m to 0.1 m with increment of 0.01 m) to extract features of local points in TLS data
before running the FWCNN model. The subfigures (d), (e) and (f) show the classification accuracy of
using the FWCNN model to distinguish TLS data with diverse point density (shown as the x-axis in
these subfigures). Here, the point density means the number of points inside one sphere searching unit.
The OA means the overall classification accuracy. The FPA and WPA means the producer’s accuracy of
foliage and woody points after classification, respectively.

4. Discussion

4.1. Effects of Hyper-Parameter Selection

In this research, we modified the architecture of the PointNet model [33] to design the FWCNN
model. Meanwhile, we paid more attention to quantitatively evaluate and objectively select
three hyper-parameters used in the FWCNN model, which greatly affect the model performance.
Previous studies describing CNN-based models rarely mentioned the methods used to set
hyper-parameters objectively.

The batch size and validation split rate control the training sample size in each epoch. Setting
an appropriate number of samples in each epoch during the model training process is preferable to
balance the training efficiency and avoid memory overflow [52]. In this research, we set the batch size
as 10% of the number of training samples selected from each TLS dataset, instead of using a fixed
number of samples in each epoch during the model training process, since this is more suitable for
processing TLS data with variable point density. Generally, the learning rate is more important than the
sample size for training a deep learning model [38]. Setting an overly large learning rate and using an
overly small number of training samples would cause model over-fitting. If there are a large number
of samples in each training epoch, it is necessary to increase the learning rate to prevent training model
under-fitting. Here, we recommended using the method proposed by Smith [45] to determine the
optimal learning rate for deep learning models.

Some researches set hyper-parameters using a rule-of-thumb [29,33,53]. The use of reliable expert
knowledge can increase the efficiency of hyper-parameter optimization for deep learning models.
However, for users without any prior experience of training a CNN-based model, using the score
evaluation method mentioned in Section 2.3.4 in combination with the cross-validation test is a feasible
way to choose the optimal hyper-parameter set. When using the FWCNN model to classify other TLS
datasets, users can use the optimal hyper-parameter set selected by us in preference.
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4.2. Factors Affecting Classification Accuracy

4.2.1. Searching Radius

Setting the suitable searching radius is a key step before training the FWCNN model as choosing
the optimal radius increases the classification accuracy. Using an excessively small searching radius
cannot adequately capture the geometrical features of local points. For example, for a searching radius
of 0.02 m, the MDC values of local points covered on thick branches might similar to the MDC values
of local points covered on the single broadleaves. Meanwhile, setting too small a search radius will
reduce the number of points in one search unit, which is not beneficial to correct the LRI information.
Some previous studies found that setting the searching radius near 0.45 m was suitable for extracting
the local geometrical features of point cloud data [9,14,54]. However, the LRI information of local
points may reflect from both woody and foliage components when setting the 0.45-m searching radius.
In this condition, the local LRI-related features cannot be used to denote woody or foliage points. Thus,
in this work, we set the searching radius as 0.05 m to extract the local features in discrete TLS data.

4.2.2. Point Density

The point density is another factor that can affect the classification results in similar
researches [9,10,15]. However, the results of this study verified that the classification results obtained
using the FWCNN model are insensitive to the point density variation of tested TLS datasets. During
this test, the searching radius was maintained at 0.05 m to extract features from subsampled TLS
data. Then, we used the intersection between the original test point sets and the subsampled TLS
data as the test point sets for the subsampled TLS data in order to evaluate the OA, FPA, WPA,
and Kappa coefficient for all classification results. We found the classification accuracy indices of PA
data were more sensitive to the variable point density. A possible reason for this may be that the local
distribution of points from lateral branches attached to the trunks of trees in the PA plot changed after
data subsampling. Furthermore, it was found that the OA and FPA of PM data increased slightly
when using a subsampled point cloud data. A possible reason for this may be that the redundant
points caused by laser scatter near the needle clusters within the canopy of the PM plot were partly
filtered out after data subsampling. For a broadleaf plot with interlacing branches and twigs, better
classification results were obtained when using TLS data with a higher point density to classify foliage
and woody points.

