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Abstract: The study of post-disaster recovery requires an understanding of the reconstruction process
and growth trend of the impacted regions. In case of earthquakes, while remote sensing has been
applied for response and damage assessment, its application has not been investigated thoroughly
for monitoring the recovery dynamics in spatially and temporally explicit dimensions. The need and
necessity for tracking the change in the built-environment through time is essential for post-disaster
recovery modeling, and remote sensing is particularly useful for obtaining this information when
other sources of data are scarce or unavailable. Additionally, the longitudinal study of repeated
observations over time in the built-up areas has its own complexities and limitations. Hence, a model
is needed to overcome these barriers to extract the temporal variations from before to after the disaster
event. In this study, a method is introduced by using three spectral indices of UI (urban index), NDVI
(normalized difference vegetation index) and MNDWI (modified normalized difference water index) in
a conditional algebra, to build a knowledge-based classifier for extracting the urban/built-up features.
This method enables more precise distinction of features based on environmental and socioeconomic
variability, by providing flexibility in defining the indices’ thresholds with the conditional algebra
statements according to local characteristics. The proposed method is applied and implemented in
three earthquake cases: New Zealand in 2010, Italy in 2009, and Iran in 2003. The overall accuracies
of all built-up/non-urban classifications range between 92% to 96.29%; and the Kappa values vary
from 0.79 to 0.91. The annual analysis of each case, spanning from 10 years pre-event, immediate
post-event, and until present time (2019), demonstrates the inter-annual change in urban/built-up land
surface of the three cases. Results in this study allow a deeper understanding of how the earthquake
has impacted the region and how the urban growth is altered after the disaster.

Keywords: urban land surface; Landsat imagery; change detection; urban index; earthquake;
longitudinal study

1. Introduction

The recovery process after a disaster has several components that are impacted by the nature
of the hazardous event, the type and status of structures and infrastructures, and vulnerability,
resilience, and socio-economic characteristics of the community [1–7]. One of the main indicators of
how a community is recovering is depicted in the reconstruction and growth of city after the event.
Earthquakes have unique characteristics compared with other natural hazards as the damaging impacts
due to shaking depends on the building types and soil conditions in the affected region, and they
have a short on-set time. The application of remote sensing for studying the impacted region is highly
valuable and especially advantageous when other sources of data are unavailable or incomplete.
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Even though remote sensing methodologies and satellite-based emergency mapping (SEM) has been
used and applied to earthquake damage assessment and response [8–18], it has been rarely used for
monitoring the long-term recovery process. One reason is the limited or non-existent access to high
spatial and temporal resolution imagery for detecting damage and change at building or neighborhood
levels. Such information is essential for documenting the change in urban/built-up area and informing
researchers and policy makers about the reconstruction aspect of the recovery process and trend.
Also, the temporal study of recovery requires a repository of longitudinal data that extends from
pre-event to post-event, for establishing an understanding of how a disastrous event has changed
the pre-existing conditions in the study region. For longitudinal studies of urban land surface change
in a range of years, high spatial and temporal resolution data for the whole time range is often not
available for direct visual detection, like hyperspectral imagery from AVIRIS and Hyperion [19,20] or
high-spatial resolution imagery from QuickBird, IKONOS, or Spot-5 [21], synthetic-aperture radar
(SAR) imagery from Envisat ASAR or TerraSAR [22,23] that is more recent and not applicable for
older events. Therefore, medium-resolution image classification is most often used. Landsat image
series, due to its long-term observation since 1972 at 30-m resolution and 16-day revisit cycle, has been
conveniently used for monitoring land change [24–29]. Change detection based on the classified land
use/land cover (LULC) maps in different years is commonly employed [30–33].

The per-pixel image classification is often time-consuming and noisy due to spectral heterogeneity
of land surfaces. The need of full class categorization is another disadvantage because training data
of all classes are often not available especially for historical imagery. Object-based change detection
might be more appropriate for detecting changes in buildings [34–36]. One example for this would
be the study by Pitts et al. [37], where they used polygons from pre-disaster geographic information
system (GIS) data layers and combined those with post-disaster very high resolution (VHR) images.
However, object-based analysis is less practical for medium-resolution imagery like Landsat. More
recently, index-based urban area extraction has become popular [38,39]. An urban index is an indicator
of urban land cover that uses the unique spectral responses of built-up land to delineate it from other
land covers.

The urban/built-up areas have a reflectance in the shortwave infrared (SWIR) band higher than
other spectral bands in optical imagery. In contrast, vegetation in urban lands has much higher
reflectance in near infrared (NIR) band. Considering these characteristics and other features of different
materials and their properties, a number of urban indices have been developed to extract urban/built-up
surfaces. Kawamura et al. [40] proposed the UI (urban index) by considering the spectral differences
of land covers in near infrared (NIR) and SWIR2 (the 2nd SWIR band) of Landsat imagery in a case
study of Sri Lanka. Zha et al. [41] proposed the NDBI (normalized difference built-up index) to map
urban built-up areas that is similar to UI but uses NIR and SWIR1 instead. The NDBI and normalized
difference vegetation index (NDVI) are derived from Landsat imagery, and recoded to create a binary
image so that a positive NDBI shows built-up areas and positive NDVI shows vegetation. The issue
with this index is that it does not differentiate between built-up and barren lands. He et al. [42] modified
the NDBI from binary to continuous, and provided improved results but still identified some vegetation
and bare-land as built-up. They also used Landsat TM along with IKONOS images for accuracy
assessment. Varshney [38] further improved the NDBI algorithm by changing the original NDBI
from binary to continuous and changing the threshold to an automated kernel-based thresholding
algorithm. It reported higher accuracy of results compared to the original proposed NDBI in urban
change detection. Xu [43] proposed the IBI (index-based built-up index) from three pre-defined indices
of SAVI (soil adjusted vegetation index), MNDWI (modified normalized difference water index), and
NDBI. The study verified the index by using Landsat TM imagery and reported less noise in the final
results compared to NDBI. As-Syakur et al. [44] presented the EBBI (enhanced built-up and bareness
index) to map both built-up and barelands. The index applies NIR, SWIR, and thermal infrared (TIR)
and reaches better results compared with IBI and NDBI. Another index named NBUI (new built-up
Index) was also defined with a different mathematical construct using Red, NIR, and SWIR bands to
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account for the impact from barren lands [45]. Waqar et al. [46] proposed the BRBA (band ration for
built-up area) and NBAI (normalized built-up area index) that were verified with a case study from
Pakistan. The BRBA is the ratio of RED to SWIR, and NBAI is mathematical construct from Green,
SWIR1, and SWIR2 of Landsat imagery.

Other urban indices to mention include BCI (biophysical composition index) based on tasseled
cap transform; MBI (modified built-up index) using SWIR2, Red, and NIR; BAEI (built-up area
extraction index); NDSV (normalized difference spectral vector) using Red, Green, and SWIR; and CBI
(combinational build-up index) using the principal component analysis as well as SAVI and NDWI
(normalized different wetness index). Valdiviezo et al. [39] conducted a comparative study of built-up
index methods and found the highest accuracies for IBI, BAEI, and NDSV; with lowest accuracy for MBI
and BRBA. Among these urban indices, one common issue is the difficulty in differentiating barelands
and the built-up areas in one image because of their similar spectral responses [47]. The literature
proves the complexity in barelands and built-up areas and the limitation of urban indices.

