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Abstract: Taiwan is located at the junction of the tropical and subtropical climate zones adjacent to
the Eurasian continent and Pacific Ocean. The island frequently experiences typhoons that engender
severe natural disasters and damage. Therefore, efficiently estimating typhoon rainfall in Taiwan is
essential. This study examined the efficacy of typhoon rainfall estimation. Radar images released
by the Central Weather Bureau were used to estimate instantaneous rainfall. Additionally, two
proposed neural network-based architectures, namely a radar mosaic-based convolutional neural
network (RMCNN) and a radar mosaic-based multilayer perceptron (RMMLP), were used to estimate
typhoon rainfall, and the commonly applied Marshall–Palmer Z-R relationship (Z-R_MP) and a
reformulated Z-R relationship at each site (Z-R_station) were adopted to construct benchmark models.
Monitoring stations in Hualien, Sun Moon Lake, and Taichung were selected as the experimental
stations in Eastern, Central, and Western Taiwan, respectively. This study compared the performance
of the models in predicting rainfall at the three stations, and the results are outlined as follows: at the
Hualien station, the estimations of the RMCNN, RMMLP, Z-R_MP, and Z-R_station models were
mostly identical to the observed rainfall, and all models estimated an increase during peak rainfall on
the hyetographs, but the peak values were underestimated. At the Sun Moon Lake and Taichung
stations, however, the estimations of the four models were considerably inconsistent in terms of
overall rainfall rates, peak rainfall, and peak rainfall arrival times on the hyetographs. The relative
root mean squared error for overall rainfall rates of all stations was smallest when computed using
RMCNN (0.713), followed by those computed using RMMLP (0.848), Z-R_MP (1.030), and Z-R_station
(1.392). Moreover, RMCNN yielded the smallest relative error for peak rainfall (0.316), followed by
RMMLP (0.379), Z-R_MP (0.402), and Z-R_station (0.688). RMCNN computed the smallest relative
error for the peak rainfall arrival time (1.507 h), followed by RMMLP (2.673 h), Z-R_MP (2.917 h),
and Z-R_station (3.250 h). The results revealed that the RMCNN model in combination with radar
images could efficiently estimate typhoon rainfall.
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1. Introduction

Taiwan is situated at the junction of the tropical and subtropical climate zones, bordering the
Eurasian continent and the Pacific Ocean. Natural disasters frequently occur each year because
of typhoons—the strong winds and rainfall of which often lead to severe disasters. In addition,
the northwest Pacific Ocean is commonly affected by typhoons; approximately four typhoons
strike Taiwan every year and cause serious severe damage [1,2]. For example, typhoon Megi,
a typical moderate-strength typhoon, made landfall on the east coast of Taiwan in 2016. The strong
winds and heavy rain caused severe damage; buildings were buried by a mudslide down a river,
and 650,000 households experienced power outages, which resulted in US$100 million in economic
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losses [3]. Improving quantitative precipitation estimation (QPE) for tropical storms is crucial for
disaster mitigation [4,5].

Taiwan’s Central Mountain Range (CMR) runs from the north to the south of the island, dividing
it into eastern and western parts. The CMR is situated in the east and is 340 km long and 80 km
wide, with an average elevation of approximately 2500 m [6]. When a typhoon strikes Taiwan from
the east, it exerts its most severe effects on the eastern regions, which sustain considerable damage.
By contrast, the western regions sustain less damage because the typhoon structure is often disrupted
and weakened by the CMR. Notably, the distribution of major rainfall during typhoons statistically
resembles the contours of terrain height, often referred to as the “phase-locking” mechanism [7].
The phase-locking mechanism can provide a basic explanation of the topographic rainfall in the CMR
associated with typhoons impinging from different directions [8]. Several researchers have discussed
the effects of the aforementioned mechanism, such as [9–13]. These researchers have revealed that
when typhoons approach Taiwan from the east before passing through the CMR, their routes are more
easily estimated, and early warnings can be provided for precaution against the corresponding wind
and rain. By contrast, after typhoons pass through the CMR, the routes, arrival times of wind and rain,
and delays in rainfall become unpredictable [14,15]. Therefore, efficiently estimating typhoon rainfall
is crucial for Taiwan.

