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Abstract: Comprehensive spatial coverage of forest canopy fuels is relied upon by fire management
in the US to predict fire behavior, assess risk, and plan forest treatments. Here, a collection of light
detection and ranging (LiDAR) datasets from the western US are fused with Landsat-derived spectral
indices to map the canopy fuel attributes needed for wildfire predictions: canopy cover (CC), canopy
height (CH), canopy base height (CBH), and canopy bulk density (CBD). A single, gradient boosting
machine (GBM) model using data from all landscapes is able to characterize these relationships
with only small reductions in model performance (mean 0.04 reduction in R2) compared to local
GBM models trained on individual landscapes. Model evaluations on independent LiDAR datasets
show the single global model outperforming local models (mean 0.24 increase in R2), indicating
improved model generality. The global GBM model significantly improves performance over existing
LANDFIRE canopy fuels data products (R2 ranging from 0.15 to 0.61 vs. −3.94 to −0.374). The ability
to automatically update canopy fuels following wildfire disturbance is also evaluated, and results
show intuitive reductions in canopy fuels for high and moderate fire severity classes and little to no
change for unburned to low fire severity classes. Improved canopy fuel mapping and the ability to
apply the same predictive model on an annual basis enhances forest, fuel, and fire management.

Keywords: LiDAR; ALS; Landsat; canopy fuel mapping; canopy cover; canopy height; canopy bulk
density; canopy base height; gradient boosting machine

1. Introduction

Characterization of forest structure remains a priority for a variety of scientific research and
land management objectives [1–6]. Forest management across the Earth now relies on spatial data
derived from remote sensing to inform policy and decision making [7]. For example, the LANDFIRE
project produces nationally consistent and comprehensive forest canopy fuel maps for the US from
Landsat satellite imagery and facilitates landscape-scale management including fuel and restoration
treatment planning and assessment [8–11], prescribed fire planning and implementation [12], and
wildfire prediction, suppression, impact mitigation, rehabilitation, and assessment [10,13–15].

For wildfire management in particular, LANDFIRE provides the spatial data for fire models that
predict the spread and intensity of wildfires [16]. These predictions are essential for wildfire risk
assessments, which are increasing in necessity because strategic and tactical fire management decisions
are now called to be explicitly risk based [14,17]. Wildfires are increasing in size and severity with
unprecedented destruction and associated costs [18–20]. Climate change is set to increase aridity
across the western US with expected increases to fire disturbance [21,22]. Accurate, up-to-date, and
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comprehensive datasets are thus needed for effective fire management and could prevent loss of life
and property and promote ecosystem health.

To create these broad spatial data, standard approaches utilize field measurements, which provide
explicit measurements of attributes [23]. These are then related to satellite imagery thereby creating
spatially-complete datasets [24]. Such assessments have risen in scale from local [25] to regional [26]
and global assessments [27] in parallel with the rise in image availability, computing performance, and
analytical sophistication. However, traditional field-based approaches are often labor intensive, do not
capture the range of variation on the landscape, have inconsistent data collection methods, and cannot
feasibly capture many sought-after three-dimensional (3D) attributes [28,29].

Light detection and ranging (LiDAR), a now pervasive active remote sensing technology, combined
with a scanning system (airborne laser scanner (ALS)), has provided large-area 3D datasets and
facilitated the conceptualization of new forest attributes and statistical relationships to established
forest metrics [30,31]. Field data have been crucial to the development of these attributes, but the
consistency and accuracy of LiDAR allows the application of statistical relationships for forest attribute
prediction over a diversity of geographic areas and reasonably similar forest types [32,33]. However,
the spatial and temporal scales of these LiDAR data and existing predictive models are still limited for
a variety of management needs. LiDAR data are often incomplete, out-of-date, or not available, and
predictive models derived from these data are often overfit to specific landscapes and forest types [33].

As satellite imagery provides the necessary spatial and temporal coverage and LiDAR provides
accurate 3D characterization, many studies have harnessed their complementary strengths and
fused them to create comprehensive spatial datasets [34]. LiDAR metrics have been used directly
as the response variable (e.g., canopy cover and height) or indirectly as the predictor variable of a
modeled response (e.g., biomass, basal area, and Lorey’s height). Correlations of satellite imagery to
basic attributes characterizing vegetation coverage fractions, such as forest canopy cover, are well
documented, especially from the series of Landsat satellites [35], but the ability of satellite imagery
to characterize complex forest attributes, such as canopy height and height variability [36–42], basal
area [43], biomass [34,44–46], and other measures of structural complexity [47–49] has come relatively
recently and are aided by LiDAR data. Though the potential for these types of characterizations
using imagery has been exploited for several decades [50], the ubiquity of LiDAR datasets with large
numbers of samples and accurate 3D characterizations have enabled more robust assessments over
broad areas [49].

Canopy cover (CC) and canopy height (CH) can be directly measured by LiDAR while canopy
bulk density (CBD) can be estimated using regression equations utilizing LiDAR-derived CH and CC
as predictor variables [51,52]. Andersen et al. [53] developed multi-variate models to estimate canopy
fuel parameters specific to the Pacific Northwest region of the US and Peterson et al. [52] adopted
generalized canopy base height (CBH) and CBD conceptualizations. For CBH, many formulations exist
including using LiDAR metrics as direct surrogates. For example, 1st percentile LiDAR heights [54],
25th percentile LiDAR height [55], and one standard deviation (SD) of LiDAR heights subtracted
from mean LiDAR height [52,56]. These LiDAR-based estimates of CBH and CBD capture the spatial
variation in 3D canopy structure important for fire modeling. While different in their conception
from field-based estimates, the absolute values of these variables are not as important as representing
the structural variability across the landscape because fire behavior modelers often need to calibrate
canopy fuel values to match observed fire behavior to fire model outputs [9,57].

In conjunction with LiDAR-based training data, the rise of machine learning techniques has also
contributed to the increase in correlative and predictive power for remote sensing [58]. Mousivand et
al. [59] showed that the sum of second-order interactions was greater than first-order canopy effects on
spectral reflectance at the scales and wavelengths of Landsat imagery. Machine learning algorithms
have the ability to characterize these complex relationships given appropriate training data. Gradient
boosting machines (GBMs) are one of these algorithms now applied in remote sensing and ecological
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sciences [60]. They combine the advantages of tree-based algorithms with a boosting approach that
adaptively combines many simple regression trees [61,62].

Predictive models capable of reasonable accuracy across a diversity of landscapes have been a
research priority for remote sensing and forestry applications [32,33,46]. The inability of models derived
from localized datasets to apply to other landscapes stems from three primary and related issues:
model overfitting [33,63], mis-specified predictor variables not fully characterizing the response, and
spatial and temporal variance in the feature–response relationships—in this case, the LiDAR–Landsat
relationships [49]. These issues are compounded when integrating collections of ALS datasets acquired
from different time periods and locations.

This study aims to address these issues while developing methods to produce comprehensive and
accurate canopy fuels maps for the western US. Model overfitting is a common issue for algorithms
such as GBMs [60,64]. Several strategies have been developed to increase model generality. These
regularization techniques include hyperparameter tuning [65], which varies model parameters and
utilizes a stopping metric to reduce overfitting. Sample weighting or balancing is also an important
regularization technique [66,67] given the arbitrary spatial and temporal extents of ALS datasets.
Forest landscapes can have sample distributions that are heavily skewed or have high kurtosis in
one or more canopy variables, which can bias model predictions. For large-area predictions, spatial
and temporal variance in the LiDAR–Landsat relationships also leads to poor model performance
if there is inadequate training data [32,46,68]. One solution is to create many localized models from
each individual LiDAR dataset and stitch the predictions together. However, determining boundaries
where each local model is most applicable would be difficult. Conversely, a single global model can be
used with either sufficient generality or including locational predictor variables to correct for spatial
variance [47,49]. A select set of models, each trained on biophysically stratified data, may represent a
compromise between these two extremes.

In this study, canopy fuels are estimated from LiDAR datasets and used as training data for GBM
models using Landsat spectral data for predictor variables. Model predictions are then compared to
current LANDFIRE data to quantify improvements due to LiDAR training data, GBM modeling, and
regularization techniques. The research has three objectives:

(1) Create and compare local, biophysically stratified, and global predictive model(s) of canopy fuels
variables than can be applied to forested areas in the western US;

(2) Compare model predictions to current LANDFIRE products;
(3) Assess selected model(s) ability to update canopy layers following wildfire disturbance.