To accommodate for this complexity in urban/built-up land mapping, we propose to converge
the aforementioned urban indices to distinguish between built-up areas and bare-land before and after
an earthquake. A disaster-specific conditional algebra approach is developed, which has flexibility
in determining thresholds due to local environmental variations. This study effectively delineates
urban/built-up land surface change for the three heterogeneous case studies across the globe with
dissimilar geographical and socio-economical contexts. Application of machine-learning techniques
and support vector machine (SVM) classifiers in the future can further complement the results of
our study and proposed methodology [48]. The extracted annual change trend in urban areas is an
essential element in understanding the recovery and reconstruction process after each earthquake.

2. Materials and Methods

2.1. Study Areas and Datasets

Three heterogeneous study areas were selected based on three earthquakes in different geographical
locations across the globe: the Christchurch earthquake 2010 in New Zealand; the L’Aquila earthquake
2009 in Italy; and the Bam earthquake 2003 in Iran. The three selected events have distinctive
recovery characteristics. On September 3, 2010 a M7.0 earthquake struck approximately 50 km to
the west-northwest of Christchurch, New Zealand [49]. This mainshock (Canterbury earthquake)
was followed by several aftershocks, including a M6.3 shock in 2011 (Christchurch earthquake).
Consequently, 87% of homes in Christchurch were damaged (30% of them had major damage), more
than 180 people died based on New Zealand’s police reports, and estimated damage from both
shocks were about NZ$40 billion (2015$ value) according to the Reserve Bank of New Zealand [50,51].
The recovery encountered three to five year wait times for insurance claims payments, rezoning, and
foundation standards [5]. On April 6, 2009, a M6.3 earthquake struck the city of L’Aquila, Italy [49].
As a result, 309 lost their lives, 1500 were injured, 3,000–10,000 buildings were damaged, and there
was a total economic loss of EUR 17.4 billion (USD$ 20 billion, 2018$ value) according to Swiss Re
estimates [52]. Within six months, the government built base isolated housing for 15,000 families.
However, due to lack of funding, others lived in hotels and other towns for two to three years, and
some relocated [5,53]. On December 26, 2003, an M6.6 earthquake struck city of Bam in southeastern
Iran [49] that resulted in more than 26,000 loss of life, about 30,000 injuries, an estimated 70% complete
loss of housing, and about USD$1.5 billion loss (2014$ value) from World Bank estimates [54,55].

All three earthquakes occurred in the time frame of 2000–2010 with Intensity > VIII and Magnitude
> M6.0. The time frame of each case study starts from 10 years before the earthquake to present
(2019). In this time frame, the pre-event and post-event imagery is collected. The 10 years of imagery
before the earthquake is necessary for establishing a baseline estimate of the urban growth trend
from pre-event conditions. Only urban areas are studied to monitor the urban/built-up land surface
change before and after the event. The extent of area of interest (AOI) for each case is determined by
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the boundary of intensity of six (VI) or higher from USGS ShakeMap [49] (i.e., ‘slight damage’ or more
based on Modified Mercalli intensity scale) for the earthquake events, since it delineates the possible
region of physical damage (Figure 1).
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The primary data in this study are Landsat imageries downloaded from USGS EarthExplorer
(Landsat Collection Level 1) [56]. Table 1 below shows a summary of Landsat imagery used for
the case studies (more details in Table 2). In order to find best time of image acquisition in certain
year, the atmospheric conditions and phenology were examined. The environmental consideration
of phenological cycle characteristics can be either for vegetation phenology or urban–suburban
phenological cycles [57].

Table 1. Summary of earthquake events and Landsat image series used for each case study.

Country Event Date and Time
(UTC)*

Magnitude,
Intensity* Years of Imagery

New Zealand 2010 Christchurch 2010-09-03 16:35:47 M7.0,
IX 2000–2019

Italy 2009 L’Aquila 2009-04-06 01:32:39 M6.3,
VIII 1999–2019

Iran 2003 Bam 2003-12-26 01:56:52 M6.6,
IX 1993–2019

* USGS, Earthquake Hazards Program, event page.

Table 2. Information for all Landsat image series collected for each case study.

Information for Landsat Scenes—New Zealand (Path 74, Row 90, Spatial Resolution 30 m)

Year Acquisition
Date Sensor Year Acquisition

Date Sensor

2000 08-MAY-00 7 ETM+ 2011-Aftershock 28-MAR-11 4-5 TM
2001 02-OCT-01 7 ETM+ 2011 30-OCT-11 7 ETM+
2002 21-OCT-02 7 ETM+ 01-DEC-11 7 ETM+
2003 16-OCT-03 4-5 TM 2012 29-AUG-12 7 ETM+
2004 02-OCT-04 4-5 TM 03-DEC-12 7 ETM+
2005 05-OCT-05 4-5 TM 2013 30-DEC-13 8 OLI
2006 08-OCT-06 4-5 TM 2014 28-SEP-14 8 OLI
2007 16-FEB-08 4-5 TM 2015 17-OCT-15 8 OLI
2008 14-NOV-08 4-5 TM 2016 20-NOV-16 8 OLI
2009 21-FEB-10 4-5 TM 2017 03-AUG-17 8 OLI

2010-Earthquake 22-DEC-10 4-5 TM 2018−2019 02-MAR-19 8 OLI

Information for Landsat Scenes—Italy (Path 190, Row 31, Spatial Resolution 30 m)

Year Acquisition
Date Sensor Year Acquisition

Date Sensor

1999 15-AUG-99 4-5 TM 2010 12-JUL-10 4-5 TM
2000 01-AUG-00 4-5 TM 2011 29-JUN-11 4-5 TM
2001 03-JUL-01 4-5 TM 2012 04-APR-12 7 ETM+
2002 16-SEP-02 7 ETM+ 07-JUN-12 7 ETM+
2003 23-JUN-03 4-5 TM 2013 05-AUG-13 8 OLI
2004 09-JUN-04 4-5 TM 2014 08-AUG-14 8 OLI
2005 30-JUL-05 4-5 TM 2015 27-AUG-15 8 OLI
2006 17-JUL-06 4-5 TM 2016 29-AUG-16 8 OLI
2007 18-JUN-07 4-5 TM 2017 31-JUL-17 8 OLI
2008 03-MAY-08 4-5 TM 2018 02-JUL-18 8 OLI

2009-Earthquake 25-JUL-09 4-5 TM
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Table 2. Cont.