A radar is commonly used for both weather surveillance and research to help meteorologists
understand the dynamics and microphysical processes of atmospheric phenomena [16].
Radar reflectivity is a measure of the fraction of electromagnetic waves reflected by precipitation
particles (e.g., rain, snow, or hail). Different colors are used to create radar images according to the
intensity of the signal reflected by precipitation particles [3]. The intensity of reflection is associated with
the size, shape, state of matter, and number of particles within a unit of precipitation. Stronger reflected
signals generally indicate heavier precipitation. Therefore, radar images can be used to examine the
intensity of precipitation and distribution of weather systems [17]. Currently, the Central Weather
Bureau (CWB) of Taiwan has four S-band (10-cm wavelength) weather surveillance radar (WSR)
systems; this new type of radar is also referred as WSR-88D (Weather Surveillance Radar—1988
Doppler). Of the four WSR systems, three are separately located in Hualien in Eastern Taiwan, Kenting
in southern Taiwan, and Cigu in Western Taiwan (locations displayed in Figure 1); these three systems
use a Doppler radar. The remaining system is located in Wufenshan in northern Taiwan and uses a
dual-polarized radar. The scan range of the four systems covers Taiwan and its adjacent bodies of water
(i.e., the Pacific Ocean, East China Sea, Taiwan Strait, and Luzon Strait) and forms a WSR network.
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Numerous operational nowcasting systems use the relationship between static radar reflectivity
(Z) and the rain rate (R), such as the commonly used Marshall–Palmer [18] formula of Z = 200 R1.6,
to convert radar echo into rainfall estimates. Radar- and gauge-based rainfall estimates are typically
consistent, particularly when the rainfall intensity is high [19–25]. Researchers have studied the QPE of
tropical cyclones. For example, Ku and Yoo [26] analyzed the rainfall engendered by typhoon Nakri by
using radar and rain gauge data. Libertino et al. [27] developed a quasi-real-time procedure to optimize
the radar estimation of rainfall rates. Moreover, Tang and Matyas [28] developed a nowcasting model
for tropical cyclone precipitation based on rain retrieval for a Doppler radar. Chen et al. [29] reported
the vertical structures of the raindrop size distribution and QPE parameters of two main synoptic
systems: typhoons and Meiyu (or Baiu) fronts. According to these researchers, radar reflectivity factors
constitute a vital variable that can be used as a QPE model input.

This study developed a model for estimating hourly rainfall during typhoons and analyzed the
accuracy of typhoon rainfall estimation. As previously discussed, to address the problem of QPE,
reflectivity measurements were employed. Radar imagery released by the CWB was used to estimate
instantaneous rainfall, and a neural network-based model was employed to develop a precipitation
estimation model. Specifically, multilayer perceptron (MLP) neural networks and convolutional neural
networks (CNNs) were used to develop a typhoon precipitation estimation model.

Numerous studies have discussed typhoon rainfall estimation using machine learning models.
Such models are typically composed of an MLP network, a radial basis function network, a support
vector machine, and random forests and Bayesian networks [30–35]. Studies have combined such
machine learning models with radar reflectivity and satellite remotely sensed data [36,37]. For example,
Wei [38] developed a fuzzy inference-based neural network and estimated overland precipitation by
using ground climatological data and radar reflectivity. Tao et al. [39] extracted useful features from
bispectral satellite information, infrared images, and water vapor channels to detect rain by using deep
neural networks.

Furthermore, studies have employed new deep learning models such as CNNs. CNNs are
revolutionary in image analysis and are considered state-of-the-art for numerous tasks, including
image classification, face recognition, and object detection [40–44]. CNNs are typically used in
classification tasks in which the output of an image is a single-class label [45]. A standard CNN
consists of alternating convolutional and pooling layers with fully connected layers above them [46].
A pretrained CNN such as VGG-16 [47] and its intermediate convolutional layer are used as an initial
feature-map extractor. The convolutional layer is the core component of a CNN and outputs feature
maps by computing the dot product between the local region in the input feature maps and a filter [48].
The pooling layer performs downsampling on feature maps by computing the maximum or average
value of a subregion. Such newly developed models can be used to process radar images in atmospheric
studies (e.g., rainfall inversion or typhoon intensity prediction). For example, Chen et al. [49] proposed
a satellite imagery-based CNN for estimating the tropical cyclone intensity. Tran and Song [50]
predicted multichannel radar image sequences by using deep neural network-based image processing
techniques. Lee et al. [51] adopted CNNs using image patterns to estimate the tropical cyclone intensity
by mimicking human cloud pattern recognition. Few studies have applied CNNs and remote sensing
images to tropical cyclone rainfall estimation. Accordingly, the present study proposes a relevant
methodology to fill this research gap.