2. Materials and Methods

2.1. Data

LiDAR datasets were selected based on availability and to represent the diversity of conifer forests,
climates, and disturbance regimes in the western contiguous US (Figure 1). LiDAR acquisitions were
ultimately grouped into sixteen landscapes for analysis based on proximity and vegetation similarities.
Hereafter, each set of grouped LiDAR acquisitions is referred to as a landscape dataset. Thirteen
landscapes were used for model training, validation, and testing (training landscapes), while three
landscapes were used exclusively for model testing (test landscapes). All LiDAR data acquisition
parameters followed, at a minimum, the requirements for the US Geological Survey’s Quality Level
1 [69]. Important collection parameters include ≥ 3 returns/pulse, ≥ 8 returns/m2, and a relative vertical
accuracy ≤ 0.06 m root-mean-square deviation (RMSD). LiDAR data totaled 1,258,993 ha for training
and validation and 265,225 ha for testing. Landscape elevations range from 0 to 3599 m a.s.l. and
precipitation normals range from less than 200 mm to over 4000 mm annually [70]. At least one dataset
is within each EPA Level I forest ecoregion of the western US (Figure 1).
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Illilouette, and Slate Creek landscapes). 

Figure 1. Map showing the spatial distribution of light detection and ranging (LiDAR) datasets in the
western United States with information on the year of acquisition, area of data used after filtering, and
number of samples in each dataset. Black perimeters show landscapes where training, validation, and
testing data were used while red perimeters show landscapes used exclusively for testing (North Coast,
Illilouette, and Slate Creek landscapes).

2.2. LiDAR Processing

LiDAR point clouds were processed through FUSION software [71] to extract height above
ground and calculate metrics to match the 30 m Landsat cell resolution. All subsequent analyses were
conducted at the 30 m cell resolution. Table 1 shows the formulation of the canopy fuel metrics from
LiDAR. CH, CC, and CBH are defined directly from the LiDAR metrics. For CBH and CBD estimation,
multiple possible formulations exist [52], and we chose parsimonious definitions that could apply
to many forest types in the western US. For CBH, LiDAR mean height of canopy points minus one
standard deviation of heights provided a characterization with adequate correlation to field-based
estimates at multiple study sites (R2 = 0.547) [52]. For CBD, we used an established equation derived
from field data and inserted LiDAR-derived CH and CC values [51,52]. LiDAR data were filtered for a
minimum canopy height of 2 m, canopy cover of 2%, and the LANDFIRE existing vegetation type
(EVT) classified as a forest type to ensure that non-forested pixels did not contaminate samples.
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Table 1. Summary of canopy fuel response variables (LiDAR-sourced) and predictor variables used in
the study. Existing vegetation type (EVT) and fire regime group (FRG) LANDFIRE variables filtered
data instead of being used as predictor variables for model development. Median and maximum
Landsat indices derived from May to Oct imagery.

Source Variable Name Description Citations

LiDAR Canopy Cover (CC) (%) Percentage of first returns above 2 m [52,72,73]

Canopy Height (CH) (m) 99th percentile return height [52]

Canopy Base Height (CBH)
(m)

Mean return height minus standard deviation
of heights [52,56]

Canopy Bulk Density (CBD)
(kg/m3)

ê(−2.489 + 0.034 (CC) − 0.357(SH1)
−0.601(SH2) − 1.107(PJ)
−0.001(CC ∗ SH1)
−0.002(CC ∗ SH2))

If CH is 0–15 m: stand height class (SH),
SH1 = 0 and SH2 = 0
If CH is 15–30 m: SH1 = 1 and SH2 = 0
If CH is 30–91 m: SH1 = 0 and SH2 = 1
If EVT equals Pinyon or Juniper type:
PJ = 1 else PJ = 0

[51]

Landsat Med NDVI Median normalized difference vegetation index
(NDVI) value [74]

Max NDVI Maximum NDVI value [74]

Med NBR Median normalized burn ratio (NBR) [75]

Max NBR Maximum NBR [75]

Med Bright Median tasseled cap brightness [76–78]

Max Bright Maximum tasseled cap brightness [76–78]

Med Green Median tasseled cap greenness [76–78]

Max Green Maximum tasseled cap greenness [76–78]

Med Wet Median tasseled cap wetness [76–78]

Max Wet Maximum tasseled cap wetness [76–78]

LANDFIRE EVT Existing vegetation type [16]

FRG Fire regime group [79]

Slope (%) Slope

Aspect (deg) Aspect

Elev (m) Elevation

Lat (deg) Latitude

2.3. Landsat and LANDFIRE Data Processing

Landsat indices (Table 1) were calculated for the contiguous US for the period of 2000–2016 using
May to October imagery at an annual timestep. Median and maximum values of each index for each
year were calculated using US Geological Survey Landsat 5 TM, Landsat 7 ETM+, and Landsat 8 OLI
surface reflectance products created using the Landsat Ecosystem Disturbance Adaptive Processing
(LEDAPS) algorithm [80,81]. The use of both median and maximum values followed studies, such
as Egorov et al. [82], that showed multi-temporal metrics derived from annual composites enhanced
predictive performance for forest canopy models and also followed the hypothesis that multi-temporal
imagery can capture differences in shadowing (due to changing sun-angles) related to tree height [83].
Landsat TM and ETM+ were merged and constituted the data source for the period of 2000–2014,
and OLI data was used for the period of 2015–2016. Equations for spectral calculations are within the
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citations in Table 1. Pixels were filtered for contamination by clouds, cloud shadows, and adjacency to
clouds, snow, and water. All Landsat data was processed within Google Earth Engine, exported, and
then mosaicked into multi-band rasters organized by year.

Topography and geographic metrics of slope, aspect, elevation, and latitude were taken from
LANDFIRE [16]. Fire regime groups (FRGs) [79] and existing vegetation type (EVT) were also extracted
along with LANDFIRE’s existing canopy fuel layers CC, CH, CBH, and CBD [51] for comparison to
model outputs.

2.4. Dataset Stratification, Sample Weighting, and Model Development

All subsequent data processing and model development were completed using R statistical
software in conjunction with the Apache Spark analytics engine. Spark is an open-source, parallel,
scalable, and resilient Big Data processing environment [84]. H2O machine learning algorithms
were employed within R and Spark using the R packages h2o [85], sparklyr [86], and rsparkling [87].
Data preprocessing, stratification, visualization, and weighting were completed using the R packages
raster [88], ggplot2 [89], and dplyr [90].

Three data stratification approaches were devised, leading to three sets of models (Figure 2)—local
models, models stratified by fire regime groups (FRGs), and a global model taking data from all
landscapes. For the local models, training, validation, and test data were taken from within each
individual landscape (Figure 1) and a separate model derived for each. Recognizing that these
local models are likely overfit to their respective landscapes, they represent the baseline accuracy
or maximum potential extractable information that subsequent, more generalized models can be
compared to. Next, we hypothesized that the nature of the spectral relationships may vary across
forest types and separate models stratified by a biophysical rationale may better characterize these
relationships. Fire regime groups produced by LANDFIRE represent an integration of existing and
potential vegetation, climate, topography, and disturbance regimes [79]. Forests within the same FRG
classifications were expected to have similar structural and species assemblages and therefore more
consistent spectral responses. For forested areas, four fire regime groups were present within the
study area:

FRG 1: ≤ 35 year fire return interval, low and mixed severity;
FRG 3: 35–200 year fire return interval, low and mixed severity;
FRG 4: 35–200 year fire return interval, replacement severity;
FRG 5: > 200 year fire return interval, any severity.
FRG 5 represents a diverse category including multiple vegetation types across the US but in the

western US and for the landscapes in this study, FRG 5 represents the western Cascade Mountains and
coastal forests in the Mt. Baker, Hoh, North Coast, and South Coast landscapes. All pixels representing
a particular FRG from all landscapes were binned and used to construct a model.

Finally, a global model containing all data from all landscapes was created as a parsimonious
option requiring no stratification. However, with the significant differences in dataset sizes between
landscapes (cf. Figure 1), predictor–response relationships in large datasets may dominate the smaller
datasets. Thus, landscape datasets were randomly sampled so that each landscape’s contribution did
not exceed 20% of the total sample size for the global model. This rule was also applied to the FRG
models for the same purpose, but the proportion was adjusted to 30% for FRG 4 and FRG 5 because
only a few landscapes contained enough data for training.

