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Abstract: The China GaoFen-5 (GF-5) satellite sensor, which was launched in 2018, collects
hyperspectral data with 330 spectral bands, a 30 m spatial resolution, and 60 km swath width.
Its competitive advantages compared to other on-orbit or planned sensors are its number of bands,
spectral resolution, and swath width. Unfortunately, its applications may be undermined by its
relatively low spatial resolution. Therefore, the data fusion of GF-5 with high spatial resolution
multispectral data is required to further enhance its spatial resolution while preserving its spectral
fidelity. This paper conducted a comprehensive evaluation study of fusing GF-5 hyperspectral
data with three typical multispectral data sources (i.e., GF-1, GF-2 and Sentinel-2A (S2A)), based
on quantitative metrics, classification accuracy, and computational efficiency. Datasets on three
study areas of China were utilized to design numerous experiments, and the performances of nine
state-of-the-art fusion methods were compared. Experimental results show that LANARAS (this
method was proposed by lanaras et al.), Adaptive Gram–Schmidt (GSA), and modulation transfer
function (MTF)-generalized Laplacian pyramid (GLP) methods are more suitable for fusing GF-5 with
GF-1 data, MTF-GLP and GSA methods are recommended for fusing GF-5 with GF-2 data, and GSA
and smoothing filtered-based intensity modulation (SFIM) can be used to fuse GF-5 with S2A data.

Keywords: hyperspectral remote sensing; GF-5; GF-1; GF-2; S2A; data fusion

1. Introduction

Hyperspectral imaging sensors generally collect more than 100 spectral bands with a wavelength
range within 400–2500 nm. Because of their high spectral resolution, hyperspectral data have achieved
widespread applications in numerous research fields, such as in the fine classification of ground
objects. In recent years, hyperspectral remote sensing has developed rapidly. For example, Italy
launched the PRecursore IperSpettrale della Missione Applicativa (PRISMA) earth observation satellite
in March 2019 [1], Japan launched the Hyperspectral Imager Suite (HISUI) hyperspectral satellite
sensor in 2019 [2], India launched the ISRO’s Hyperspectral Imaging Satellite (HYSIS) hyperspectral
satellite in 2018 [3], and Germany launched the DLR Earth Sensing Imaging Spectrometer (DESIS)
hyperspectral satellite in 2018 and are planning to launch the Environmental Mapping and Analysis
Program (EnMAP) hyperspectral satellite in 2020 [4,5]. The development of the hyperspectral satellite
field will bring about new requirements for image processing.

The China GaoFen-5 (GF-5) satellite was launched on 9 May 2018, and one of its six main payloads
is an advanced hyperspectral (HS) imager developed by the Shanghai Institute of Technical Physics
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(SITP), Chinese Academy of Sciences. The GF-5 HS imager has 330 spectral bands ranging from
400 to 2500 nm, with a spectral resolution of 5 nm in VNIR (visible/near-infrared) and 10 nm in
SWIR (short-wave infrared), respectively. It acquires HS images with a spatial resolution of 30 m
and a swath width of 60 km. Its spatial resolution surpasses or equals those of most on-orbit or
planned spaceborne HS imagers; e.g., DESIS, HysIS, PRISMA, HISUI and EnMAP. Both the number
of bands and the swath width are advantageous compared to other spaceborne HS sensors, which is
illustrated in Table 1. The GF-5 HS data are intended to serve China’s natural resource surveying and
monitoring; e.g., mineral exploration, water body monitoring and vegetation mapping, and ecological
environment protection—e.g., soil heavy metal pollutant mapping and ecological disaster prevention
and mitigation [6–9].

Table 1. Main parameters of on-orbit and recently launched spaceborne hyperspectral sensors. GF-5:
GaoFen-5; VNIR: visible/near-infrared; SWIR: short-wave infrared 1.