This study proposes two structures for radar mosaic-based neural networks, namely a radar
mosaic-based convolutional neural network (RMCNN) and a radar mosaic-based multilayer perceptron
(RMMLP), to estimate typhoon rainfall. The neural network-based models were compared with
empirical formulas by using the formula Z = 200 R1.6 proposed by [18], which is referred to as the
Marshall–Palmer model (Z-R_MP). In addition, the formula Z = a Rb was reformulated at each station
for the investigated events (Z-R_station). Regarding rainfall rate estimations of the studied stations,
the smallest relative root mean squared error was computed by the proposed RMCNN (0.713), followed
by RMMLP (0.848), Z-R_MP (1.030), and Z-R_station (1.392).
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2. Materials

The geography of the research area is illustrated in Figure 1. Typhoons generally move from east
to west through Taiwan. Accordingly, this study used three experimental stations, namely Hualien
station in the east (121.6051◦E, 23.9729◦N), Sun Moon Lake station in central Taiwan (120.9081◦E,
23.8813◦N), and Taichung station in the west (120.6841◦E, 24.1457◦N), to analyze the accuracy of rainfall
forecasts in typhoon precipitation.

This study considered 17 typhoons that affected the area between 2013 and 2017 (Figure 2). As the
typhoons landed on Taiwan, the CWB released radar images every hour and collected observatory
data. The resolution and color appearance of earlier radar images (released by CWB before 2012)
differs from those of recent images (released by CWB after 2013). Therefore, we collected radar images
starting from 2013. According to the CWB, the maximum wind speeds of mild, moderate, and severe
typhoons are 17.2–32.6, 32.7–50.9, and >51 m/s, respectively. The statistics in Table 1 demonstrate that
from 2013 to 2017, five severe (29.4%), seven moderate (41.2%), and five mild typhoons passed through
the research area.

The radar reflectivity images collected in this study were radar mosaics produced by the
CWB. The CWB typically creates a mosaic by using the reflectivity fields of the four WSR systems.
Reflectivity is measured in decibels relative to Z (dBZ), and higher dBZ values suggest stronger echo
signals. Radar mosaics are created as follows: The WSR systems scan for a period of approximately
7 min. Approximately 2.5 min later, the data collected by the four WSR systems are delivered to
the host computer for data processing, and a composite mosaic is produced. After another 1–5 min,
the mosaic and relevant data are sent to each servo host. Accordingly, a radar mosaic can be created
approximately 15 min after the WSRs begin scanning.
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The radar mosaics collected during typhoons in the present study were composed of hourly radar
images. The radar images of the typhoons that made landfall or approached Taiwan are depicted in
Figure 3. Most of the radar mosaics were complete because they comprised radar images delivered
from several radar systems. Few mosaics included partial sea areas that were not covered by the radar
systems. This study filled in the missing areas in the images by using the most recent images captured
before the time corresponding to missing data.Remote Sens. 2020, 12, x FOR PEER REVIEW 6 of 19 
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Table 1. Typhoons affecting the research area, 2013–2017 (17 incidents).

Typhoon Period (UTC) Intensity
Total rain (mm)

Hualien Sun Moon Lake Taichung

Cimaron 17–18 July 2013 Mild typhoon 29 1 13
Usagi 21–22 September 2013 Severe typhoon 303 25 5
Fitow 5–6 October 2013 Moderate typhoon 59 5 2

Hagibis 15–16 June 2014 Mild typhoon 10 16 5
Matmo 22–23 July 2014 Moderate typhoon 334 240 95

Fung-Wong 19–22 September 2014 Mild typhoon 169 64 31
Linfa 7–9 July 2015 Mild typhoon 9 2 12

Soudelor 7–8 August 2015 Moderate typhoon 219 133 66
Goni 22–23 August 2015 Severe typhoon 269 5 12

Dujuan 28–29 September 2015 Severe typhoon 168 129 87
Nepartak 7–9 July 2016 Severe typhoon 309 23 12
Meranti 13–14 September 2016 Severe typhoon 323 52 19

Megi 27–28 September 2016 Moderate typhoon 399 98 76
Nesat 28–29 July 2017 Moderate typhoon 55 209 42

Haitang 30–31 July 2017 Mild typhoon 90 79 153
Hato 22–23 August 2017 Moderate typhoon 115 6 8
Talim 13–13 September 2017 Moderate typhoon 33 0 0

3. Methodology

This study designed a set of methods for estimating rainfall during typhoons by using the received
instantaneous radar images. The procedures can be explained as follows:

Step 1: Collect relevant data from the research area and select typhoons for analysis.
Typhoon weather information was scanned to confirm whether the typhoons affected the research area,
and the event data of all historical typhoons were then examined;