An additional sample weighting scheme was applied for every model to improve generality and
the ability to characterize post-disturbance canopy fuels on any landscape. For each of the four canopy
response variables (CC, CH, CBH, CBD), the range of values was assessed and then split into ten
even-sized bins (e.g., CC: 1–10%, 11–20%, 21–30%, etc.). The bins were ordered by sample size, and
the samples within the bin with the highest count all received a weighting value of one (i.e., would
be considered once in the model). The other bin’s samples were then multiplied by the necessary
weighting value so that the sum of the sample weights was equal across all bins. This effectively
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gave an equal weighting to the full range of values, helping to prevent model bias due to skewed
or leptokurtic training data distributions. Several classes for certain models had very few samples
within a class which led to extreme weighting values to few samples (> 100,000x weight in one case).
Therefore, the maximum weight for any sample was set to 100x to reduce model instability created by
extreme weighting.
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Once stratification and weighting were completed, model development was then possible. From
each model’s sample pool, 80% were selected for training, 10% for validation and internal error
estimation for hyperparameter tuning, and 10% for testing and performance assessment. However,
these testing data’s acquisition parameters, especially the year of acquisition, and the geographic
location and vegetation type are still related to the particular landscape from which they were derived.
Thus, three separate LiDAR datasets without any data used in the model training process were used as
a final assessment of the local, FRG, and global model performance (Figure 1, red landscapes).

Table 2 shows the GBM model parameters including those varied during hyperparameter
tuning. For more explanation of each parameter see H2O.AI GBM documentation [91]. A maximum
of ten models were trained before selecting each final model, and the various parameter options
were randomly selected for each model run. Final model selection used minimum RMSE as the
selection metric.

Table 2. Gradient boosting machine (GBM) model parameters. Those with multiple values were those
utilized in the hyperparameter tuning process.

GBM Model Parameters Value(s)
ntrees Up to 4000

learn_rate 0.1
learn_rate_annealing 0.01

sample_rate 0.4, 0.6, 0.9, 1
col_sample_rate 0.6, 0.9, 1

col_sample_rate_per_tree 0.6, 0.9, 1
col_sample_rate_change_per_level 0.01, 0.9, 1.1

nbins 32, 64, 128, 256
min_split_improvement 0, 1 × 10−4, 1 × 10−6, 1 × 10−8

max_depth 20, 30, 40
histogram_type AUTO, UniformAdaptive, QuantilesGlobal
stopping_metric RMSE

stopping_tolerance 0.01
score_tree_interval 10
stopping_rounds 3

2.5. Spectral Response and Model Performance Assessment

In order to assess the variance in the relationships between the spectral predictor variables and
the canopy fuel response variables, partial dependence plots were calculated for the local, FRG, and
global models. Partial dependence plots assess the marginal effect of a single predictor variable on
the response variable [62]. The major assumption is that the predictor variables are independent of
each other. While the GBM model is resistant to multi-collinearity, if a predictor is highly correlated
with another, then data combinations created from the predictor distributions can be highly unlikely in
reality and result in biased partial dependence estimates. Thus, local, FRG, and global models were
first trained on a reduced subset of predictor variables for creation of partial dependence plots. The
reduced set included only the median spectral index values as the median and maximum spectral
indices were highly correlated for most predictors (Pearson r = 0.7–0.9).

For final model testing and comparison, models were then trained on the full set of predictor
variables. Root mean squared error (RMSE), mean absolute error (MAE), and the coefficient of
determination (R2) were used for evaluation. For the independent datasets (Illilouette, North Coast,
and Slate Creek), the nearest local model predictions were used for comparison to the FRG and global
model predictions. Predictions made on the independent datasets were also compared to existing
LANDFIRE canopy metrics.

Model predictions should be able to accurately account for disturbance effects on canopy fuels,
especially those due to wildfire. Within the spatial extents of the LiDAR datasets, we searched for
wildfires that occurred after the LiDAR acquisition date but before 2016 so post-fire imagery the
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following growing season could be attained. Spectral indices for one year before the fire and one
year after the fire were calculated. Burn severity maps from the Monitoring Trends in Burn Severity
project [92] were acquired and model predictions were stratified by high, moderate, and unburned to
low burn severity classes. The global model and local model pre-fire and post-fire predictions were
compared to evaluate whether predictions followed post-fire expectations of change. CC, CH, CBH,
and CBD were all hypothesized to decrease most in the high-severity classes, with the unburned to
low class having little change.

3. Results

The partial dependence plots show non-linear predictor–response relationships. The canopy
fuels exhibited relatively consistent response shapes but showed shifts in absolute values among
landscapes (Figures 3 and 4). For example, for the normalized difference vegetation index (NDVI)–CC
relationship (top left, Figure 3), the mean response for a median NDVI value of 0.6 is ~40% CC for the
Ochoco landscape and ~80% for the Garcia landscape. CBH and CBD had more inconsistent response
shapes between landscapes overall compared to CC and CH. For example, for the TC Brightness–CBD
relationship (Figure 4), the Mt. Baker, Garcia, Dinkey, Grand Canyon, and Hoh landscapes all show
an increase in CBD as TC Brightness increased while the other landscapes showed a mean decrease.
Present in most predictor–response relationships but especially noticeable for CBH and CBD, Mt. Baker,
Clear Creek, Garcia, Hoh, and South Coast landscapes all had larger values across the distribution
of spectral values while the Ochoco and Grand County landscapes were consistently on the lower
end. The partial dependence plots derived from the FRG models (Figures 5 and 6) characterize this
same trend with FRG 5 (primarily derived from the Mt. Baker, Hoh and South Coast landscapes),
consistently having higher canopy fuel values and FRG 4 (present in many upper elevation, inland
landscapes) showing lower canopy fuel values. FRG 1 and FRG 3 follow similar trends to each other
and the global dataset overall.

The global model compared favorably to the local models in the performance assessment (Table 3).
The complete breakdown of each landscape including FRG model accuracies are shown in Table A1.
The following mean change in performance metrics are averages of local–global comparisons, with
equal weighting given to each landscape regardless of geographic area or sample size. For CC, the
use of the global model increased error by 0.08% and 0.11% for RMSE and MAE, respectively, and
increased R2 by 0.004. R2 decreased slightly with the global model for all landscapes, except for the
Garcia and Hoh landscapes (Table A1). For CH, use of the global model increased RMSE by 0.4 m,
MAE by 0.32 m, and decreased R2 by 0.041. For CBH, the global model increased RMSE by 0.17 m,
MAE by 0.15 m, and decreased R2 by 0.053. For CBD, the global model increased RMSE and MAE each
by 0.002 kg/m3 and decreased R2 by 0.02.
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Table 3. Comparison of local models to the global model. Each landscape weighted equally in
calculation of the mean accuracy metrics (i.e., not area weighted). Performance metrics are root mean
square error (RMSE), mean absolute error (MAE), and the coefficient of determination (R2).

Metric CC (%) CH (m) CBH (m) CBD (kg/m3)

Local RMSE 10.02 4.91 2.33 0.057
Global RMSE 10.10 5.31 2.50 0.059

Local MAE 7.42 3.67 1.73 0.041
Global MAE 7.53 3.99 1.88 0.043

Local R2 0.725 0.672 0.600 0.622
Global R2 0.729 0.631 0.547 0.602

The performance comparisons of individual landscapes to the global model predictions largely
follow this same trend of slight increases in error with global model use (Table A1). The independent
test landscapes flip this trend, however, with the global modeling performing better in 9 of 12 (75%)
landscape–response variable combinations (Table A2). The starkest difference is in the Slate Creek
landscape for CBD, where the R2 using the nearest local model (Clear Creek) was −0.889 and use of
the global model increased the R2 to 0.479. The South Coast model performed better than the global
model in the North Coast landscape for CH, CBH, and CBD. The FRG models also performed better
than the nearest local models in most comparisons, on par or near to global model performance. The
performance of the global models on the test landscapes is further highlighted in the predicted versus
observed graphs (Figures 7–9).

The predicted versus observed graphs also show the increase in performance compared to the
existing LANDFIRE data. The global model reduced RMSE on average by 11.3% for CC, 5.45 m
for CH, 5.78 m for CBH, and 0.062 kg/m3 for CBD compared to LANDFIRE. The LANDFIRE data
had little ability to characterize canopy fuels in general with negative R2 values for 8 of 12 (66.7%)
LANDFIRE-response variable combinations. The global model performed worse on the test landscapes
compared to the training landscapes, but still produced a mean R2 of 0.439 overall compared to a mean
R2 of −1.375 for LANDFIRE. The global model performed comparably to the training landscapes for
the Illilouette and North Coast landscapes except for Illilouette CBH, which had a mean R2 of −0.094.
For Slate Creek, R2 values were noticeably worse than training landscapes, with a mean R2 of 0.372.