Satellite Payload GF-5 AHSI DESIS HYSIS PRISMA
HSI EnMAP HSI ALOS-3

HISUI

Nation China Germany India Italy Germany Japan

Launch time 2018 2018 2018 2019 2020
(Scheduled) 2019

Spectral range/µm 0.4~2.5 0.4~1.0 0.4~2.5 0.4~2.5 0.42~2.45 0.4~2.5

Total number of
bands 330 235 55 239 >240 185

Spectral
resolution/nm

5 (VNIR)
10 (SWIR) 2.55 10 <12 6.5 (VNIR)

10 (SWIR)
10 (VNIR)

12.5 (SWIR)

Spatial resolution/m 30 30 30 30 30 30

Swath width/km 60 30 30 30 30 30
1 GF-5 AHSI: Advanced Hyperspectral Imager; DESIS: DLR Earth Sensing Imaging Spectrometer; HYSIS:
ISRO’s Hyperspectral Imaging Satellite; PRISMA: PRecursore IperSpettrale della Missione Applicativa; EnMAP:
Environmental Mapping and Analysis Program; HISUI: Hyperspectral Imager Suite.

Similar to other spaceborne HS sensors, the GF-5 has a relatively low spatial resolution compared
to its high spectral resolution. The reason for that is the inevitable tradeoff between spatial resolution,
spectral resolution and signal-to-noise ratio in the design of optical remote sensing systems [10–13].
This limits some specific applications of GF-5 HS data, since geographical elements or ground objects
have a spatial width of less than 30 m; e.g., inland rivers and urban roads. In this case, seeking help
from image fusion methods becomes an essential solution [14–16]. The image fusion methods can
fuse the GF-5 HS data with either panchromatic (PAN) or multispectral (MS) remote sensing images
to improve its spatial resolution while preserving the fidelity of its spectrum [17]. In recent years, a
large number of state-of-the-art HS and MS fusion methods have emerged and achieved good results.
Therefore, we focus here on fusing GF-5 with MS data.

Current HS and MS fusion methods can be roughly divided into four categories [17–20]:
component substitution (CS), multiresolution analysis (MRA), subspace-based methods, and color
mapping-based methods. CS-based methods are classical image fusion approaches based on the
projection transformation, with typical examples of intensity–hue–saturation (IHS) [21], principal
component analysis (PCA) [22], and Gram–Schmidt (GS) [23]. MRA-based methods originate from
multi-resolution analysis, and they enhance the spatial resolution of HS data by injecting detailed
information of MS data into the resampled HS data; e.g., the “à trous” wavelet transform (ATWT) [24]
and decimated wavelet transform (DWT) [25]. Subspace-based methods find a common subspace of
both input images, and they generally enhance the spatial resolution of HS data using machine learning.
They mainly include unmixing-based algorithms such as sparse spatial–spectral representation [26],
Bayesian-based algorithms such as fast fusion based on Sylvester equation (FUSE) [27], and deep
learning methods such as the two-branch convolutional neural network (Two-CNN-Fu) [19]. Color
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mapping-based methods promote the spatial resolution of HS data by color mapping; e.g., hybrid
color mapping (HCM). Using the above popular methods, Loncan et al. [20] made a performance
comparison of different pansharpening methods. Yokoya et al. [18] investigated the behaviors of
several fusion methods on HS and MS data. The above study provides us with a good direction for
fusing HS data with MS data. However, they only implemented simulated HS data, and therefore the
conclusion is limited in realistic applications. In detail, different hardware designs between GF-5 HS
imagers, different ratios of spatial resolution, effects of real acquisition geometry and even slight cloud
contaminations will definitely complicate the image fusion procedure.

In this paper, we will investigate the issue of image fusion on GF-5 HS data and typical MS data; i.e.,
from GF-1, GF-2 and Sentinel-2A (S2A). We chose these MS images because of their popularity and ease
of access. Other MS data from industrial satellites (e.g., worldview-3 or Spot) can also be considered in
combination with our work by interested readers. We test nine state-of-the-art image fusion methods
and present a comprehensive evaluation framework to evaluate their fusion performance, including
aspects of their quantitative measures, classification behaviors and computation efficiency measures.
Moreover, we make comparison experiments with the GF-5 HS data on three study areas in China. The
objective of our paper is two-fold: 1) to propose a comprehensive framework to evaluate the fusion
performance of GF-5 HS data and MS data; and 2) to find appropriate fusion methods for fusing GF-5
HS data with GF-1, GF-2, and S2A images, respectively.