Step 2: Refine the data collected from radar reflectivity images and gauge rainfall during
the typhoons. After the relevant typhoon data were collected, data preprocessing was conducted.
The preprocessed data were divided into radar images and observatory rainfall data. The observatory
rainfall data obtained in this study were raw data. Parts of the observatory data were incomplete
because of instrument malfunction or human error. Before data analysis, the missing values were
supplied using interpolation. The method of radar image processing is explained in Section 2;

Step 3: Preprocess the data sets and categorize typhoon event data into training–validation and
testing subsets. Of the analyzed typhoons, four approached the island from the east, made landfall on
the east coast, passed through the CMR, and left the island from the west coast. The typhoon routes
were near the three experimental stations in Hualien, Sun Moon Lake, and Taichung, and passed
through the center of the island. This type of typhoon route results in the most severe damage. The four
typhoons, namely Matmo in 2014 (Figure 2e), Soudelor in 2015 (Figure 2h), Dujuan in 2015 (Figure 2j),
and Megi in 2016 (Figure 2m), constituted the testing set. The remaining 13 typhoons constituted the
training–validation set. The training–validation set was used to train model parameters and to verify
the applicability of models by using 10-fold cross-validation. In total, 4701 hourly data were obtained.
Of these, 4146 were used for the training–validation set and 555 were used for testing;

Step 4: Crop the reflectivity images. The latitudinal and longitudinal range of the original radar
images was 117.32◦–124.79◦E, 21.70◦–27.17◦N. Because the original images had a wide geographical
range, cropping was required to obtain the most suitable image size that included the rainfall data
collected by ground-based observatories;

Step 5: Conduct neural network-based estimation and identify optimal reflectivity image sizes
and model parameters. This study developed an RMCNN model in accordance with the different
image sizes after cropping and initially applied default mode parameter values to identify the most
suitable image size. After selection, relevant parameters for the RMCNN and RMMLP models were
analyzed. The number of neurons and learning rate were calibrated in the RMCNN and RMMLP
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models. The model inputs were the reflectivity images cropped in Step 4, and the outputs were
the rainfall rates at the stations. The RMCNN and RMMLP models were implemented using the
open-source scikit-learn and Keras libraries in Python 3.7 (Python Software Foundation, Wilmington,
DE, USA) [52,53];

Step 6: Evaluate the accuracy of the neural network-based models using the testing subset.
Each selected typhoon was analyzed using the models to estimate typhoon rainfall and compare model
errors and efficiency. This study used the root mean squared error (RMSE), mean absolute error (MAE),
relative RMSE (rRMSE), relative MAE (rMAE), and efficiency coefficient (CE) as evaluation measures.
Their equations can be defined as follows:

RMSE =

√√
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where n represents the number of data; Rest
i and Robs

i represent the ith estimated and observed values,

respectively; and R
obs

represents the average observed value;
Step 7: Compare the optimal neural network-based models with empirical formulas by using

the Z-R_MP and Z-R_station formulas. We computed the Z-R relationship at Hualien station
(Z-R_Hualien) as Z = 288 R1.195, that at Sun Moon Lake station as Z = 378 R1.0957, and that at Taichung
station (Z-R_Taichung) as Z = 352 R0.8376.

Network Architecture

The developed RMMLP and RMCNN models were based on two types of neural networks,
namely an MLP and a CNN. The framework of the proposed RMMLP (Figure 4) is a conventional type
of ANN that includes input, hidden, and output layers. The additional fully connected layer directly
receives the cropped images to be flattened (conversion from a two-dimensional to a one-dimensional
array). Therefore, the RMMLP model can be used when images serve as the network model inputs.
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RMMLP model training involves learning and recall phases. In the learning phase, data training
is conducted using known input and output values to obtain a set of connection weights in the hidden
layer. The weights are used to calculate objective output results. In the recall phase, another input
value (i.e., validation and test sets) is entered, and the estimated value is output using the weights
obtained in the learning phase.

Unlike the RMMLP model, the RMCNN model has two additional layers: convolutional and
pooling layers (Figure 5). The two additional layers enable the RMCNN to efficiently convert the
collected information into applicable data for extracting features. Subsequently, the features are
combined by the fully connected layer, and model training is conducted.
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The convolutional layer of the RMCNN model contains several convolution kernels.
Different weight combinations assigned to the convolution kernels can be used to sharpen images,
detect edges, and extract features for recognition purposes. The neurons in the convolutional layer are
feature detectors. The input end first corresponds to a convolution kernel and defines its size. In brief,
the convolutional layer extracts features in an image. The convolution equation is expressed as follows:∫

∞

−∞

f (τ)g(x− τ)dτ, (6)

where f (x) is the original pixels; the original image is created after all pixels are superimposed.
In addition, g(x) denotes the point of application.