Information for Landsat Scenes—Iran (Path 159, Row 40, Spatial Resolution 30 m)

Year Acquisition
Date Sensor Year Acquisition

Date Sensor

1993-94 27-DEC-93 4-5 TM 2006-07 08-JAN-07 7 ETM+
1994-95 15-JAN-95 4-5 TM 25-FEB-07 7 ETM+
1995-96 01-DEC-95 4-5 TM 2007-08 24-APR-08 4-5 TM
1996-97 04-JAN-97 4-5 TM 2008-09 05-JAN-09 4-5 TM
1997-98 23-JAN-98 4-5 TM 2009-10 24-JAN-10 4-5 TM
1998-99 25-DEC-98 4-5 TM 2010-11 26-DEC-10 4-5 TM

1999-2000 28-DEC-99 4-5 TM 2011-12 06-JAN-12 7 ETM+
2000-01 30-DEC-00 4-5 TM 07-FEB-12 7 ETM+
2001-02 18-JAN-02 4-5 TM 2012-13 24-MAY-13 8 OLI
2002-03 26-NOV-02 7 ETM+ 2013-14 03-JAN-14 8 OLI

2003-04-Earthquake 16-JAN-04 7 ETM+ 2014-15 06-JAN-15 8 OLI
17-FEB-04 7 ETM+ 2015-16 26-FEB-16 8 OLI

2004-05 02-JAN-05 7 ETM+ 2016-17 28-FEB-17 8 OLI
03-FEB-05 7 ETM+ 2017-18 29-DEC-17 8 OLI

2005-06 05-JAN-06 7 ETM+ 2018-19 01-JAN-19 8 OLI
26-MAR-06 7 ETM+

The images for each case are collected based on temporal availability, cloud coverage, and type
of sensor availability. The 2003 Bam earthquake occurred at 5:26 am local time on 26 December and
the months of January and February are chosen for anniversary date. The 2009 L’Aquila earthquake
occurred on 6 April and the months of June and July are more suitable for anniversary dates due to
cloud and snow coverage in other months. Lastly, the 2010 New Zealand occurred at 4:35 am local time
on 4 September, 2010 with a major aftershock at 12:51 pm on 22 February 2011. The months of October
and November are more suitable for anniversary dates but the actual dates of gathered imagery vary
between Septembers to February due to cloud coverage. The time period between January–March
is also in cyclone season. All these effects are taken into consideration when selecting the images.
For initial analysis and data acquisition, there are no threshold assignments for cloud-coverage and
the image that had the least cloud-coverage for each year is selected.

2.2. Methods

The proposed methodology uses three indices of UI, NDVI, and MNDWI, and builds
a knowledge-based classifier to extract the urban/built-up features with a conditional algebra. These
three indices are chosen after testing several combinations of indices that have shown reliable
results based on literature and test sample points from three different years in each case (minimum
50 points/pixels randomly checked with high-resolution Google Earth images in AOI, for the same
three years described in accuracy assessment) to delineate the built-up areas and remove the vegetation,
water, and barelands. The spectral profiles for the sample points from the three cases is shown in
Figure 2 that depicts the local variations and application of the three chosen indices as an average of
spectral responses for each of the four classes. For example, the UI is preferred over other urban indices
such as NDBI or EBBI since the distinction between urban/built-up areas versus barelands is better
represented from the difference between SWIR2 and NIR, than SWIR1 and NIR (Figure 2b). Some
complex urban indices, such as IBI, combine several bands but do not provide flexibility to include
the local variations observed in our study cases and therefore, are not further investigated in this study.
Hence, the UI is used to extract built-up surfaces, while NDVI is applied for removing vegetation
and MNDWI is employed to eliminate both water-bodies and bareland. The formulas for the three
indices are

UI = (SWIR2−NIR)/(SWIR2 + NIR) , (1)
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NDVI = (NIR−Red)/(NIR + Red), (2)

MNDWI = (Green− SWIR1)/(Green + SWIR1), (3)
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Bam, Iran.

For each image, the three indices are calculated and composited into a three-layer RGB image: UI
as Red, NDVI as Green, and MNDWI as Blue. This is the image used to classify urban/built-up and
non-urban in this study. To extract built-up areas, a conditional algebraic test is applied to extract higher
UI values and remove high NDVI and MNDWI values (Appendix A, Table A1). The Gaussian-based
(Bayesian) automatic selection of thresholds for indices [58] was considered but due to the complexities
of the urban landscape and earthquake cases, the pixel values do not follow a normal distribution.
Also, as demonstrated with 100 randomly selected sample pixels in each case (Figure 3), urban index
of built-up pixels reveals an extremely long range, reflecting heterogeneous urban structures. Brighter
built-up pixels (higher UI values) are mixed with barelands, while the darker built-up pixels (lower
UI values) could be mixed with some vegetation and water pixels. In the L’Aquila case (Figure 3b),
UI values of built-up pixels are more densely clustered with barelands, even at higher UI values. In
the Bam case (Figure 3c), UI values can better delineate built-up from barelands, but they show higher
mixture with water. Figure 3 reveals that the UI itself could not optimally extract built-up pixels from
barelands, vegetation, and water. On the other hand, vegetation is more distinguishable from NDVI,
and water could be better identified from MNDWI. Therefore, a multi-index approach is established
in this study. Figure 3 also shows the complexity of urban surface in different earthquake cases.
Conditional algebra provided the means to assign optimal thresholds based on each case characteristics
and variability of indices’ values that was especially effective in distinguishing barelands from built-up
features. In the conditional statement, the threshold for high NDVI values removes vegetation and
MNDWI is used to both remove both water bodies and the barelands, which is the reason that
the conditional statement is applied to both higher values and lower values for this band. Since
the histogram distributions are variable temporally and spatially, the thresholds start with a baseline
defined based on literature [59–61], and the mean values for each band in each image to accommodate
for the variability (Figure 3, Table 3). Finally, the classifier assigns each pixel from the three-layer
image to a binary value of built-up/non-urban for each year. The general conditional statement for
extracting built-up surfaces, prior to any modifications, is as below, (where 1 is indicating built-up and
0 is indicating non-urban):

1, UI > Thresold o f UI
0, NDVI > Thresold o f NDVI (remove Vegetation)
0, MNDWI > 0 (remove water) and MNDWI < Thresold o f MNDWI (remove Barelands)

(4)
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Figure 3. Spectral profiles of four classes in the constructed RGB images for 100 random sample pixels
in (a) Christchurch, New Zealand (2017); (b) L’Aquila, Italy (2017); and (c) Bam, Iran (2018).

The thresholds are different for each of the case studies due to the environmental, seasonal, and
building variations. The variable phenological thresholds have been applied in past studies in analysis
of NDVI time series [62]. In this study, Christchurch, New Zealand is in a flat area east of the Canterbury
Plains and bounded by Pacific Ocean coast, volcanic slopes in the South and Waimakariri River in
the North (Figure 3a); while the case of L’Aquila, Italy is mountainous (Figure 3b), and Bam is in a desert
environment surrounded by mountains (Figure 3c). The values for a few cases are modified based on
the histogram variation for the case and time of the year. It provides flexibility in defining the indices’
thresholds according to local characteristics, which enables more precise distinction of features based
on environmental variability. Once classification is completed, the annual urban/built-up land surface
change is calculated by subtracting the resulted binary pixel values of each year from its previous one.