Compared against other works, the proposed evaluation framework for fusing hyperspectral
images is more comprehensive and thoughtful. In addition to the usual assessment of spectral
distortion, the adopted evaluation metrics quantify the spatial distortions of fused images with a high
frequency correlation coefficient and also include an evaluation of the application performance (e.g.,
classification) and computational time. Moreover, our paper investigates the fusion performance of
China GF-5 satellite hyperspectral data on real images rather than simulated data.

The paper is arranged as follows. Section 2 describes the sensors and data. Section 3 details
the tested fusion methods and evaluation metrics. Section 4 presents the experimental results of
different fusion methods for different datasets and MS sensors. Section 5 presents the discussion on the
performance of fusion methods. Section 6 draws conclusions on the implemented data and suggests
the appropriate methods for each MS sensor.

2. Data

In this section, we briefly describe the characteristics of the four used sensors (i.e., GF-5 HS sensor,
GF-1, GF-2 and sentinel-2A MS sensors; Table 2 lists the main parameters), the principal required
preprocessing steps, and the datasets organized for the implemented experiments.

Table 2. Main parameters of the GF-5 hyperspectral (HS) sensors and three multispectral (MS) sensors.

Satellite Payloads HS Sensors MS Sensors

GF-5 GF-1 GF-2 S2A

Nations China China China Europe
Launch time 9 May 2018 26 April 2013 19 August 2014 23 June 2015

Spectral range/µm 0.4–2.5

0.45–0.52
0.52–0.59
0.63–0.69
0.77–0.89

0.45–0.52
0.52–0.59
0.63–0.69
0.77–0.89

0.4–2.4

Number of bands 330 4 4 13
Spectral

resolution/nm
5 (VNIR)

10 (SWIR) – – –

Spatial resolutions
of used bands/m 30 8 4 10

Swath width/km 60 800/60 45 290
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2.1. GF-5 Spaceborne Hyperspectral Sensor

The GF-5 HS imager adopts convex grating spectrophotometry and has an elevated performance
with a three-concentric-mirror configuration. It includes two spectrometers and provides 330 spectral
bands (from 400 nm to 2500 nm) with 30 m spatial resolution (http://data.cresda.com). The VNIR
spectrometer has a spectral resolution of 5 nm, and the SWIR spectrometer has a spectral resolution of
10 nm. Operating in a pushbroom fashion, the GF-5 sensor has a swath width of 60 km. Moreover,
it optimizes the acquisition and processing techniques of weak signals, and the signal-to-noise ratio
(SNR) reaches 700 and 500 in VNIR and SWIR bands, respectively. By removing 50 severe water
absorption bands within 1350–1440 nm, 1800–1965 nm, and 2400–2500 nm, we utilize 280 bands from
the initial 330 bands to carry out our experiments, and the level of the products is L0.

2.2. GF-1, GF-2, and S2A Spaceborne Multispectral Sensors

GF-1 satellite carries MS and PAN spectrometers, and it was launched on 26 April 2013 [28].
The instruments adopt the time delay and integration (TDI) charge coupled device (CCD) imaging
technology to unify the five spectra and for the structural design of combining dual cameras. The GF-1
satellite carries four MS cameras and two PAN/MS cameras. These four MS sensors simultaneously
capture images with four bands and a 16 m spatial resolution, and the swath width reaches 800 km
through image mosaic technology. The PAN/MS cameras acquire PAN images with a 2 m spatial
resolution and MS images with 8 m spatial resolution and with a swath width of 60 km through image
mosaic technology. The GF-1 instruments, which operate on the pushbroom principle, provide VNIR
bands but no SWIR bands. These acquired images of MS sensors cover the spectral ranges of 450–520
nm, 520–590 nm, 630–690 nm and 770–890 nm. In the experiment, we implement MS data with a 8 m
spatial resolution (http://data.cresda.com), and the level of the products is L1.