Through the convolution equation, the modeling system can output a result superimposed by
multiple inputs at a specific moment. In image analysis, a convolution kernel is the combination
of all application points. The application points on the convolution kernel affect the original pixel
sequentially; accordingly, the output of the linear superposition is the final output of the convolution
kernel. The equation is as follows:

O(i, j) = (I ∗K)(i, j) =
∑1

m=0

∑1

n=0
I(i + m, j + n)K(m, n), (7)

where O, I, and K are outputs, inputs, and convolution kernels, respectively, and m and n are defined
by the convolution kernel function.

In an RMCNN, the fully connected layer performs a regression on the extracted features flattened
in the convolution and pooling layers. Data are processed using a dropout function that enables the
models to shut down some of the neurons to prevent overfitting during training.

4. Modeling

This study employed the training–validation set to train model parameters and verify model
applicability. Two types of neural network models (i.e., RMCNN and RMMLP models) were established
to examine the most suitable size and hyperparameters (e.g., number of neurons and learning rate)
concerning radar images. A trial-and-error approach was used for verification, and the RMCNN
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architecture used in this study is displayed in Figure 5. The settings of each RMCNN model parameter
are outlined as follows: filter weighting size = 3 × 3; padding method = same; max pooling size =

2 × 2. The activation function of the convolutional layer was a rectified linear unit (ReLU) function,
the activation function of the hidden layer was a sigmoid function, and the dropout rate was 0.2.

4.1. Image Resizing and Selection

The resolution of the original radar images was 1024 × 1024 pixels. This study first located and
centered the experimental stations in the images and then cropped the sheet by sizes of 4 × 4, 6 × 6,
. . . , and 30 × 30 pixels. One pixel typically corresponds to an actual distance of 0.703 km. The cropped
images and observatory rainfall data were then used as inputs into the RMCNN model for rainfall
estimation. In this phase, the number of neurons and the learning rate in the hidden layer were set to
10 and 0.0001, respectively.

Tables 2–4 present the RMSE results for different image sizes for the Hualien, Sun Moon Lake,
and Taichung stations, respectively. The lowest RMSE values for the estimations at both experimental
stations (3.449, 3.061, and 2.478 mm/h) were observed when the image size of 12 × 12 pixels was
used for Hualien and Taichung and the image size of 14 × 14 pixels was used for Sun Moon Lake.
Therefore, these were selected as the most suitable image sizes. Here, 12 pixels correspond to an actual
distance of 8.44 km.

Table 2. Results for various image sizes (pixel × pixel) at Hualien station.

Image size 4 × 4 6 × 6 8 × 8 10 × 10 12 × 12 14 × 14 16 × 16

RMSE (mm/h) 3.776 3.773 3.659 4.285 3.449 4.263 4.813

Image size 18 × 18 20 × 20 22 × 22 24 × 24 26 × 26 28 × 28 30 × 30

RMSE (mm/h) 3.886 3.639 4.344 4.014 3.854 4.461 4.114

Table 3. Results for various image sizes (pixel × pixel) at Sun Moon Lake station.

Image size 4 × 4 6 × 6 8 × 8 10 × 10 12 × 12 14 × 14 16 × 16

RMSE (mm/h) 3.473 3.787 3.273 3.447 3.343 3.061 3.330

Image size 18 × 18 20 × 20 22 × 22 24 × 24 26 × 26 28 × 28 30 × 30

RMSE (mm/h) 3.182 3.280 3.172 3.158 3.446 3.706 4.002

Table 4. Results for various image sizes (pixel × pixel) at Taichung station.