A histogram match process is applied prior to index calculations. The imagery for a reference year
is picked for histogram match based on having the least cloud coverage. For each case, all bands for all
years are histogram matched by building a model in ERDAS Imagine. Hence, the inter-year variation
from non-earthquake impacts such as atmospheric noises and weather are removed before extracting
thresholds. The radiometric calibration and atmospheric correction is the first step in image processing,
which is done by using the FLAASH (Fast Line-of-sight Atmospheric Analysis of Spectral Hypercubes)
model in ENVI 5.4 software. Atmospheric correction is needed in this change detection method, since
it is based on linear transformations of the data (e.g., NDVI) [54]. The FLAASH model incorporates
the MODTRAN (MODerate spectral resolution atmospheric TRANsmittance) radiation transfer code to
correct wavelengths in the visible through near-infrared and shortwave infrared regions [63]. If cloud
coverage over the study area (AOI) was more that 10% of area for a year, those years were eliminated.

The accuracy assessment is the other part of methodology to estimate the rigor of classification
results. The accuracy of classification is often reported as the percentage of correct identification, which
is presented as errors of commission (presented as user’s accuracy referring to the percentage that
are actually correct) and errors of omission (presented as the producer’s accuracy, is the percentage
of the total pixels that belong to that category in the image). The confusion matrix is used with
validation samples. The overall accuracy is calculated from the ratio of the sum of samples along
the diagonal to the number of validation samples. In order to get representative random points for
accuracy assessment, the number of points is selected by using a validation sample size for each case,
and then they are distributed in two steps: 1) half of points are selected by equalized stratified random
distribution that collects an equal number of random coordinates from each class; 2) the other half
is a complete random distribution without replacement or any predefinitions. When accounting for
the total number of pixels, with a 95% confidence level and confidence interval of 5, the minimum
validation sample size is calculated for each case, which is rounded to 350 points for each case [56].
The random points are distributed in the pre-processed Landsat image and then compared with Google
Earth satellite imagery and our classification.
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Table 3. Conditional statement thresholds for each case study.

Conditional statement thresholds for Christchurch, New Zealand

Year
UI NDVI MNDWI

Upper
threshold

Lower
threshold

Upper
threshold

Lower
threshold

Upper
threshold

Lower
threshold

2000 - −0.4214 - 0.3764 0 −0.4559
2001 - −0.4481 - 0.3583 0 −0.4370
2002 - −0.4366 - 0.3386 0 −0.4425
2003 - −0.4429 - 0.3378 0 −0.4340
2004 - −0.4323 - 0.3441 0 −0.4609
2005 - −0.4086 - 0.3294 0 −0.4589
2006 - −0.4123 - 0.3147 0 −0.4588
2007 - −0.3685 - 0.2910 0 −0.4529
2008 - −0.4260 - 0.3075 0 −0.4112
2009 - −0.3895 - 0.3227 0 −0.4204
2010 - −0.3702 - 0.2972 0 −0.4552
2011 - −0.4013 - 0.3360 0 −0.4480
2013 - −0.3841 - 0.2841 0 −0.4425
2014 - −0.4214 - 0.3300 0 −0.4403
2015 - −0.4206 - 0.3150 0 −0.4431
2016 - −0.4121 - 0.3177 0 −0.4433
2017 - −0.4167 - 0.3781 0 −0.4562
2018 - −0.3907 - 0.3282 0 −0.4402

Conditional statement thresholds for L’Aquila, Italy

Year
UI NDVI MNDWI

Upper
threshold

Lower
threshold

Upper
threshold

Lower
threshold

Upper
threshold

Lower
threshold

1999 - −0.5381 - 0.4515 0 −0.3793
2000 - −0.5426 - 0.4539 0 −0.3776
2001 - −0.5411 - 0.4440 0 −0.3796
2002 - −0.5452 - 0.5054 0 −0.3868
2003 - −0.5319 - 0.4332 0 −0.3789
2004 - −0.5654 - 0.4792 0 −0.3836
2005 - −0.5495 - 0.4600 0 −0.3711
2006 - −0.5404 - 0.4473 0 −0.3782
2007 - −0.5396 - 0.4450 0 −0.3794
2008 - −0.5640 - 0.5185 0 −0.3893
2009 - −0.5357 - 0.4466 0 −0.3787
2010 - −0.5397 - 0.4399 0 −0.3798
2011 - −0.5396 - 0.4677 0 −0.3863
2013 - −0.5394 - 0.4439 0 −0.3805
2014 - −0.5428 - 0.4479 0 −0.3814
2016 - −0.5361 - 0.4537 0 −0.3798
2017 - −0.5459 - 0.4555 0 −0.3751
2018 - −0.5384 - 0.4357 0 −0.3791
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Table 3. Cont.

Conditional statement thresholds for Bam, Iran

Year
UI NDVI MNDWI

Upper
threshold

Lower
threshold

Upper
threshold

Lower
threshold

Upper
threshold

Lower
threshold

1994 0.1342 −0.3262 0.3841 0.0777 - −0.1813
1995 0.1275 −0.3219 0.3786 0.0798 - −0.1233
1996 0.1187 −0.2510 0.2701 0.0459 - −0.1062
1997 0.2196 −0.4221 0.4572 0.0675 - −0.1082
1998 0.2181 −0.4252 0.4646 0.0699 - −0.1102
2000 0.0843 −0.2515 0.2739 0.0746 - −0.1294
2001 0.1171 −0.3153 0.3631 0.0852 - −0.1274
2002 0.1224 −0.3206 0.3651 0.0872 - −0.1317
2003 0.1535 −0.3574 0.4195 0.0854 - −0.1284
2008 0.2235 −0.4039 0.4777 0.0819 - −0.1071
2009 0.2192 −0.4204 0.4543 0.0705 - −0.1154
2010 0.2056 −0.4066 0.4632 0.0726 - −0.1180
2011 0.2078 −0.4247 0.4593 0.0738 - −0.1146
2013 0.2297 −0.4059 0.4862 0.0799 - −0.1115
2014 0.1923 −0.3932 0.4472 0.0745 - −0.1214
2015 0.2358 −0.4595 0.5166 0.0812 - −0.1177
2016 0.2652 −0.4769 0.5434 0.0735 - −0.1106
2017 0.2769 −0.4983 0.5529 0.0756 - −0.1118
2018 0.2212 −0.4278 0.4874 0.0755 - −0.1219
2019 0.2600 −0.4844 0.5367 0.0770 - −0.1171

3. Results

3.1. Conditional Algebra and Classification

The conditional algebra accommodates for local characteristics of each case with flexibility in
defining the indices’ thresholds based on environmental and seasonal variability. Several thresholds
were tested for each case and based on the statistics and standard deviation from the mean for each
index values (Appendix A, Table A1), histogram distributions and sample testing points from both
built-up and non-urban features (Figure 3), the best fitted thresholds were chosen that had higher
accuracy percentages. The fitted thresholds are extracted from samples like Figure 3 for three years in
each case and matched with the mean and standard deviation values of each index for the study area
(appendix A), so that the conditional statement is only extracting urban features, and the thresholds
are adjusted based on the histogram for that year. All thresholds are summarized in Table 3.