The GF-2 satellite was launched on 19 August 2014, and it was equipped with two PAN/MS
cameras [29]. It adopts a long focal length, an advanced design of its optical system, and the TDI CCD
imaging technology to unify the five spectra. Operating in a pushbroom fashion, the instrument collects
one PAN band of 1 m spatial resolution and four MS bands (450–520 nm, 520–590 nm, 630–690 nm, and
770–890 nm) of 4 m spatial resolution. The GF-2 satellite optimizes the parameters of orbit operation
and skew maneuvering, and the field of view angle of 2.1◦ for a single camera is realized to obtain
a swath width of 45 km. We use the GF-2 MS data with 4 m spatial resolution in the experiment
(http://data.cresda.com), and the level of the products is L1.

Sentinel-2A is the second satellite of the Global Monitoring of Environment and Safety (GMES)
project in Europe, which was launched on 23 June 2015 [30]. It has a swath width of 290 km, and
a revisited period of 10 days. The instrument carries a MS imager covering 13 spectral bands with
different spatial resolutions (consisting of four bands of 10 m spatial resolution, six bands of 20 m
spatial resolution and three bands of 60 m spatial resolution), ranging from visible to short-wave
infrared. In the optical field, the S2A data is the only source with three bands in the red-edge range,
which is effective in monitoring the vegetation health status. The images with four bands and a 10 m
spatial resolution are used in our experiment, and the spectral ranges of these bands are 430–450 nm,
450–510 nm, 530–590 nm and 640–670 nm, respectively (https://scihub.copernicus.eu/dhus/#/home),
and the level of the products is L0.

2.3. Data Preprocessing

Before multi-source data fusion, some data preprocessing work is essential, including ortho
correction, atmospheric correction, spatial registration, and image clipping. All data preprocessing
steps were carried out in ENVI software. These data sets were first converted into the world geodetic
system 1984 (WGS 1984) coordinate system. The global digital elevation model (DEM) data at 30 m
(https://asterweb.jpl.nasa.gov/gdem.asp) was used to correct the GF-5 hyperspectral images and MS
images, and then the data were resampled using the rational polynomial coefficient files and the

http://data.cresda.com
http://data.cresda.com
http://data.cresda.com
https://scihub.copernicus.eu/dhus/#/home
https://asterweb.jpl.nasa.gov/gdem.asp
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bilinear interpolation method. All original images with digital numbers were calibrated to the surface
reflectance data. The Fast Line-of-Sight Atmosphere (FLAASH) module was performed for all data,
and the radiometric calibration was performed by gain and offset coefficients [31]. In addition, we
removed the bad bands and noisy bands (1342–1460 nm, 1797–1973 nm, 1999–2024 nm, 2353–2500 nm)
from GF-5 data, and the left 280 bands were used in our experiments. Using MS data as reference
images, GF-5 images were registered. Control points were collected evenly for the whole image to
ensure that the spatial error was less than one pixel. Finally, we clipped the same region of each dataset
to obtain the data for fusion.

2.4. Study Area and Fusion Datasets

The GF-5, GF-1, GF-2 and S2A images shown in Figure 1 covering three study areas—i.e., the
Yellow River Estuary area, Taihu Lake area and Poyang Lake area—were utilized. The Yellow River
Estuary area is located in the northeast of Shandong Province, China, and is an important ecological
protection area which mainly includes wetland vegetation. The GF-5 data were captured on 1 November
2018, and the S2A data were collected on 24 October 2018 in the Yellow River estuary area. We chose
850 × 670 pixels of GF-5 data as the experimental data in order to fuse them with the S2A data of
2550 × 2010 pixels.
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Figure 1. Our study areas. (a) Yellow River Estuary; (b) Taihu Lake; (c) Poyang Lake.