4.2.3. LRI Correction

As shown in Figure 3, the MDC values of points from lateral branches of trees are different from
the MDC values of points covered on the trunks in the PA plot. However, over 20% of foliage test
points from broadleaves and needle clusters in the CP and PM plots were misclassified as woody
points in the classification results of the LeWoS and LWCLF models (as shown in Table 2). In Figure 8,
these two geometric-based models always concern local point sets with a linear distribution trend as
the woody point sets and point sets with random and patch distribution trends as the foliage points.
If we only based on the geometrical features to classify foliage and woody points, the points from
interlacing branches were always misclassified as foliage points. Besides, the points from broadleaves
and needle clusters with near-vertical leaf inclination angles were always classified as woody materials.
Previous studies obtained similar results when using geometric-based classification models [10,32].
When combining the LRI- and geometric-based features to separate the foliage–woody components
from TLS data, the OA increased at least 5%. Thus, combining pointwise LRI information with local
geometrical features could help to classify woody and foliage materials in TLS data collected from
forests with complex structural features, especially the coniferous forests.
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The subfigures (a) to (c) show the separation results of woody and foliage points by using the LeWoS
model. And the subfigures (d) to (f) show the classification results of woody and foliage points by
using the LWCLF model.

Compared with using the original TLS data, we found that the LRI correction method used in this
study (see Section 2.3.3) increased the classification accuracy of the four classifiers using the LRI-related
features. In the FWCNN results, the OAs of all tested TLS datasets increased after the LRI correction,
especially that of the CP data (whose OA increased from 95.05% to 96.20%) and the PM data (whose
OA increased from 93.46% to 94.98%). In principle, the foliage or woody points in the point cloud
data of one tree crown should have similar LRI values to the laser pulse. However, the variability of
sensor-related parameters and environmental factors during the multi-station data collection may
introduce noise to the LRI information—for example, the variable distance between the laser scanner
and targets, the variable incidence angle of laser return signals, the variation in weather conditions
(wind and fog), and the occlusion on the transmission path of laser pulse [20]. The local points within a
spherical searching unit may be from multiple scan stations after data registration, while the scan angle
and laser transmission range are not pointwise recorded in discrete TLS data. Meanwhile, users cannot
know the specific method used to interpret the pointwise LRI information recorded in TLS data [16].
When using the same laser scanner to collect point cloud data, we infer that the interpretation method
of laser return singles had little effect on the pointwise LRI information collected from multiple scan
stations. It is difficult to precisely calibrate the LRI information of a multi-station TLS data.

The LRI correction method used in this research does not require any prior knowledge about
scanner parameters or field data about targets’ reflectance. However, the relationship between the
corrected LRI and the real backscatter reflectance of targets is still unknown after correcting the LRI
information in TLS data. To further verify the proposed LRI correction method, in the future, we plan
to conduct a field survey to evaluate the correlation between the backscatter reflectance of targets to
laser pulse and the post-corrected LRI values of points from the same targets.

4.2.4. Reclassify the Classification Scores

The classification results of the FWCNN model were still needed to be reclassified as two types
to denote woody and foliage points, because they were classification scores within [0, 1]. We found
setting the reclassification thresholds (RTs) as 0.5 was unbeneficial to reclassify the FWCNN results.
In Table 3, the RTs of PM and PA data analyzed by the Natural Breaks (NB) method were not equal
to 0.5. We tested to set the RT as 0.5 to reclassify the pointwise classification scores of PM and PA
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data. The results are shown in Table 3. The CP data were not included in Table 3, as its RT value was
determined as 0.5 by the NB method. For the PA data, the OAs were similar when setting the RT as 0.5
or 0.49 (analyzed by the NB method). However, the OA fell from 94.98% to 92.26% for PM data when
we set the RT as 0.5. Meanwhile, its FPA and WPA decreased from 89.96% to 86.70% and from 98.25% to
95.88%, respectively. By the McNemar’s test, the p values were all lower than 0.05, which verified that
the differences between the classification results after setting diverse RT were statistically significant.

Table 3. The classification accuracy of the FWCNN model after setting the reclassification threshold
(RT) as 0.5 or using the RT values determined by the Natural Breaking (NB) method. In this table, the
F-T and W-T mean the number of foliage and woody points that were correctly classified within the
test sets. The OA means the overall classification accuracy. The FPA and WPA mean the producer’s
accuracy of foliage and woody points in the classification results, respectively.