The example on (Figure 3a) indicates that lower MNDWI values show barelands and can provide
a threshold to distinguish them from built-up lands. The threshold between these two at MNDWI in
the sample points, is seen at −0.48, and after matching with MNDWI values for the whole study area
with the mean of −0.456 and standard deviation of 0.135, the value of mean is a chosen threshold. This
is tested for sample points from three other years for Christchurch, New Zealand and then applied for
all years. The same process is applied for other indices as well (comparison of final results is presented
in Figure 4). For each year, in case of New Zealand the thresholds were set based on

1, UI > mean o f UI
0, NDVI > mean o f NDVI St.Dev.o f NDVI
0, MNDWI > 0 and MNDWI < o f MNDWI

(5)
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Figure 4. Comparison of (a) constructed RGB (R: UI, G: NDVI, B: MNDWI) (2017); (b) Binary Image
(0: non-urban, 1: built-up) (2017); and (c) Aerial Image for case of Christchurch, New Zealand (Esri,
DigitalGlobe 2020).

For each year, in case of Italy the thresholds are assigned as
1, UI > mean o f UI – (0.5 ∗ SD o f UI)
0, NDVI > mean o f NDVI – St.Dev. o f NDVI
0, MNDWI > 0 and MNDWI < mean o f MNDWI

(6)

The thresholds are set according to samples like Figure 3b, as it can be seen for example the lowest
NDVI value seen in the sample is 0.48 for vegetation, and matching with general distribution of NDVI
value for the study region in 2017, the mean is 0.588, and standard deviation of 0.133 (Appendix A,
Table A1), thus threshold of one standard deviation below the mean matches a threshold for NDVI
at value of 0.455 for 2017. The threshold is tested with similar samples from three years, and same
process is applied for other indices. A comparison of final results is presented in Figure 5.
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Figure 5. Comparison of (a) constructed RGB (R: UI, G: NDVI, B: MNDWI) (2017), (b) binary image
(0: non-urban, 1: built-up) (2017), and (c) aerial image for case of L’Aquila, Italy (Esri, DigitalGlobe 2020).

The Bam, Iran area, is surrounded by both desert (barelands) and mountains; therefore,
the thresholds are slightly different from other cases to accommodate for the geographical features
(Figure 3c) and only extract built-up areas based on the histograms. The lower threshold for NDVI
in this case is helpful for eliminating barelands of surrounding desert (comparison of final results is
presented in Figure 6). For each year, in the Iranian case the thresholds are assigned as
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1, UI > mean o f UI + (2 ∗ St.Dev o f UI)
0, UI < mean o f UI– (2 ∗ St.o f UI)
0, NDVI > mean o f NDVI– (2 ∗ St.Dev.o f NDVI) and NDVI < mean o f NDVI– (0.25 ∗ St.Dev o f NDVI)
0, MNDWI > 0 and MNDWI < mean o f MNDWI + (0.5 ∗ St.Dev o f MNDWI)
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Figure 6. Comparison of (a) constructed RGB (R: UI, G: NDVI, B: MNDWI) (2018); (b) Binary Image
(0: non-urban, 1: built-up) (2018); and (c) Aerial Image for case of Bam, Iran (Esri, DigitalGlobe 2020).

3.2. Accuracy Assessment

The Kappa coefficient of agreement is computed from the confusion matrix and reported for
each case, in selected sample years. Due to large number of imagery and consistent methodology for
each case, one representative image from every 10 years is chosen to simplify the assessment process.
Hence, three sample years from the beginning, middle, and end of the time frame for each case study
is chosen for accuracy assessment. The two classes that are extracted and presented in binary images
are evaluated: built-up and non-urban.

According to the results (Table 4), the overall accuracy of urban/built-up ranges between 92% to
96.29%; and the Kappa value varies from 0.79 to 0.91. The lower user accuracy percentages for New
Zealand 2017 and Italy 2017 are due to errors introduced from cloud presence, (even though the clouds
are not over the AOI). Differences between sensors (TM versus OLI) do not seem to change the accuracy,
as is seen in case of Iran. Thus, for longitudinal studies of large geographic areas, the proposed method
provides the flexibility to delineate built-up land.

Table 4. Accuracy assessment results.

Accuracy Assessment

Year Overall Accuracy
(%)

Kappa
Coefficient

Producer Accuracy (%)
Errors of Omission

User Accuracy (%)
Errors of Commission

New Zealand
2003 94.29% 0.8584 94.62% 85.44%
2011 94.29% 0.8548 95.45% 84.00%
2017 92.29% 0.8037 95.24% 77.67%

Italy
2003 93.14% 0.8302 93.48% 82.69%
2010 95.43% 0.8846 97.75% 86.14%
2017 92.00% 0.7987 96.43% 76.42%
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Table 4. Cont.

Accuracy Assessment

Year Overall Accuracy
(%)

Kappa
Coefficient

Producer Accuracy (%)
Errors of Omission

User Accuracy (%)
Errors of Commission

Iran
2001 92.00% 0.8109 92.93% 81.42%
2009 93.71% 0.8707 97.10% 88.16%
2018 96.29% 0.9193 98.35% 91.54%

3.3. Change Detection

With the resulting class maps for each year, one application of the proposed methodology is change
detection, which is tested for the three earthquake cases here. The change detection method is based
on the differences in indices through years. In this method, the change from built-up to non-urban
or the opposite is calculated in a yearly interval. The results show the annual spatial variations of
urban/built-up surface change at pixel level, and summarized in Table 5. According to these results
the estimated damage (% change from pre-event built-up area) is about 32% for Christchurch, 16%
for L’Aquila, and about 63% for Bam (Table 5) that is close to the reports of extensive damages for
these earthquakes. Also, results show that current built-up area is more than pre-event status in
the study areas for Christchurch and L’Aquila, while total built-up area is still lower than pre-event
for Bam. However, the annual growth trend can show the temporal dynamics of recovery process in
these cases more in detail, thus, the results of urban land surface change are mapped for each case by
pixels. In addition, the curves of percent urban land surface change for the study area are presented
demonstrating the temporal trend. The maximum error detected from accuracy assessment for each
case is included in the graphs to show the maximum extent of variability in the estimated urban
land change. The years with imagery from Landsat 7 ETM+ after 31 May, 2003, (when the Scan Line
Corrector (SLC) failed) are removed, since even the overlapped gap-filling images were introducing
errors in change detection.

Table 5. Summary overview of built-up area change results (for AOI).