For comparisons between response variables using the global model, CBH proved the most
difficult to characterize with a mean R2 of 0.547 for the training landscapes and 0.153 for the test
landscapes. CC had the best model performance overall, with a mean R2 of 0.730 for the training
landscapes and 0.611 for the test landscapes. CBD had a mean R2 of 0.602 for the training landscapes
and 0.507 for the test landscapes. CH had a mean R2 of 0.631 for the training landscapes and 0.385 for
the test landscapes.

The Ochoco landscape contained the Corner Creek Fire mostly within its extent with an ignition
date of 29 June 2015. Pre-fire spectral indices were calculated using 2014 imagery and post-fire with
2016 imagery. Model predictions for both years using the global model and local (Ochoco) landscape
model were compared (Figures 10–13). High-burn severity pixels showed the largest changes in canopy
predictions with a mean percent decrease of 51.2% for CC (55.6% to 27.13%), 39.4% for CH (28.0 to 16.9
m), 40.3% for CBH (8.3 to 5.0 m), and 55.0% for CBD (0.135 to 0.061 kg/m3) using the global model.
The local Ochoco model showed similar results but the percent changes were larger for CC (60.0%
decrease), smaller for CH (14.9% decrease), larger for CBH (46.2% decrease), and smaller for CBD
(52.2% decrease).
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Figure 7. Predicted versus observed plots for the Illilouette test landscape using the global GBM model
(left column) and existing LANDFIRE layers (right column). Point density indicated with blue (low)
to red (high) gradient.
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Figure 8. Predicted versus observed plots for the North Coast test landscape using the global GBM 
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Figure 8. Predicted versus observed plots for the North Coast test landscape using the global GBM
model (left column) and existing LANDFIRE layers (right column). Point density indicated with blue
(low) to red (high) gradient.
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Figure 9. Predicted versus observed plots for the Slate Creek test landscape using the global GBM 
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Figure 9. Predicted versus observed plots for the Slate Creek test landscape using the global GBM
model (left column) and existing LANDFIRE layers (right column). Point density indicated with blue
(low) to red (high) gradient.
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Figure 10. Comparison of pre- and post-fire, global and local (Ochoco) model predictions for canopy 
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classes for the Corner Creek Fire. Vertical dotted lines depict the mean prediction value. 

Figure 10. Comparison of pre- and post-fire, global and local (Ochoco) model predictions for canopy
cover in high (top row), moderate (middle row), and low to unburned (bottom row) fire severity
classes for the Corner Creek Fire. Vertical dotted lines depict the mean prediction value.
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Figure 11. Comparison of pre- and post-fire, global and local (Ochoco) model predictions for canopy
height in high (top row), moderate (middle row), and low to unburned (bottom row) fire severity
classes for the Corner Creek Fire. Vertical dotted lines depict the mean prediction value.
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Figure 12. Comparison of pre- and post-fire, global and local (Ochoco) model predictions for canopy
base height in high (top row), moderate (middle row), and low to unburned (bottom row) fire severity
classes for the Corner Creek Fire. Vertical dotted lines depict the mean prediction value.
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Figure 14 shows the variable importance for the four canopy fuel variables using the global 
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also of secondary importance for CH and CBD. Med Green had low importance for CC, CH, and 
CBH but was the highest for CBD. This was an unexpected result considering CBD is calculated 
using CC and CH, and Med Green had low variable importance for these two variables. Latitude, 
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CBD. The median spectral indices had higher importance than all their maximum counterparts. 
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Figure 13. Comparison of pre- and post-fire, global and local (Ochoco) model predictions for canopy
bulk density in high (top row), moderate (middle row), and low to unburned (bottom row) fire severity
classes for the Corner Creek Fire. Vertical dotted lines depict the mean prediction value.

Moderate-burn severity pixels followed expectations with mean decreases for each canopy variable
but at reduced percentages compared to high-burn severity pixels. For the global model, CC decreased
by 31.7%, CH decreased by 20.0%, CBH decreased by 26.3%, and CBD decreased by 32.5%. For the
Ochoco local model, CC decreased by 38.0%, CH decreased by 1.2%, CBH decreased by 29.5%, and
CBD decreased by 32.8%.

For unburned to low-burn severity pixels, little change was seen in the canopy fuel variables. For
the global model, CC had a mean percentage decrease of 5.8%, CH decreased by 2.3%, CBH decreased
by 5.3%, and CBD decreased by 2.5%. For the local Ochoco model, CC decreased by 7.9%, CH increased
by 3.8%, CBH decreased by 4.5%, and CBD decreased by 5.1%.

Figure 14 shows the variable importance for the four canopy fuel variables using the global model.
The spectral predictors Med NBR, Med Bright, and Med Green each had the highest importance for at
least one variable. Med NBR had the highest importance for CC and CBH and was also of secondary
importance for CH and CBD. Med Green had low importance for CC, CH, and CBH but was the
highest for CBD. This was an unexpected result considering CBD is calculated using CC and CH,
and Med Green had low variable importance for these two variables. Latitude, elevation, and aspect
had moderate importance for three of the four canopy variables excluding CBD. The median spectral
indices had higher importance than all their maximum counterparts. Tasseled cap wetness had the
least importance with the maximum and median indices in the bottom four of importance. Max NDVI
and Max NBR were the other two predictors with the lowest importance overall.
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Figure 14. Variable importance for each canopy fuel response variable derived from the global gradient
boosting machine (GBM) model using training landscape data.

4. Discussion

The global models proved most suitable for predicting canopy fuels over the western US. The global
models performed nearly as well as the local models for each training landscape and out-performed
the nearby local models on the independent test datasets. In a few instances, the local model failed
entirely to characterize fuels on the test landscape. For example, in the Slate Creek test landscape, the
Clear Creek local model had a −0.889 R2, while the global model had a 0.479 R2 for CBD. Perhaps
a more representative local landscape could have produced improved predictions, but additional
analysis would be required to determine suitable models. This highlights the primary utility of a
global GBM model, the ability to apply one set of models to produce broad-area predictions. The fire
regime models have nearly equivalent performance to the global models, but data stratification and
additional separate models are unnecessary given the global model performance.

The global model may show increased sensitivity to disturbance as well. The analysis of pre- and
post-fire predictions showed intuitive reductions in canopy fuels corresponding to burn severity classes,
which implies the model could be applied on an annual basis to maintain updated canopy fuels maps.
The local Ochoco model predicted almost no change in canopy height in moderate-severity fire classes
(mean 1.2% decrease) compared to global model estimates of a 20% mean decrease (Figure 11). This
could add additional value and supplement ongoing improvement of LANDFIRE data products [93].
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Without post-fire LiDAR or field data, the results of the fire disturbance analysis must be considered
encouraging but unsubstantiated.

The GBM boosting approach is likely able to differentiate the areas of variance in the
predictor–response relationships observed in the partial dependence plots. In effect, a single GBM
can create localized models within the ensemble process, as samples with different feature–response
relationships would show as residuals that GBM then focuses on in subsequent trees. The use of
latitude and its moderate importance for 3 of 4 of the canopy fuel variables supports this assertion
as spatial variance in spectral-canopy fuel relationship can be captured within this locational metric.
While longitude was considered as a predictor variable and a version of the global model containing
longitude was evaluated on the test landscapes, model performance was not significantly improved
and showed performance reductions in several cases. With more adequate dataset coverage, inclusion
of longitude would likely improve global model predictions and should be included then.