TLS Data RT W-T
(Point#)

F-T
(Point#)

OA
(%)

WPA
(%)

FPA
(%) Kappa

PA 0.5 814,229 635,852 98.25 98.57 97.84 0.96
0.49 816,066 639,869 98.64 98.79 98.46 0.97

PM 0.5 544,513 320,606 92.26 95.88 86.70 0.84
0.53 557,925 332,661 94.98 98.25 89.96 0.89

4.3. Comparisons with Other Classifiers Using LRI Information

We compared the results of the FWCNN model with those of three other classifiers—namely RF,
GMM, and SVM—for the separation of woody and foliage points from TLS data (both original and
LRI-corrected). As shown in Table 2, the OA of the PM data was generally lower than the OAs of the
two TLS datasets of broadleaved trees (the PA and CP data). It was found that the FWCNN model
always obtained higher OA values than the other three classifiers, although its time cost was higher
than those of the RF and GMM models. The SVM model obtained the second-highest OA for the PA
and PM data. However, the time cost of the SVM model was over five times higher than those of the RF
and GMM models, which was also found by [30,31]. Thus, the SVM model was not an effective method
to classify foliage and woody points from high-density TLS data with large data volumes. The GMM
model obtained higher OAs than the RF model for separating foliage and woody points from the PA
and CP data, while the RF model obtained a higher OA than the GMM model for the PM data.

In the FWCNN results of PM data, over 10% of foliage points were misclassified as woody
points (FPA = 89.96%, WPA = 98.25%). We infer that the main reason for this is that the point cloud
data of needle clusters may show a random distribution (as shown in Figure 3b), similar to the local
geometrical features of points covered on the interlacing twigs (as shown in Figure 3j). Meanwhile,
it was found that the LRI values of points from withered needle clusters were significantly higher
than those covered on fresh needle clusters and similar to the LRI values of woody points. Therefore,
points from withered needle clusters were more likely to be misclassified as woody points than the
points from the fresh needle clusters. For trees in the CP plot, the lateral branches within the upper
canopy were always obscured by surrounding foliage; thus, the structure of these branches could not
be depicted in TLS data. Additionally, foliage wrapped around these lateral branches can introduce
noise to the local LRI features of some woody points. Hence, the FPA of CP data was higher than the
WPA in the FWCNN classification result.

Before evaluating the classification accuracy, test point sets were manually chosen from the TLS
data. In this step, some foliage points near twigs might be misidentified as woody points, especially for
points of needle clusters in the PM plot. Furthermore, the point cloud data from woody components
within the upper tree crowns are often with a significant level of occlusions, and more likely to be
misidentified as foliage points. These misidentifications were inevitable in the test point sets and
affected the classification accuracy, as has been found in previous studies [8,10]. Thus, the evaluation
results of classification accuracy may be slightly biased (as shown in Table 2).
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Existing CNN-based models did not use LRI-related features for point cloud classification.
The reason for this may be that commonly used open-source point cloud data do not contain LRI
information, but rather point-wise spatial coordinates. Meanwhile, configuring these CNN-based
models which do not use the LRI-related features for point cloud classification, such as PointNet++ [24],
VCNN [35], and PointCNN [29], requires the use of a GPU. Thus, we did not compare the FWCNN
model with such CNN-based models in this study.

4.4. Future Potential of the FWCNN

In natural forests, multiple tree species commonly grow together with understory shrubs and
seedlings. Therefore, the potential of the FWCNN model to precisely classify woody and foliage points
from TLS data of mixed forest was tested. For this purpose, all training point sets from the three
plots were combined into a mixed training point set. Then, the mixed training point set was used
to distinguish woody and foliage points in each LRI-corrected TLS dataset by the FWCNN model.
Furthermore, we attempted to use the training set of one plot to train the FWCNN model to classify
the TLS data of another plot. As shown in Table 4 and Figure 9, the OAs of the three TLS datasets
were higher than 90.82% (Kappa ≥ 0.79) when using the mixed training samples. Thus, the FWCNN
model has the potential to classifying the foliage and woody points from TLS data of mixed forest.
Comparing with the results shown in Table 2, the OAs of the CP and PM data decreased by nearly 6%
and 3%, respectively, when using the mixed training set compared to using the training sample points
selected from the data of individual plot, while the OA only varied slightly for the classification result
of PA data. Besides, more foliage points were misclassified as woody points in the classification results
of PM data (with FPA reduced from 89.96% to 85.60%) and CP data (with FPA reduced from 98.71%
to 89.08%). Since there were some lateral branches attached to the middle and lower parts of trunks
in the PA plot, using the training sample points covered on lateral branches in the PA data to train
the FWCNN model may reduce the OAs of PM and CP data. When using the training sample points
selected from the PM data to train the FWCNN model to classify the PA and CP data, the OAs reduced
more severely. Based on these results, we infer that using training sample points selected from the
point cloud data of broadleaved trees is more beneficial than using the training point sets selected from
coniferous trees to train the FWCNN model for classifying TLS data from mixed forests.