Image size 4 × 4 6 × 6 8 × 8 10 × 10 12 × 12 14 × 14 16 × 16

RMSE (mm/h) 2.797 2.997 3.061 2.662 2.478 2.640 2.534

Image size 18 × 18 20 × 20 22 × 22 24 × 24 26 × 26 28 × 28 30 × 30

RMSE (mm/h) 2.623 3.119 3.091 3.127 2.936 3.017 3.099

4.2. Parameter Calibration

After the most suitable image size was selected, the RMCNN model hyperparameters were
examined. First, the number of neurons in the hidden layer was calibrated. The number of neurons
was set between 5 and 35. Figure 6a,c,e present the RMSE values of the RMCNN and RMMLP models
when applied at the Hualien, Sun Moon Lake, and Taichung stations, respectively. The lowest RMSE
values (2.764 and 3.624 mm/h) were obtained when the RMCNN and RMMLP models applied at the
Hualien station had 18 and 20 neurons, respectively; the lowest RMSE values (2.141 and 2.695 mm/h)
for the estimations at the Sun Moon Lake station were obtained when the RMCNN and RMMLP
models had 13 and 16 neurons, respectively; and the lowest RMSE values (1.542 and 1.756 mm/h) for
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the estimations at the Taichung station were obtained when the RMCNN and RMMLP models had 20
and 22 neurons, respectively.Remote Sens. 2020, 12, x FOR PEER REVIEW 10 of 19 
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This study used adaptive moment estimation (Adam) proposed by [54] to analyze the learning
rate. The Adam algorithm was selected because it has an adaptive learning rate and can adjust the
learning rate and update neural network weights on the basis of first- and second-order moment
estimation, which increases the calculation efficiency. To apply the Adam algorithm, this study set
the initial learning rate to between 0.0001 and 0.002. Figure 6b,d,f illustrate the RMSE values of
the RMCNN and RMMLP models applied at the three stations. For the estimations at the Hualien
station, the RMCNN and RMMLP models had minimum RMSE values (2.690 and 3.222 mm/h) when
the learning rate was 0.0008 and 0.0009, respectively. For Sun Moon Lake station, the RMCNN and
RMMLP models had minimum RMSE values (2.031 and 2.606 mm/h) when the learning rate was
0.0006 and 0.0008, respectively. For Taichung station, the RMCNN and RMMLP models had minimum
RMSE values (1.437 and 1.563 mm/h) when the learning rate was 0.0006 and 0.0007, respectively.

5. Results and Discussion

To examine the applicability of the three models and estimation errors for typhoons passing
through the CMR from east to west, this study selected data on four typhoons for evaluation and
compared the analysis results of the RMCNN, RMMLP, Z-R_MP, and Z-R_station models.
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5.1. Simulation Results

Four typhoons (Matmo, Soudelor, Dujuan, and Megi) were employed to identify the most suitable
rainfall estimation model. Figure 7 presents hyetographs of observed rainfall and RMCNN, RMMLP,
Z-R_MP, and Z-R_station model estimations at the Hualien, Sun Moon Lake, and Taichung stations.Remote Sens. 2020, 12, x FOR PEER REVIEW 11 of 19 
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Taichung stations.

The rain duration of typhoon Matmo was 43 h (time series: t = 1–43 h; Figure 7). The Hualien, Sun
Moon Lake, and Taichung stations had the maximum observed rainfall at t = 20 h (41 mm/h), t = 24 h
(26 mm/h), and t = 24 h (20 mm/h), respectively. After the typhoon circulation structure was disturbed
by the CMR, the observed rainfalls at the Taichung and Sun Moon Lake stations were less than that at
the Hualien station. The results for the remaining three typhoons were similar. Typhoon Soudelor
had a rain duration of 50 h (t = 44–93 h) and the Hualien station recorded the maximum rainfall at
t = 66 h (54 mm/h), whereas the Sun Moon Lake station recorded the maximum rainfall with a 3-h delay
(t = 69 h; 19 mm/h) and Taichung station recorded the maximum rainfall with a 7-h delay (t = 73 h;
9 mm/h). The rain duration of typhoon Dujuan was 28 h (t = 94–121). The maximum rainfall at the
Hualien station was reached at t = 109 h (35 mm/h); that at the Sun Moon Lake station was reached at
t = 114 h (34 mm/h), with a 5-h delay; and at the Taichung station, it was reached at t = 114 h (15 mm/h),
with a 5-h delay. Typhoon Megi had a rain duration of 63 h (t = 122–184 h). The maximum rainfall
at the Hualien, Sun Moon Lake, and Taichung stations was reached at t = 140 h (61 mm/h), t = 143 h
(8 mm/h), and t = 151 h (8 mm/h; 11-h delay), respectively.

Regarding the estimated rain pattern, the estimations of all models at the Hualien station (Figure 7a)
were mostly identical to the observed pattern. Concerning the peak rainfall on the hyetographs, all
models reflected an increase in rainfall. However, these models had larger differences in estimated
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types of rain, peak rainfall on the hyetograph, and the arrival time of peak rainfall for data recorded
at the Sun Moon Lake and Taichung stations. This may be because the rapidly changing typhoon
circulation structure and the radar images detected and received at the Sun Moon Lake and Taichung
stations increase forecast uncertainty. By contrast, before a typhoon reaches the island, its structure
and circulation observed at the Hualien station tend to be more stable, which facilitates the estimation
of intense rainfall. This study compared these models according to their performance for several
evaluation measures.