Case
Total AOI

Area
(Km2)

Pre-event Year of Earthquake Post-event (Current)

Built-Up
Area

Estimate
(Km2)

% Change
from

Pre-event

Built-Up
Area

Estimate
(Km2)

% Change
from

Pre-event

Built-Up
Area

Estimate
(Km2)

% Change
from

Pre-event

New Zealand 6,280.31 184.98 0.00% 125.23 −32.30% 261.34 +41.27%
Italy 1,114.98 77.63 0.00% 65.09 −16.15% 87.16 +12.27%
Iran 3,445.69 133.14 0.00% 49.29 −62.98% 66.95 −49.71%

3.3.1. Case 1—Christchurch, New Zealand

The map below show the areas detected as built-up/non-urban before and after the Christchurch
earthquake and aftershock in New Zealand (Figure 7). The year of the earthquake and aftershock
(2010 and 2011) is added in black, to visualize the change in urban area post-event (Figure 7a).
The developments after the earthquake are displayed in purple after eliminating the built-up areas
in 2010 and 2011 (i.e., not damaged) that show more construction and development in the western
part of Christchurch and in Rolleston (Figure 7b). The orange areas show built-up lands from before
the earthquakes, while some of the damaged area is reconstructed, some pockets have remained vacant,
especially in the eastern parts, Central City and by the Avon River (marked as ‘Red Zones’ due to
extensive damage from the liquefaction caused by the earthquake [64]).
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Figure 7. Urban Development for Christchurch, New Zealand for (a) pre-event years (with event year),
and (b) post-event.

As is apparent from Figure 8, the urban/built-up land surface change rate in Christchurch is
relatively constant before the 2010 earthquake, where there is a drop due to a negative change rate
that extends to 2011 due to the aftershock and consequent damages. The change in trend appears to
start after 2008, but it is due to the missing data point for 2009 (because of partial cloud coverage over
urban lands in the 2009 image). The urban/built-up change trend continues positively after 2011 with
a slower rate until 2015 and then shows a faster rate of urban growth.
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Figure 8. Annual % Urban Land surface change for Christchurch, New Zealand (with 7.71% error
variation depicted by dashed line).

3.3.2. Case 2—L’Aquila, Italy

The maps below show the areas near city of L’Aquila detected as built-up/non-urban for before
and after the earthquake (Figure 9). The year of earthquake is added to visualize the change in urban
area after the earthquake in black color (Figure 9a). The built-up area since 2010 is marked in purple
and shows further development in the eastern part and some reconstruction near downtown areas
(Figure 9b). The areas that remained as built-up are removed to only show new development in purple
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and the areas that have not been built back in orange. This shows that some areas in downtown have
not been reconstructed yet.
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Figure 9. Urban Development for L’Aquila, Italy for (a) pre-event years (with event year), and
(b) post-event.

The curve of urban land surface change in L’Aquila is depicted in Figure 10 that shows the positive
growth trend in urban/built-up area until 2007 and a drop in 2009 due to the earthquake damages.
The 2008 image was removed because of cloud coverage on urban areas; hence there is no data point
between 2007 and 2009. The urban/built-up change trend is relatively constant until 2013 and shows
a growth trend afterwards.
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by dashed line).

3.3.3. Case 3—Bam, Iran

The maps below show the areas detected as built-up/non-urban for before and after the Bam
earthquake, near city of Bam, Iran. The year of earthquake is added to visualize the change in urban



Remote Sens. 2020, 12, 895 16 of 25

area after the earthquake (Figure 11). The black areas represent undamaged and existing built-up
surfaces after the earthquake in 2003 (Figure 11a), and the green areas show the pre-existing urban
features that were not detected as built-up in 2003 (i.e., damaged or demolished). The areas that were
not demolished in 2003 and remained built-up are subtracted from all years after the earthquake and
presented in Figure 11b to show new development and remaining areas that have not been built back
in orange. The purple areas are the newly developed built-up areas since 2004 (a year after the event),
which show new constructions in the eastern and southern part of Bam.
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Figure 11. Urban development for Bam, Iran for (a) pre-event years (with event year), and (b) post-event.

The urban/built-up land surface change in Bam is depicted in Figure 12 that shows a growth trend
until 2003, which changes after the earthquake. The post-earthquake trend is rather constant until 2009
and shows growth until 2014, followed by an instant increase in growth rate until 2016 but then seems
fairly constant until 2019.
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Figure 12. Annual % Urban Land surface change for Bam, Iran (with 8% error variation depicted by
dashed line).

The curves of percent urban/built-up area change depict the development and growth trend in
the three cases. The pre-event imagery is helpful in defining a baseline for the development trend
before the earthquake, while the post-event imagery shows how much the pre-event trend has been
altered after the incident.
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Figure 13 juxtaposes the land surface change trends together with additional linear forecast lines
from pre-event data to demonstrate a comparative measure of how these communities are recovering
according to the pre-existing development processes. The slopes of projected trends from pre-event
data are 0.0044 for Christchurch, 0.0035 for L’Aquila, and 0.0016 for Bam; which can be compared
with each segment of post-earthquake trends to see the relative recovery and development process for
different time-frames. On the other hand, the projected trends from 10-years of post-event data, has
a slope of 0.0039 for Christchurch, 0.0033 for L’Aquila, and 0.0017 for Bam. These pre-event versus
post-event trends indicate that Bam has just surpassed the pre-event growth, while the other two cases
have not reached their pre-event growth trends in a decadal comparison. However, the diversity in
general growth trends for each case is observable in Figure 13, where Christchurch shows a higher
growth speed (steeper slope) for both pre-event and post-event trends. Also, since recovery is a process,
looking at specific time-windows can be an instrument for monitoring the recovery process for each
case, based on the baseline that is specific to that case from their pre-event trends. For example, within
the first 5 years after the earthquake in Christchurch (depicted by blue line in Figure 13) the slope is
0.0016, which is much less that the pre-event growth trend, but the time-window of 5-year to 10-years
after the earthquake has a slope of 0.0084 that is more than its post-event decadal growth trend. In other
words, the trend of built-up land growth in Bam is caught up with pre-event trend; however, the total
built-up area is still lower than pre-event (Table 5), thus still recovering. In contrast, even though
the decadal post-event growth trend is slacking in the other two cases, the growth trend in more recent
years has surpassed the pre-event trends in Christchurch and just caught up with pre-event trends in
L’Aquila, and they both have higher percentage of built-up area when compared to pre-event (Table 5).
These comparable curves show the relative trend of urban change that will inform more details about
the recovery process if combined with the socio-economic information. The observed differences in
the trends need further investigation to find explanatory variables of such variations through time.
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Figure 13. Comparative overview of annual % built-up land surface change (year of the event = 0).
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Depending on the extent of study, these results can be aggregated based on administrative
boundaries to have the percent area change in urban surfaces for each administrative unit or
neighborhood. A division of change trends by smaller administrative boundaries is specifically
helpful in determining and comparing the location of new developments and reconstructions, since
the total change trend for a large study area might be misleading as some neighborhoods might not
been reconstructed or other new neighborhoods are developing that can be added to the analysis of
recovery depending on the scale of study. For example, the percent built-up area change is summarized
and presented by districts for the case of Christchurch, New Zealand (Figure 14). Since these curves
depict the percentage of changes in the built-up area, the changes for Christchurch city district shows
a higher level of change compared with the other regions in the study area. Even though the post-event
growth trend for Christchurch city is slow until 2015 (slope of 0.0037), which is much lower than its
pre-event trend with slope of 0.0111, it shows a steep increase after 2015 until 2018 with a slope of 0.0147
that has surpassed its pre-event values. Also noteworthy is the growth trend for the Selwyn District
that shows a higher slope in the recent years (slope of 0.0046) when compared with pre-event trend for
this district (slope of 0.0011). A ground truthing study can further validate or evaluate the quality of
these estimations.
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Districts, (b) District boundaries in the AOI for Christchurch, New Zealand.