4.1. Comparisons

Comparisons to LANDFIRE canopy fuel products show increased performance in every case.
In tandem with GBM and multi-temporal Landsat data, the consistent characterization of structure,
geographic diversity of datasets, and large sample size made available by LiDAR all provide added
value. However, these LiDAR-based metrics are derived differently than LANDFIRE-based canopy
fuel metrics. Indeed, ambiguity in the formulation of CBH and CBD, whether field or LiDAR based,
exists in general and partially stems from the inability to consistently measure these metrics in the
field [94]. LiDAR CC and CH metrics can be inserted directly into the LANDFIRE CBD equation for
near equivalency (Table 1). However, this equation was only one of two used to calculate CBD in
Reeves et al. [51] but determining which equation was applied at the pixel level is not possible and
could explain part of the mismatch in the comparisons here. CBH’s LiDAR-based definition (Table 1)
is not equivalent to LANDFIRE’s formulation, which is the lowest vertical height at which the vertical
distribution of CBD is ≥ 0.012 kg/m3 [95], though there is conceptual correspondence. As Peterson et
al. [52] notes, the LiDAR-derived definition of CBH overpredicts compared to Reinhardt et al. [95] but
represents a directly measured and parsimonious characterization of the vertical distribution of canopy
biomass. A bias correction would be necessary for fire modeling applications because overprediction
of CBH leads to underprediction of crown fire in operational fire models [96]. The best interpretation
for application is that these remotely sensed canopy fuel layers relate to and covary in a similar fashion
but do not replicate the canopy fuel variables as originally conceived for the fire models.

Direct comparisons of findings to other research are difficult given the breadth of the study area,
the use of LiDAR-derived canopy fuel-specific response variables, and the diversity of performance
metrics used in the literature. Matasci et al. [49] predicted forest canopy variables over the entirety of
the Canadian boreal shield and reported an R2 of 0.495 for CH and 0.612 for CC. Hansen et al. [42]
used space-borne LiDAR and Landsat ETM+ and OLI data to predict tree height across Sub-Saharan
Africa and reported an MAE of 2.45 m. They reported an MAE of 4.65 m for tree heights > 20 m
though, which is more consistent in error and observed tree heights presented here (MAE 3.99 m for
training landscapes and 5.78 m for test landscapes). Wilkes et al. [41] also mapped canopy heights over
a broad-area in Australia and reported an RMSE of 5.6 m. Ahmed et al. [40] focused on a 2600 ha area
in British Columbia and reported an R2 of 0.67 for CC and 0.82 for CH. Stojanova et al. [39] studied
Slovenian forests and reported an RMSE of ~14.7% for CC and ~2.1 m for CH. Hyde et al. [37] utilized a
dataset near the Dinkey landscape from this study and reported similar results (Dinkey-specific results
from this study in parentheses): for max height, an R2 of 0.712 (0.675) and an RMSE of 9.6 m (6.88 m);
for mean height, an R2 of 0.603 and an RMSE of 7.5 m; for SD of heights, an R2 of 0.517 and an RMSE of
3.7 m (Dinkey CBH R2 is 0.508 and RMSE 2.73 m). Pascual et al. [38] reported an R2 of 0.62 for mean
height and 0.66 for height coefficient of variation (CV) using Landsat imagery in Spain. Erdody and
Moskal [97] used field-based estimates of canopy fuels and related them to Landsat spectral indices
in south-central WA and reported R2 values of 0.415 for canopy height, 0.309 for CBH, and 0.602 for
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CBD. While some of these studies produce better results when comparing to the test landscapes held
entirely out from model training, the test data taken from the training landscapes are the more accurate
and competitive comparisons as none of these studies use entirely independent LiDAR datasets from
different landscapes.

4.2. Relevance of Predictors and Predictor–Response Spatiotemporal Variance

While differences in LiDAR acquisition parameters, especially point density, can be small for
height and cover [98], these differences likely contribute a source of error especially for CBH, which
requires laser penetration into the canopy [55]. The LiDAR data was also acquired from 2009 through
2015 and annual differences in the spectral indices affect model development and performance. The
differences in the partial dependence plots among landscapes are a combination of site-specific (spatial)
and temporal effects. The temporal variation is driven primarily by precipitation timing and amount,
temperature fluctuations, and variable cloud and cloud shadow cover leading to inconsistencies in
the median and maximum spectral indices [99,100]. The consistency in the model predictions for the
unburned to low-severity portions of the Corner Creek Fire using predictor variables derived from
different years and different sensors (TM/ETM+ in pre-fire 2014 and OLI in post-fire 2016) supports the
use of the global model over time (Figures 10–13). Additional assessment is necessary to characterize
the model’s ability to predict over time, but the results here imply a level of harmonization using these
spectral indices without necessitating extensive image calibration.

As seen in the results, the spatial variance in the predictor–response relationships varied depending
on the particular predictor and response variable. The relationships that typically had the most
consistency (e.g., TC Brightness and CH, Figure 3) also had the highest variable importance (Figure 14).
Differences in species composition, both in the canopy and the understory, in combination with
bidirectional reflectance and solar zenith angle effects likely caused a majority of the differences among
landscapes [46,101]. In addition, the range and distribution of canopy fuel values present in the dataset
had a substantial effect. Even with balancing of the datasets before modeling, low sample sizes and
skewed distributions can bias partial dependence plots and model predictions, a case of ‘regression to
the mean’ [102]. For example, the Garcia landscape showed little sensitivity to any spectral indices for
CC because 75% of samples were above 87.9% CC.

While topographic and locational features certainly aid in the modeling process, they are static
through time and models based primarily on these types of data will not be as responsive to forest
structure change. For example, Matasci et al. [49] achieves relatively high accuracy in prediction across
Canada, but four of the top five predictors in terms of variable importance are either topographic or
locational in nature (elevation, latitude, longitude, and slope). This suggests those model predictions
may produce similar predictions over time regardless of changes in forest canopy structure. In this
study, elevation, aspect, and latitude show moderate variable importance, but three spectral indices
are considered much more important. For CC and CBH, Med NBR had the highest importance, and
Med Bright and Med Green had the highest importance for CH and CBD, respectively. This implies
that the model is sensitive to spectral change; an assertion supported by the results from the partial
dependence plots and the Corner Creek Fire on the Ochoco landscape, which shows large reductions
in canopy fuels in high-burn severity pixels, moderate change in moderate-burn severity pixels, and
little change in low to unburned pixels. Although validation data are not available for the wildfire
assessment, the changes predicted are logical and follow established definitions of fire severity.

4.3. Potential Improvements and Future Work

Despite the large reductions in fuels shown from the Corner Creek Fire, however, the models are
potentially underestimating the amount of change and would not predict an ecosystem type change.
As noted in multiple modeling studies at these scales [42,102] and seen in the predicted vs. observed
plots here (Figures 7–9), predictions tend to overestimate at the low end and underestimate at the high
end of the value ranges. In addition, the models were only trained with forested samples and thus
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have no ability to predict ecosystem type changes to grass- or shrub-dominated areas. A separate step
in a complete algorithm could delineate forest or non-forest ecosystem types before applying canopy
fuel models as done in LANDFIRE [16].

Though Landsat TM and ETM+ sensors are practically equivalent, raw Landsat 8 OLI images
require transformations for continuity [103]. While the tasseled cap transformations were designed
to maintain continuity among sensors [77], NDVI and NBR do not have such corrections considered.
While Roy et al. [103] shows a small but significant difference in NDVI between ETM+ and OLI sensors,
no such assessment has been performed for NBR, and slight differences are expected. Correcting
for differences in these two normalized metrics could potentially improve temporal continuity and
minimize differences in the imagery datasets and model predictions.

The tasseled cap transformations themselves were designed for top-of-atmosphere (TOA)
reflectance but applied to the surface reflectance products here. Inconsistencies in the literature
are present with multiple approaches used but in general, the application of TOA transformations
has been successful with surface reflectance products. Indeed, the scenes used to develop the
transformations were specifically chosen to have little atmospheric contamination [76–78]. DeVries
et al. [104] argue for the use of one set of coefficients for use with surface reflectance products from
multiple sensors and apply those of Crist [76], which were designed for Landsat-5 TM data. Kennedy
et al. [105] use the same logic but first applied a scene normalization algorithm to make the spectral
space relatively consistent. As Baig et al. [78] and Huang et al. [77] designed the Landsat-7 ETM+ and
Landsat-8 OLI transformations for temporal continuity with previous sensors, the transformations
specific to each sensor are used here (Table 1).

Addition of time-series metrics derived from multiple years of Landsat data may also improve
model predictions (use of time-series data reviewed by Banskota et al. [106]). The primary benefit in
this case would be the ability to identify previous disturbance timing and severity and potentially help
stabilize the spectral indices’ year-to-year variability caused by cloud and shadow contamination or
precipitation variability. Although Zald et al. [47] and Matasci et al. [49] employ these sophisticated
metrics, their variable importance was minimal in their final assessments. A major downside is the
need to re-calculate the temporal trends annually, which can be computationally expensive and would
reduce the utility of a single trained model that can make predictions on any annual composite imagery
regardless of year of acquisition. Initial tests using time-series metrics on a single landscape were not
promising, though there is still potential for integrating these metrics to improve model predictions.