5.2. Evaluations

Figure 8 shows scatter plots comparing the observations obtained with the four model estimations.
For both stations, the correlation coefficient (r) indicated that the RMCNN model was more accurate
than the RMMLP, Z-R_MP, and Z-R_station models. The RMCNN model estimations at the Hualien
station (r = 0.946) and Sun Moon Lake station (r = 0.961) were more satisfactory and consistent with
the observed data than those at the Taichung station (r = 0.878).
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Figure 8. Scatterplots of observations versus estimations using RMCNN, RMMLP, Marshall–Palmer
Z-R relationship (Z-R_MP), and reformulated Z-R relationship at each site (Z-R_station) models for
Hualien (a–d), Sun Moon Lake (e–h), and Taichung (i–l).

Regarding absolute errors, this study assessed the MAE and RMSE for the four examined typhoons.
For the RMCNN model, the MAE and RMSE values for the four typhoons observed at the Hualien
station were higher than those observed at the Sun Moon Lake and Taichung stations (Figure 9a,e).
Similar results were observed for the RMMLP (Figure 9b,f), Z-R_MP (Figure 9c,g), and Z-R_station
(Figure 9d,h) models. According to these results, the estimations at the Hualien station had a larger
error because of the rainfall at this station.
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This study also used rMAE and rRMSE to evaluate the estimations for the four typhoons. For the
RMCNN model, the rMAE and rRMSE values observed for the Taichung station were higher than those
observed for the Hualien and Sun Moon Lake stations for typhoons Matmo, Soudelor, and Dujuan
(Figure 10a,e). For the RMMLP and Z-R_MP models, the rMAE and rRMSE values observed for the
Taichung station were also higher than those observed for the Hualien and Sun Moon Lake stations for
typhoons Matmo and Soudelor (Figure 10b,c,f,g).
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Table 5 presents the overall performance levels obtained for the models for the four examined
typhoons at Hualien, Sun Moon Lake, and Taichung stations. The RMCNN model exhibited a
superior performance for each measure compared with the RMMLP, Z-R_MP, and Z-R_station models.
Moreover, the absolute errors observed for the estimations at the Hualien station were greater than
those observed for the estimations at the Sun Moon Lake and Taichung stations, but the relative errors
observed for the estimations at the Hualien station were lower than those observed for the estimations
at the Sun Moon Lake and Taichung stations. Finally, the RMCNN model had the highest CE (0.867)
for the estimations at the Hualien station, whereas the Z-R_station model had the lowest CE among all
models at the three stations.
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Table 5. Overall model performance levels for four typhoons.

Station Model RMCNN RMMLP Z-R_MP Z-R_ station

Hualien

MAE (mm/h) 1.870 2.218 2.670 4.206
RMSE (mm/h) 3.502 4.351 4.955 7.569

rMAE 0.309 0.366 0.441 0.695
rRMSE 0.579 0.719 0.818 1.250

r 0.946 0.930 0.868 0.854
CE 0.867 0.794 0.733 0.378

Sun Moon Lake

MAE (mm/h) 1.070 1.340 1.522 2.268
RMSE (mm/h) 2.124 2.672 3.155 4.458

rMAE 0.314 0.393 0.446 0.665
rRMSE 0.623 0.783 0.925 1.307

r 0.961 0.939 0.835 0.852
CE 0.860 0.778 0.691 0.383

Taichung

MAE (mm/h) 0.771 0.905 1.141 1.474
RMSE (mm/h) 1.641 1.828 2.361 2.836

rMAE 0.440 0.517 0.651 0.842
rRMSE 0.937 1.043 1.348 1.619

r 0.878 0.843 0.655 0.741
CE 0.727 0.661 0.416 0.185

5.3. Estimation Performance for Peak Rainfall

This study examined the estimation performance of the four models for peak rainfall. The relative
error of peak rainfall and the absolute time error of peak rainfall were derived as measures for
comparison. First, the relative error of peak rainfall (REPeak), defined as the average ratio of absolute
errors, can be expressed as follows:

REpeak =

∑m
k=1

∣∣∣Oppre

k −Opobs
k

∣∣∣∑m
k=1 Opobs

k

, (8)

where O
ppre

k is the estimated peak value in typhoon event k, Opobs
k is the observed peak value in typhoon

event k, and m is the total number of typhoon events.
Second, the absolute time error of peak rainfall (ATPeak), defined as the average of absolute time

errors, can be expressed as follows:

ATpeak =
1
m

∑m

k=1

∣∣∣Tppre

k − Tpobs
k

∣∣∣, (9)

where T
ppre

k is the arrival time of estimated peak rainfall in typhoon event k and Tpobs
k is the arrival time

of observed peak rainfall in typhoon event k.
Lower REPeak and ATPeak values indicate higher performances. Figure 11 displays the REPeak and

ATPeak values for the four typhoons. As illustrated by Figure 11a, the following results were observed:
(1) For the estimations at the Hualien and Sun Moon Lake stations, the REPeak value for the RMCNN
model was superior to those for the RMMLP, Z-R_MP, and Z-R_station models, but for the estimations
at the Taichung station, the REPeak value for the Z-R_MP model was superior to those for the RMCNN,
RMMLP, and Z-R_station models; (2) with relative error of the estimated peak rainfall on RMCNN,
Hualien station computed the smallest REPeak (0.262), followed by Sun Moon Lake station (0.303),
and then Taichung station (0.385). The peak rainfall estimated at the Hualien station was less than that
at the Sun Moon Lake and Taichung stations because the typhoon routes were disturbed by the CMR.
Hence, peak rainfall was difficult to estimate at the Sun Moon Lake and Taichung stations.
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relative error of peak rainfall (REpeak) and (b) the absolute time error of peak rainfall (ATpeak).

Additionally, as shown in Figure 11b, the following results were observed: (1) The ATPeak values
observed for the RMCNN and RMMLP models for the estimations at Hualien station were 0, indicating
that the models accurately estimated the wind and rain arrival times. Although all models could not
accurately estimate the rain arrival times for the estimations at the Sun Moon Lake and Taichung
stations, the ATPeak value obtained for the RMCNN model was smaller than those obtained for the
RMMLP, Z-R_MP, and Z-R_station models; (2) the ATPeak values obtained for all models for the
estimations at Hualien station were smaller than those obtained for the estimations at the Sun Moon
Lake and Taichung stations because the typhoon eye and structure were more stable before reaching
landforms. Therefore, the peak rainfall arrival time was more easily estimated in Hualien.

6. Conclusions

This study examined the efficiency of typhoon precipitation estimation and evaluated the influence
of the CMR on rainfall during typhoons. In general, when a typhoon approaches Taiwan from east to
west, its route or the wind and rain it carries are more easily predicted before it passes through the CMR.
By contrast, after the typhoon passes the CMR, its route and delay in rainfall become unpredictable.

This study considered 17 typhoons that affected the research area from 2013 to 2017 and collected
hourly radar images released by the CWB during the typhoons, as well as observatory data. Hualien
station in the east, Sun Moon Lake station in Central Taiwan, and Taichung station in the west were
selected as the three experimental sites, and RMCNN, RMMLP, Z-R_MP, and Z-R_station models were
employed. The RMCNN model was incorporated with the radar images to estimate typhoon rainfall.
Using the overall rainfall rates of all stations, RMCNN computed the smallest relative root mean
squared error (0.713), followed by RMMLP (0.848), Z-R_MP (1.030), and Z-R_station (1.392). Moreover,
the smallest relative error of peak rainfall was yielded by RMCNN (0.316), followed by RMMLP (0.379),
Z-R_MP (0.402), and Z-R_station (0.688). The smallest relative error of peak rainfall arrival time was
computed by RMCNN (1.507 h), followed by RMMLP (2.673 h), Z-R_MP (2.917 h), and Z-R_station
(3.250 h). On the basis of relevant evaluation measures, the RMCNN model outperformed the RMMLP,
Z-R_MP, and Z-R_station models.

The estimations of the four models at Hualien station were mostly identical to the observed rainfall
data. Although all models estimated an increase in rainfall at the peak rainfall time on the hyetographs,
the peak value was underestimated. The estimations of the four models concerning the hyetograph and
peak rainfall arrival time at the Sun Moon Lake and Taichung stations were considerably inconsistent
with the observed data. This may be because the rapidly changing typhoon circulation structure and
the radar images increase the uncertainty of rainfall forecasting. By contrast, peak rainfall and the
peak rainfall arrival time were easier to detect at Hualien station because the typhoon structure and
circulation are more stable before the typhoon reaches the island. In conclusion, this study employed
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the RMCNN model integrated with radar imagers to estimate typhoon rainfall, and the results reveal
that the model incorporating radar images can effectively estimate precipitation during typhoons.
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