4. Discussion

The application of remote sensing for tracking urban land surface change in order to understand
the reconstruction phase of the recovery process after a major disaster can inform decision makers
for both recovery planning and resilience measurements. As indicated by the case studies’ results,
the urban/built-up land surface change could be monitored with the proposed methodology, which
can depict the development process and growth trend through time. Even though this method only
applies to the changes in the physical built environment and not the socio-economic characteristics
of the community, it has the potential to be combined with such data from other sources to provide
a more holistic view of the recovery process. In our upcoming research, these measures are applied
to a combination of both physical and socio-economic aspects for modeling a more comprehensive
recovery process and gauging the relative success of the recovery.

The pre-event imagery is essential to decipher the disaster impact and recovery process, which
requires establishing a database and image collection with designed temporal intervals for hazardous
regions. Since official records of building and structures are not uniformly available in different
regions and countries due to complexities of data collection and regulations, a repository of built
environment imagery is a promising alternative to monitor the changes and allocate development
resources appropriately. This would enable longitudinal studies of development trends that can
be applied to studies other than disaster impacts as well. The importance of this method lies in



Remote Sens. 2020, 12, 895 19 of 25

establishing a baseline based on pre-existing conditions and growth trends in the community for a more
realistic expectation of the temporal and spatial recovery trend. As it was seen in the three examples
investigated in this study, the differential growth trends from pre-event to post-event provides a relative
measure of recovery progress. Hence, application of this methodology for more cases will inform
a comparative view of how communities recover through time after a disaster.

Moreover, the method provides the potential to aggregate the built-up surface change results with
other layers of information about different indicators—such as the community traits and economic
status, building materials, ground motion characteristics, hazard levels or damage status, etc.—for
a more holistic view of the recovery process. The quality of rebuilding and reconstruction is missing
in this method but can be achieved with ground truthing and field study. Clearly, higher resolution
imagery can improve the results and precision of detecting the percent urban/built-up area change, and
complement the results of this method. Additionally, the proposed method has flexibility in defining
the thresholds with the conditional algebra statements according to local characteristics, which warrants
more precise differentiation of features based on environmental variability. However, this flexibility
introduces subjectivity in modifying the thresholds that is inevitable and more accurate in comparison
with similar approaches. The logic calculation method has showed higher accuracy in similar cases,
compared with a band spectral signature analysis, maximum likelihood supervised classification, or
a principal component analysis (PCA), while being less subjective or time-consuming [60].

Future research directions would include application of higher spatial, spectral, and temporal
resolution data to test the methodology and compare results. In addition, the results of this study can be
juxtaposed with the object-based change detection models to further investigate their relative advantages
and disadvantages. Finally, with larger number of images the machine learning methodologies would
help processing more scenes and test the results for different geographical locations and contexts.

5. Conclusions

This study employs a conditional algebra in a knowledge-based classifier to extracts
the urban/built-up features in three earthquake cases. Three spectral indices, UI, NDVI, and MNDWI,
are used in the classifier. The results have an overall accuracy of 92% to 96.29%; and the Kappa value
of 0.79 to 0.91 in three study cases.

The method’s flexibility in threshold definition with the conditional algebra statements accounts
for local characteristics and distinction of features based on environmental variability, which also can be
seen as the shortcoming of the method due to the subjectivity in modifying the thresholds. Regardless,
the results indicated the potential of the proposed model in delineating the built-up surfaces that
can provide essential information about the urban change trend when other sources of data are not
available or accessible. Also, this method enables a relative measure of recovery that—once combined
with variations in ground motion characteristics, building type distribution, and socio-economic
data—allows a more holistic view of the recovery process. According to the findings from the three
earthquake cases, total built-up area has increased in two cases of Christchurch and L’Aquila compared
with pre-event area, which is also observed from the annual growth trend with a steeper rate in recent
years. However, in case of Bam, when comparing recent years to pre-event years, the growth trend has
the same rate as pre-event, but the total built-up area is still less than pre-event status. The spatial
distribution of built-up area change in all three cases indicated that the post-earthquake developments
are not necessarily on the damaged sites, and some areas have not been built back.

Lastly, the curves of percent urban/built-up area change provide a comparable overview of
the development and growth trend post-earthquake in the affected regions. Hence, the utilization of
annual imagery for detecting urban surface change can inform researchers and policy makers about
the temporal and spatial nature of the recovery process and the impacts of the disaster. Application of
this methodology for more cases will provide more insight on the observed disparities in the recovery
process based on pre-existing trends before the disaster event, both temporally and spatially.
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Appendix A

Table A1. Summary statistics (mean, median, and standard deviation) for the constructed three-band
images from UI, NDVI, and MNDWI, for each case study.

New Zealand

Year Band Mean Median S.Dev. Year Band Mean Median S.Dev.

2018 UI −0.39078 −0.38586 0.239769 2008 UI −0.42607 −0.43995 0.277791
NDVI 0.549269 0.554388 0.221035 NDVI 0.56676 0.605667 0.25924

MNDWI −0.44029 −0.47534 0.129437 MNDWI −0.41125 −0.47743 0.233257
2017 UI −0.41672 −0.44451 0.214721 2007 UI −0.36858 −0.3748 0.270372

NDVI 0.586788 0.60938 0.208631 NDVI 0.542433 0.550122 0.251433
MNDWI −0.45626 −0.487 0.135116 MNDWI −0.45299 −0.48928 0.148647

2016 UI −0.41213 −0.43617 0.245014 2006 UI −0.41235 −0.47716 0.287151
NDVI 0.561462 0.595593 0.24369 NDVI 0.583248 0.640979 0.268484

MNDWI −0.44339 −0.47657 0.141168 MNDWI −0.45881 −0.49348 0.146982
2015 UI −0.42061 −0.45747 0.256856 2005 UI −0.40861 −0.45492 0.26143

NDVI 0.574814 0.619058 0.2598 NDVI 0.580184 0.626747 0.250722
MNDWI −0.44317 −0.47874 0.146284 MNDWI −0.4589 −0.49152 0.13583

2014 UI −0.4214 −0.46045 0.248374 2004 UI −0.43231 −0.47848 0.299915
NDVI 0.577278 0.62252 0.247251 NDVI 0.606597 0.648942 0.262424

MNDWI −0.44033 −0.48029 0.146544 MNDWI −0.46093 −0.49075 0.20124
2013 UI −0.38415 −0.40488 0.268944 2003 UI −0.44296 −0.49574 0.255403

NDVI 0.540796 0.570015 0.25665 NDVI 0.586367 0.641341 0.248477
MNDWI −0.44253 −0.47682 0.146363 MNDWI −0.43405 −0.46628 0.141949

2011 UI −0.40134 −0.42024 0.240505 2002 UI −0.43665 −0.47856 0.251238
NDVI 0.563329 0.589227 0.227305 NDVI 0.58084 0.624461 0.242234

MNDWI −0.44802 −0.48291 0.13939 MNDWI −0.44254 −0.47884 0.140029
2010 UI −0.37024 −0.36869 0.255088 2001 UI −0.4481 −0.48869 0.250349

NDVI 0.538231 0.548401 0.241008 NDVI 0.593861 0.646662 0.235481
MNDWI −0.45525 −0.49651 0.171679 MNDWI −0.43708 −0.4692 0.138998

2009 UI −0.38958 −0.38534 0.265487 2000 UI −0.42141 −0.4481 0.2131
NDVI 0.548084 0.559005 0.22538 NDVI 0.586131 0.605933 0.209651

MNDWI −0.42047 −0.467 0.203803 MNDWI −0.45596 −0.48483 0.134306
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Table A1. Cont.