Table 4. The classification accuracy of using a training point set selected from one plot (PA, CP or PM)
or mixed training point sets (MIX) to train the FWCNN model to separate woody and foliage points
from the LRI-corrected TLS data. The F-T and W-T mean the number of foliage and woody points
that were correctly classified within the test sets. The OA means the overall classification accuracy.
The FPA and WPA mean the producer’s accuracy of foliage and woody points in the classification
results, respectively.

TLS Data Training Set W-T
(Point#)

F-T
(Point#)

OA
(%)

WPA
(%)

FPA
(%) Kappa

PA MIX 808,562 630,191 97.48 97.88 96.97 0.95
CP 807,402 632,377 97.55 97.74 97.31 0.95
PM 808,553 607,588 95.95 97.88 93.49 0.92

CP MIX 252,495 576,751 90.82 95.07 89.08 0.79
PA 253,708 557,155 88.81 95.52 86.05 0.75
PM 257,096 512,303 84.26 96.80 79.12 0.67

PM MIX 550,389 316,556 92.46 96.92 85.60 0.84
PA 550,393 316,358 92.43 96.92 85.55 0.84
CP 549,117 319,396 92.62 96.69 86.37 0.84
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Figure 9. The subfigures (a) to (i) show the classification results attained using training point sets
selected from TLS data of another plot (PA, CP, or PM) or the mixed training point set (MIX). For
example, the PA (PM) means using the training point set selected from the PM data to train the FWCNN
model to separate the TLS data of the PA plot.

In the classification using PM and PA data, it was found that some points from withered foliage
were misclassified as woody points, while the MDC values of local points covered on withered foliage
were similar to those of points covered on healthy foliage. Since the LRI values of foliage points can
be affected by the leaf water content [17] and the chlorophyll content [18], combining the LRI-related
features with the geometrical features of local points may be beneficial for separating points covered
on withered or healthy foliage in TLS data. Thus, using the FWCNN model to classify multi-temporal
TLS data [55] may help to quantitatively assess changes in foliage and woody components, the severity
of pest diseases, and the variation of woody-to-total area ratio at the plot level. However, it would be
better to use a TLS that can emit a laser pulse in the near-infrared waveband [5] to collect the point
cloud data of forests.

Since the foliage and woody points in TLS data can be separated using the FWCNN model, in
this study, we were able to use the classification results to deduce the inclination angle of branches,
woody-to-total area ratio, and leaf area density at the single tree-crown level. Extracting these forest
canopy features is essential for evaluating the stemflow funneling ratio and saturated canopy water
storage and simulating the canopy interception and eco-hydrological processes at the plot level in our
research plan.

5. Conclusions

In this research, we designed an FWCNN model to distinguish woody and foliage points in
high-density forest TLS data. We selected the training point set and the test point set to train the
FWCNN model and evaluate the classification accuracy, respectively. Then, we point-wise extracted
two LRI-based features and MDC from the TLS data as the model input using the sphere searching
method. Additionally, three hyper-parameters in the FWCNN model were objectively determined
based on an evaluation of their contribution scores and a cross-validation test. Compared with the
results of five other classifiers—RF, GMM, SVM, LeWoS, and LWCLF—the FWCNN model achieved
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higher accuracy in classifying woody and foliage points using three discrete TLS datasets, with OAs
≥ 94.98% (Kappa ≥ 0.89) and a moderate time cost. The McNemar’s test showed that the p values
were all lower than 0.05, which verified that the differences in classification accuracy between the
FWCNN model and other tested models were statistically significant. Moreover, correcting the LRI
information in TLS data could increase the classification accuracy. Furthermore, we explored the
potential of the FWCNN model to classify the TLS data of mixed forests by using a mixed training set
or the training sample points selected from another plot. The classification results all had OAs values
≥ 84.26% (Kappa ≥ 0.67). The classification results obtained using the FWCNN model can be used to
quantitatively analyze some geometrical features of the forest canopy, such as the leaf area density and
woody-to-total area ratio, which are beneficial to simulating canopy eco-hydrological processes.
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