Additional complex topographic, climatological, weather, and energy balance variables could
also improve model performance if properly implemented. For example, the topographic wetness
index [107] and climatic water deficit [108] are variables that influence forest development. However,
these features describe the environmental template on which vegetation and disturbance act upon and
their utility for characterizing the current state of canopy fuels is limited and may lead to overfitting.
The use of gridded temperature and precipitation data may also be useful but with similar caveats.
Additional LiDAR datasets would also likely improve the model’s ability to predict in new areas. In
this study, only one dataset is present for the state of CO, one for AZ, and none for NM, UT, WY,
SD, and NV. The dataset balancing techniques used here would properly integrate the addition of
large and small LiDAR acquisitions. With the method’s focus on model generality and the data
processing architecture utilized, significantly more data can be added, and predictions will improve
with dataset additions. Integration of field-based datasets covering large geographic areas, such as
those utilized for LANDFIRE [51], could enhance model development and validation as well. The
continued development of LiDAR-based fuel metrics, especially CBD and CBH, could utilize these
field data as well.

Finally, a necessary subject of future research is to develop more consistent methods to predict
surface fuel models to accompany the improved canopy fuels data produced in this study, because
changes in surface fuel models generally have a stronger effect on predicted fire behavior than canopy
fuels [109]. Application of rule sets developed as part of the LANDFIRE Total Fuel Change Tool [110]
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may provide a starting point for predicting surface fuels from improved (and continuous rather than
categorical) estimates of canopy properties.

5. Conclusions

LiDAR–Landsat fusion is a capable replacement for existing LANDFIRE canopy fuel mapping
protocols, is more easily implemented, and produces better results. A single GBM global model offers
a parsimonious solution with small decreases in performance compared to the use of many local
models and does not require logic to determine where each local model is most applicable. Local
model partial dependence plots show spatiotemporal variability in predictor–response relationships
but the relationships are relatively consistent across the potential range of values. The global model is
able to account for these differences and shows increased generality by outperforming local models on
independent datasets. The global model is also able to logically update canopy fuels after wildfire
disturbance with similar performance compared to the local model. The increased accuracy and better
representation of canopy fuel variability over broad areas will increase the ability to predict fire growth
and intensity and therefore enhance land management decision making for pre-fire, during-fire, and
post-fire activities.
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Appendix A

Table A1. Performance assessment of local, global, and fire regime group (FRG) models using training
landscapes. In total, 80% of landscape data used for training, 10% for validation, and 10% for testing.
N refers to the number of samples used for testing and calculation of performance metrics, which are
root mean square error (RMSE), mean absolute error (MAE), and coefficient of determination (R2).

Landscape Model
Canopy
Fuel
Variable

N RMSE MAE R2

Mt. Baker Local CC 43,636 9.34% 6.63% 0.862
Mt. Baker Global CC 43,636 9.84% 7.27% 0.846
Mt. Baker FRG 5 CC 42,840 9.79% 7.16% 0.844

Mt. Baker Local CH 43,636 5.36 m 3.86 m 0.83
Mt. Baker Global CH 43,636 5.96 m 4.33 m 0.747
Mt. Baker FRG 5 CH 42,840 5.44 m 3.97 m 0.822

Mt. Baker Local CBH 43,636 2.16 m 1.57 m 0.79
Mt. Baker Global CBH 43,636 2.35 m 1.74 m 0.747
Mt. Baker FRG 5 CBH 42,840 2.29 m 1.68 m 0.759

Mt. Baker Local CBD 43,636 0.057 kg/m3 0.040 kg/m3 0.8
Mt. Baker Global CBD 43,636 0.063 kg/m3 0.045 kg/m3 0.749
Mt. Baker FRG 5 CBD 42,840 0.060 kg/m3 0.043 kg/m3 0.77
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Table A1. Cont.

Landscape Model
Canopy
Fuel
Variable

N RMSE MAE R2

Blackfoot-Swan Local CC 175,639 8.11% 5.93% 0.839
Blackfoot-Swan Global CC 175,639 8.55% 6.36% 0.822
Blackfoot-Swan FRG 1 CC 85,805 8.19% 6.08% 0.819
Blackfoot-Swan FRG 3 CC 45,767 8.69% 6.35% 0.84
Blackfoot-Swan FRG 4 CC 41,856 8.50% 6.17% 0.82

Blackfoot-Swan Local CH 175,639 3.37 m 2.47 m 0.757
Blackfoot-Swan Global CH 175,639 3.84 m 2.85 m 0.686
Blackfoot-Swan FRG 1 CH 85,805 3.65 m 2.72 m 0.662
Blackfoot-Swan FRG 3 CH 45,767 3.89 m 2.87 m 0.732
Blackfoot-Swan FRG 4 CH 41,856 3.70 m 2.74 m 0.726

Blackfoot-Swan Local CBH 175,639 1.54 m 1.13 m 0.645
Blackfoot-Swan Global CBH 175,639 1.68 m 1.25 m 0.586
Blackfoot-Swan FRG 1 CBH 85,805 1.64 m 1.23 m 0.588
Blackfoot-Swan FRG 3 CBH 45,767 1.73 m 1.28 m 0.597
Blackfoot-Swan FRG 4 CBH 41,856 1.51 m 1.11 m 0.655

Blackfoot-Swan Local CBD 175,639 0.049 kg/m3 0.032 kg/m3 0.723
Blackfoot-Swan Global CBD 175,639 0.047 kg/m3 0.034 kg/m3 0.712
Blackfoot-Swan FRG 1 CBD 85,805 0.045 kg/m3 0.032 kg/m3 0.702
Blackfoot-Swan FRG 3 CBD 45,767 0.048 kg/m3 0.035 kg/m3 0.736
Blackfoot-Swan FRG 4 CBD 41,856 0.047 kg/m3 0.034 kg/m3 0.712

Clear Creek Local CC 21,060 10.24% 7.71% 0.72
Clear Creek Global CC 21,060 10.44% 8.00% 0.718
Clear Creek FRG 3 CC 17,122 9.91% 7.35% 0.732

Clear Creek Local CH 21,060 4.84 m 3.56 m 0.788
Clear Creek Global CH 21,060 5.43 m 4.03 m 0.734
Clear Creek FRG 3 CH 17,122 5.17 m 3.80 m 0.768

Clear Creek Local CBH 21,060 2.67 m 1.93 m 0.628
Clear Creek Global CBH 21,060 2.85 m 2.11 m 0.586
Clear Creek FRG 3 CBH 17,122 2.87 m 2.15 m 0.589

Clear Creek Local CBD 21,060 0.065 kg/m3 0.049 kg/m3 0.631
Clear Creek Global CBD 21,060 0.069 kg/m3 0.052 kg/m3 0.598
Clear Creek FRG 3 CBD 17,122 0.069 kg/m3 0.053 kg/m3 0.577

Dinkey Local CC 41,443 10.42% 7.91% 0.748
Dinkey Global CC 41,443 10.60% 8.19% 0.739
Dinkey FRG 1 CC 33,790 10.43% 7.99% 0.73
Dinkey FRG 3 CC 6989 10.17% 7.75% 0.765

Dinkey Local CH 41,443 6.60 m 5.05 m 0.702
Dinkey Global CH 6.88 6.88 m 5.31 m 0.675
Dinkey FRG 1 CH 33,790 7.31 m 5.67 m 0.64
Dinkey FRG 3 CH 6989 6.80 m 5.23 m 0.563

Dinkey Local CBH 41,443 2.60 m 1.95 m 0.551
Dinkey Global CBH 41,443 2.73 m 2.07 m 0.508
Dinkey FRG 1 CBH 33,790 2.75 m 2.07 m 0.51
Dinkey FRG 3 CBH 6989 2.86 m 2.27 m 0.355

Dinkey Local CBD 41,443 0.057 kg/m3 0.038 kg/m3 0.666
Dinkey Global CBD 41,443 0.057 kg/m3 0.039 kg/m3 0.667
Dinkey FRG 1 CBD 33790 0.059 kg/m3 0.041 kg/m3 0.659
Dinkey FRG 3 CBD 6989 0.042 kg/m3 0.026 kg/m3 0.667

Garcia Local CC 5522 8.99% 6.16% 0.216
Garcia Global CC 5522 8.56% 6.24% 0.269
Garcia FRG 1 CC 5493 7.98% 5.30% 0.363
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Table A1. Cont.