Italy

Year Band Mean Median S.Dev. Year Band Mean Median S.Dev.

2018 UI −0.45988 −0.47633 0.157215 2007 UI −0.46187 −0.47441 0.155602
NDVI 0.575063 0.59461 0.139353 NDVI 0.581485 0.598339 0.136418

MNDWI −0.37912 −0.39182 0.060955 MNDWI −0.37944 −0.38948 0.058556
2017 UI −0.4699 −0.47898 0.152075 2006 UI −0.46412 −0.46783 0.152702

NDVI 0.588375 0.601054 0.132866 NDVI 0.5817 0.590286 0.134398
MNDWI −0.37511 −0.39314 0.066702 MNDWI −0.3782 −0.39207 0.064189

2016 UI −0.46298 −0.47053 0.146413 2005 UI −0.47864 −0.48554 0.14178
NDVI 0.581764 0.593306 0.128036 NDVI 0.587942 0.597798 0.127859

MNDWI −0.37981 −0.39533 0.063622 MNDWI −0.37112 −0.38805 0.069501
2014 UI −0.46494 −0.48502 0.15578 2004 UI −0.48773 −0.50949 0.155486

NDVI 0.583811 0.605026 0.13583 NDVI 0.606135 0.621044 0.126869
MNDWI −0.38142 −0.39252 0.057668 MNDWI −0.38363 −0.39062 0.060264

2013 UI −0.46248 −0.47801 0.153945 2003 UI −0.45063 −0.46467 0.16267
NDVI 0.581252 0.601237 0.137318 NDVI 0.573373 0.590863 0.140128

MNDWI −0.38055 −0.39563 0.06243 MNDWI −0.37896 −0.38899 0.062928
2011 UI −0.46797 −0.47483 0.143414 2002 UI −0.48522 −0.49819 0.120156

NDVI 0.590499 0.598766 0.122756 NDVI 0.607342 0.616981 0.10194
MNDWI −0.38632 −0.39389 0.052889 MNDWI −0.3868 −0.39611 0.049491

2010 UI −0.46023 −0.47095 0.158986 2001 UI −0.46448 −0.47073 0.153418
NDVI 0.579568 0.595716 0.139668 NDVI 0.579941 0.590647 0.135853

MNDWI −0.37981 −0.39151 0.060715 MNDWI −0.37968 −0.3933 0.061099
2009 UI −0.46042 −0.46789 0.150657 2000 UI −0.46818 −0.47318 0.148897

NDVI 0.579534 0.591728 0.132847 NDVI 0.586128 0.59645 0.132226
MNDWI −0.37871 −0.39249 0.061825 MNDWI −0.37768 −0.39329 0.063326

2008 UI −0.49747 −0.50899 0.133064 1999 UI −0.46367 −0.47284 0.148969
NDVI 0.623121 0.626003 0.104567 NDVI 0.582181 0.593583 0.130644

MNDWI −0.38934 −0.40252 0.08009 MNDWI −0.37935 −0.39402 0.065161

Iran

Year Band Mean Median S.Dev. Year Band Mean Median S.Dev.

2019 UI −0.11219 −0.04443 0.186106 2008 UI −0.09019 −0.0504 0.156866
NDVI 0.128086 0.044251 0.204314 NDVI 0.125936 0.050317 0.175914

MNDWI −0.17134 −0.13379 0.108337 MNDWI −0.18724 −0.13397 0.160179
2018 UI −0.10327 −0.04279 0.162276 2003 UI −0.10195 −0.0514 0.127771

NDVI 0.121296 0.045715 0.183081 NDVI 0.122557 0.051743 0.148494
MNDWI −0.16564 −0.13324 0.087398 MNDWI −0.1697 −0.1378 0.08242

2017 UI −0.11068 −0.0415 0.193821 2002 UI −0.09909 −0.05408 0.110781
NDVI 0.128723 0.044739 0.212135 NDVI 0.118094 0.05433 0.123516

MNDWI −0.17766 −0.14014 0.13172 MNDWI −0.16734 −0.14296 0.071104
2016 UI −0.10585 −0.0423 0.18554 2001 UI −0.09907 −0.05466 0.108117

NDVI 0.125799 0.044922 0.208824 NDVI 0.116164 0.053607 0.123499
MNDWI −0.17618 −0.13666 0.131099 MNDWI −0.1644 −0.13769 0.073891

2015 UI −0.11187 −0.04852 0.173843 2000 UI −0.0836 −0.05805 0.083978
NDVI 0.129628 0.049194 0.193488 NDVI 0.096814 0.056358 0.08859

MNDWI −0.17093 −0.13245 0.10634 MNDWI −0.15652 −0.14078 0.054048
2014 UI −0.10044 −0.04668 0.14641 1998 UI −0.10356 −0.05139 0.160863

NDVI 0.115963 0.047983 0.165636 NDVI 0.113833 0.050293 0.175388
MNDWI −0.16109 −0.13142 0.079309 MNDWI −0.16304 −0.13251 0.105557

2013 UI −0.08814 −0.0422 0.158923 1997 UI −0.10127 −0.05066 0.160451
NDVI 0.125114 0.045073 0.180592 NDVI 0.110876 0.046997 0.173173

MNDWI −0.18785 −0.13675 0.15265 MNDWI −0.15972 −0.13007 0.102911
2011 UI −0.10842 −0.05463 0.158138 1996 UI −0.06614 −0.04301 0.092433

NDVI 0.116651 0.051697 0.17135 NDVI 0.070858 0.040804 0.099626
MNDWI −0.15785 −0.13208 0.08638 MNDWI −0.13408 −0.11909 0.055691
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Table A1. Cont.

Iran

Year Band Mean Median S.Dev. Year Band Mean Median S.Dev.

2010 UI −0.1005 −0.04729 0.153095 1995 UI −0.09722 −0.05527 0.112364
NDVI 0.116022 0.049744 0.173604 NDVI 0.113067 0.054428 0.132811

MNDWI −0.16589 −0.13641 0.095609 MNDWI −0.16446 −0.13516 0.082296
2009 UI −0.10061 −0.04877 0.159913 1994 UI −0.096 −0.0539 0.115124

NDVI 0.11316 0.051514 0.170581 NDVI 0.11178 0.050387 0.136184
MNDWI −0.16579 −0.13696 0.100689 MNDWI −0.16062 −0.13304 0.082763
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