Landscape Model
Canopy
Fuel
Variable

N RMSE MAE R2

Garcia Local CH 5522 4.72 m 3.57 m 0.152
Garcia Global CH 41,443 5.02 m 3.81 m 0.081
Garcia FRG 1 CH 5493 5.13 m 3.92 m 0.041

Garcia Local CBH 5522 2.29 m 1.78 m 0.423
Garcia Global CBH 5522 2.40 m 1.88 m 0.368
Garcia FRG 1 CBH 5493 2.40 m 1.88 m 0.365

Garcia Local CBD 5522 0.081 kg/m3 0.064 kg/m3 0.284
Garcia Global CBD 41,443 0.080 kg/m3 0.064 kg/m3 0.305
Garcia FRG 1 CBD 5493 0.079 kg/m3 0.062 kg/m3 0.325

Grand Canyon Local CC 10,548 7.09% 5.30% 0.738
Grand Canyon Global CC 10,548 7.32% 5.51% 0.717
Grand Canyon FRG 1 CC 7629 7.31% 5.50% 0.716
Grand Canyon FRG 4 CC 2671 6.82% 5.05% 0.725

Grand Canyon Local CH 10,548 3.09 m 2.32 m 0.663
Grand Canyon Global CH 10,548 3.13 m 2.37 m 0.673
Grand Canyon FRG 1 CH 7629 3.23 m 2.45 m 0.674
Grand Canyon FRG 4 CH 2671 3.13 m 2.38 m 0.487

Grand Canyon Local CBH 10,548 2.06 m 1.55 m 0.822
Grand Canyon Global CBH 10,548 2.21 m 1.69 m 0.792
Grand Canyon FRG 1 CBH 7629 2.37 m 1.82 m 0.759
Grand Canyon FRG 4 CBH 2671 1.69 m 1.30 m 0.668

Grand Canyon Local CBD 10,548 0.028 kg/m3 0.021 kg/m3 0.556
Grand Canyon Global CBD 10,548 0.030 kg/m3 0.021 kg/m3 0.506
Grand Canyon FRG 1 CBD 7629 0.030 kg/m3 0.022 kg/m3 0.509
Grand Canyon FRG 4 CBD 2671 0.022 kg/m3 0.017 kg/m3 0.654

Grand County Local CC 74,132 9.87% 7.20% 0.76
Grand County Global CC 74,132 10.03% 7.43% 0.753
Grand County FRG 1 CC 14,605 12.08% 9.01% 0.696
Grand County FRG 4 CC 55,336 9.49% 6.95% 0.745

Grand County Local CH 74,132 3.02 m 2.25 m 0.619
Grand County Global CH 74,132 3.22 m 2.39 m 0.566
Grand County FRG 1 CH 14,605 3.73 m 2.85 m 0.421
Grand County FRG 4 CH 55,336 3.01 m 2.23 m 0.581

Grand County Local CBH 74,132 1.33 m 0.98 m 0.552
Grand County Global CBH 74,132 1.48 m 1.08 m 0.448
Grand County FRG 1 CBH 14,605 1.68 m 1.26 m 0.387
Grand County FRG 4 CBH 55,336 1.30 m 0.96 m 0.531

Grand County Local CBD 74,132 0.043 kg/m3 0.030 kg/m3 0.599
Grand County Global CBD 74,132 0.044 kg/m3 0.031 kg/m3 0.587
Grand County FRG 1 CBD 14,605 0.049 kg/m3 0.033 kg/m3 0.545
Grand County FRG 4 CBD 55,336 0.042 kg/m3 0.031 kg/m3 0.585

Hoh Local CC 62,288 12.93% 9.71% 0.61
Hoh Global CC 62,288 11.23% 8.03% 0.712
Hoh FRG 5 CC 62,016 11.50% 8.35% 0.697

Hoh Local CH 62,288 5.75 m 4.13 m 0.871
Hoh Global CH 62,288 6.42 m 4.68 m 0.841
Hoh FRG 5 CH 62,016 5.89 m 4.27 m 0.865

Hoh Local CBH 62,288 3.28 m 2.45 m 0.67
Hoh Global CBH 62,288 3.78 m 2.87 m 0.564
Hoh FRG 5 CBH 62,016 3.73 m 2.84 m 0.575
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Table A1. Cont.

Landscape Model
Canopy
Fuel
Variable

N RMSE MAE R2

Hoh Local CBD 62,288 0.080 kg/m3 0.059 kg/m3 0.644
Hoh Global CBD 62,288 0.084 kg/m3 0.062 kg/m3 0.607
Hoh FRG 5 CBD 62,016 0.083 kg/m3 0.062 kg/m3 0.617

Ochoco Local CC 122,339 8.52% 6.46% 0.79
Ochoco Global CC 122,339 8.60% 6.60% 0.787
Ochoco FRG 1 CC 93,212 8.53% 6.49% 0.782
Ochoco FRG 3 CC 22,380 8.53% 6.50% 0.778

Ochoco Local CH 122,339 4.86 m 3.73 m 0.646
Ochoco Global CH 122,339 5.08 m 3.93 m 0.615
Ochoco FRG 1 CH 93,212 5.13 m 4.00 m 0.564
Ochoco FRG 3 CH 22,380 4.68 m 3.53 m 0.704

Ochoco Local CBH 122,339 1.91 m 1.41 m 0.501
Ochoco Global CBH 122,339 1.95 m 1.44 m 0.47
Ochoco FRG 1 CBH 93,212 2.01 m 1.50 m 0.448
Ochoco FRG 3 CBH 22,380 1.78 m 1.27 m 0.53

Ochoco Local CBD 122,339 0.031 kg/m3 0.022 kg/m3 0.585
Ochoco Global CBD 122,339 0.030 kg/m3 0.021 kg/m3 0.608
Ochoco FRG 1 CBD 93,212 0.031 kg/m3 0.022 kg/m3 0.598
Ochoco FRG 3 CBD 22,380 0.028 kg/m3 0.019 kg/m3 0.555

Powell Local CC 55,239 8.81% 6.52% 0.859
Powell Global CC 55,239 9.46% 7.17% 0.837
Powell FRG 3 CC 24,599 10.04% 7.54% 0.83
Powell FRG 4 CC 28,985 8.10% 6.03% 0.835

Powell Local CH 55,239 4.44 m 3.33 m 0.752
Powell Global CH 55,239 4.76 m 3.58 m 0.718
Powell FRG 3 CH 24,599 4.90 m 3.67 m 0.75
Powell FRG 4 CH 28,985 4.06 m 3.05 m 0.739

Powell Local CBH 55,239 2.13 m 1.54 m 0.533
Powell Global CBH 55,239 2.10 m 1.49 m 0.545
Powell FRG 3 CBH 24,599 2.31 m 1.64 m 0.588
Powell FRG 4 CBH 28,985 1.76 m 1.28 m 0.54

Powell Local CBD 55,239 0.054 kg/m3 0.037 kg/m3 0.59
Powell Global CBD 55,239 0.051 kg/m3 0.035 kg/m3 0.635
Powell FRG 3 CBD 24,599 0.062 kg/m3 0.045 kg/m3 0.603
Powell FRG 4 CBD 28,985 0.036 kg/m3 0.024 kg/m3 0.61

Southern Coast Local CC 491,731 16.35% 12.32% 0.613
Southern Coast Global CC 491,731 15.75% 11.19% 0.642
Southern Coast FRG 1 CC 125,537 15.97% 11.11% 0.684
Southern Coast FRG 3 CC 83,831 13.30% 8.60% 0.731
Southern Coast FRG 5 CC 281,017 16.81% 12.09% 0.554

Southern Coast Local CH 491,731 7.31 m 5.30 m 0.78
Southern Coast Global CH 491,731 8.39 m 6.19 m 0.709
Southern Coast FRG 1 CH 125,537 7.37 m 5.51 m 0.634
Southern Coast FRG 3 CH 83,831 7.90 m 5.64 m 0.721
Southern Coast FRG 5 CH 281,017 8.47 m 6.27 m 0.738

Southern Coast Local CBH 491,731 4.00 m 3.00 m 0.575
Southern Coast Global CBH 491,731 4.41 m 3.36 m 0.485
Southern Coast FRG 1 CBH 125,537 3.33 m 2.50 m 0.555
Southern Coast FRG 3 CBH 83,831 4.37 m 3.31 m 0.54
Southern Coast FRG 5 CBH 281,017 4.70 m 3.60m 0.448
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Table A1. Cont.

Landscape Model
Canopy
Fuel
Variable

N RMSE MAE R2

Southern Coast Local CBD 491,731 0.107 kg/m3 0.077 kg/m3 0.552
Southern Coast Global CBD 491,731 0.120 kg/m3 0.087 kg/m3 0.431
Southern Coast FRG 1 CBD 125,537 0.123 kg/m3 0.090 kg/m3 0.478
Southern Coast FRG 3 CBD 83,831 0.110 kg/m3 0.079 kg/m3 0.52
Southern Coast FRG 5 CBD 281,017 0.118 kg/m3 0.084 kg/m3 0.431

Tahoe Local CC 420,960 9.64% 7.09% 0.874
Tahoe Global CC 420,960 10.51% 7.98% 0.85
Tahoe FRG 1 CC 337,658 10.35% 7.64% 0.853
Tahoe FRG 3 CC 76,895 9.98% 7.55% 0.818

Tahoe Local CH 420,960 5.96 m 4.54 m 0.667
Tahoe Global CH 420,960 6.35 m 4.90 m 0.622
Tahoe FRG 1 CH 337,658 6.67 m 5.18 m 0.591
Tahoe FRG 3 CH 76,895 5.82 m 4.44 m 0.63

Tahoe Local CBH 420,960 2.28 m 1.69 m 0.587
Tahoe Global CBH 420,960 2.41 m 1.79 m 0.541
Tahoe FRG 1 CBH 337,658 2.51 m 1.86 m 0.53
Tahoe FRG 3 CBH 76,895 2.15 m 1.63 m 0.484

Tahoe Local CBD 420,960 0.053 kg/m3 0.036 kg/m3 0.789
Tahoe Global CBD 420,960 0.054 kg/m3 0.037 kg/m3 0.775
Tahoe FRG 1 CBD 337,658 0.058 kg/m3 0.040 kg/m3 0.761
Tahoe FRG 3 CBD 76,895 0.038 kg/m3 0.025 kg/m3 0.75

Teanaway Local CC 25,817 10.01% 7.48% 0.8
Teanaway Global CC 25,817 10.41% 7.91% 0.785
Teanaway FRG 1 CC 6102 10.29% 7.78% 0.702
Teanaway FRG 3 CC 19,181 10.04% 7.54% 0.809

Teanaway Local CH 25,817 4.51 m 3.54 m 0.509
Teanaway Global CH 25,817 4.52 m 3.51 m 0.533
Teanaway FRG 1 CH 6102 4.32 m 3.32 m 0.419
Teanaway FRG 3 CH 19,181 4.23 m 3.26 m 0.611

Teanaway Local CBH 25,817 2.03 m 1.53 m 0.525
Teanaway Global CBH 25,817 2.14 m 1.62 m 0.47
Teanaway FRG 1 CBH 6102 2.16 m 1.64 m 0.451
Teanaway FRG 3 CBH 19,181 2.04 m 1.55 m 0.521

Teanaway Local CBD 25,817 0.042 kg/m3 0.030 kg/m3 0.667
Teanaway Global CBD 25,817 0.043 kg/m3 0.031 kg/m3 0.645
Teanaway FRG 1 CBD 6102 0.038 kg/m3 0.026 kg/m3 0.501
Teanaway FRG 3 CBD 19,181 0.044 kg/m3 0.032 kg/m3 0.662

Table A2. Performance assessment of local (nearest), global, and fire regime group (FRG) models using
test landscapes. All data within the landscape’s dataset used for model assessment. N refers to the
number of samples used for the performance metrics, which are root mean square error (RMSE), mean
absolute error (MAE), and coefficient of determination (R2).

Landscape Model
Canopy
Fuel
Variable

N RMSE MAE R2

Illilouette Dinkey CC 124,229 10.95% 8.53% 0.680
Illilouette Global CC 124,229 10.68% 8.31% 0.696
Illilouette FRG 1 CC 59,941 11.51% 9.05% 0.684
Illilouette FRG 3 CC 59,606 9.56% 7.36% 0.717
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Table A2. Cont.

Landscape Model
Canopy
Fuel
Variable

N RMSE MAE R2

Illilouette Dinkey CH 124,229 8.06 m 6.28 m 0.300
Illilouette Global CH 124,229 7.84 m 6.18 m 0.338
Illilouette FRG 1 CH 59,941 8.81 m 6.90 m 0.280
Illilouette FRG 3 CH 59,606 7.40 m 5.96 m 0.191

Illilouette Dinkey CBH 124,229 4.25 m 3.16 m −0.168
Illilouette Global CBH 124,229 4.11 m 3.03 m −0.094
Illilouette FRG 1 CBH 59,941 4.77 m 3.49 m −0.120
Illilouette FRG 3 CBH 59,606 3.35 m 2.55 m −0.094

Illilouette Dinkey CBD 124,229 0.035 kg/m3 0.024 kg/m3 0.417
Illilouette Global CBD 124,229 0.030 kg/m3 0.020 kg/m3 0.578
Illilouette FRG 1 CBD 59,941 0.033 kg/m3 0.022 kg/m3 0.540
Illilouette FRG 3 CBD 59,606 0.029 kg/m3 0.019 kg/m3 0.529

North Coast South Coast CC 947,615 15.93% 12.47% 0.553
North Coast Global CC 947,615 14.22% 10.76% 0.644
North Coast FRG 3 CC 49,945 14.05% 9.73% 0.692
North Coast FRG 5 CC 895,207 14.33% 10.24% 0.631

North Coast South Coast CH 947,615 7.83 m 5.98 m 0.702
North Coast Global CH 947,615 8.15 m 6.27 m 0.677
North Coast FRG 3 CH 49,945 9.05 m 6.80 m 0.565
North Coast FRG 5 CH 895,207 10.04 m 7.61 m 0.510

North Coast South Coast CBH 947,615 4.65 m 3.59 m 0.430
North Coast Global CBH 947,615 4.66 m 3.64 m 0.428
North Coast FRG 3 CBH 49,945 4.37 m 3.44 m 0.433
North Coast FRG 5 CBH 895,207 4.94 m 3.82 m 0.359

North Coast South Coast CBD 947,615 0.116 kg/m3 0.085 kg/m3 0.511
North Coast Global CBD 947,615 0.121 kg/m3 0.090 kg/m3 0.465
North Coast FRG 3 CBD 49,945 0.125 kg/m3 0.092 kg/m3 0.510
North Coast FRG 5 CBD 895,207 0.126 kg/m3 0.095 kg/m3 0.417

Slate Creek Clear Creek CC 320,971 25.29% 22.28% −0.446
Slate Creek Global CC 320,971 14.96% 12.18% 0.494
Slate Creek FRG 1 CC 55,873 13.90% 10.74% 0.633
Slate Creek FRG 3 CC 190,294 14.62% 11.68% 0.561
Slate Creek FRG 4 CC 73,862 15.49% 13.02% −0.057

Slate Creek Clear Creek CH 320,971 7.05 m 5.52 m 0.249
Slate Creek Global CH 320,971 6.36 m 4.90 m 0.390
Slate Creek FRG 1 CH 55,873 7.23 m 5.72 m 0.397
Slate Creek FRG 3 CH 190,294 6.62 m 5.13 m 0.345
Slate Creek FRG 4 CH 73,862 5.91 m 4.65 m −0.099

Slate Creek Clear Creek CBH 320,971 3.84 m 2.84 m −0.004
Slate Creek Global CBH 320,971 3.58 m 2.69 m 0.125
Slate Creek FRG 1 CBH 55,873 4.33 m 3.36 m 0.142
Slate Creek FRG 3 CBH 190,294 3.72 m 2.81 m 0.070
Slate Creek FRG 4 CBH 73,862 2.75 m 2.23 m −0.411

Slate Creek Clear Creek CBD 320,971 0.114 kg/m3 0.080 kg/m3 −0.889
Slate Creek Global CBD 320,971 0.060 kg/m3 0.045 kg/m3 0.479
Slate Creek FRG 1 CBD 55,873 0.060 kg/m3 0.045 kg/m3 0.503
Slate Creek FRG 3 CBD 190,294 0.063 kg/m3 0.047 kg/m3 0.473
Slate Creek FRG 4 CBD 73,862 0.054 kg/m3 0.042 kg/m3 0.198
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