The Taihu Lake area is one of five freshwater lakes in China and is located in the south of Jiangsu
Province, China. The GF-5 data of Taihu Lake area were captured on 1 June 2018, and the main ground
objects are water bodies, architecture, vegetation, cultivated land, and urban green space. We clipped
six small datasets from a large GF-5 image, which was consistent with the three small datasets of GF-2
data, one small dataset of GF-1 data, and one small dataset of S2A.
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The Poyang Lake area, as the largest freshwater lake in China, is located in Jiangxi Province,
China. The main ground objects are cultivated land, vegetation and water bodies. The GF-5 data were
collected on 7 October 2018, with an image size of 2420 × 2463 pixels. We clipped two small datasets
from the large images of GF-5 data: one was the Poyang Lake-1 area with 600 × 500 pixel sizes, which
corresponds to GF-1 data of a 2550 × 1875-pixel size, and the other was the Poyang Lake-2 area with
700 × 700 pixels that corresponds to S2A data of a 2100 × 2100-pixel size. Table 3 lists the specific
information of these datasets fpr the three study areas.

Table 3. Specific information of the experimental datasets.

Datasets Area Sensors Time Image Size

GF-5 and GF-1

Taihu Lake-1
GF-5 HS 1 June 2018 540 × 300
GF-1 MS 25 June 2018 2025 × 1125

Taihu Lake-2
GF-5 HS 1 June 2018 452 × 252
GF-1 MS 3 May 2018 1695 × 945

Poyang Lake-1 GF-5 HS 7 October 2018 600 × 500
GF-1 MS 15 September 2018 2250 × 1875

GF-5 and GF-2

Taihu Lake-3
GF-5 HS 1 June 2018 358 × 232
GF-2 MS 14 May 2018 2685 × 1740

Taihu Lake-4
GF-5 HS 1 June 2018 450 × 250
GF-2 MS 14 May 2018 3375 × 1875

Taihu Lake-5
GF-5 HS 1 June 2018 362 × 166
GF-2 MS 14 May 2018 2715 × 1245

GF-5 and S2A

Yellow River Estuary GF-5 HS 1 November 2018 850 × 670
S2A MS 24 October 2018 2550 × 2010

Poyang Lake-2 GF-5 HS 7 October 2018 700 × 700
S2A MS 15 September 2018 2100 × 2100

Taihu Lake-6
GF-5 HS 1 June 2018 750 × 400
S2A MS 4 May 2018 2250 × 1200

In order to explore the specific application performance of different fusion methods, the fused
images were classified and analyzed. By using Google Earth and field sampling, we obtained the
region of interest (ROI) for all land cover types. Tables 4–6 show the number of labeled samples in
each dataset. Training samples and testing samples were randomly selected from the selected ROI. In
order to ensure the classification accuracy, the number of testing samples was almost three times that
of training samples. All images were classified by using the support vector machine (SVM) classifier in
ENVI 5.3 software.

Table 4. Training and testing samples of each land cover type in all datasets (Taihu Lake-1, Taihu
Lake-2, Poyang Lake-1). ROI: region of interest.

Land Cover Types
Taihu Lake-1 Taihu Lake-2 Poyang Lake-1

Training Testing Training Testing Training Testing

Pixel ROI Pixel ROI Pixel ROI Pixel ROI Pixel ROI Pixel ROI

River 315 70 923 100 265 60 523 100 203 60 465 100
Lake 232 20 633 36 193 20 325 30 265 50 512 100

Blue roof building 226 40 743 120 365 80 502 100 – – – –
Bright roof building 268 38 663 92 232 70 469 90 – – – –

Other building 369 50 904 100 295 70 378 100 195 50 368 80
Vegetation 236 30 669 80 102 20 232 50 – – – –
Bare land 169 15 339 30 99 15 153 25 – – – –

Swag 129 25 432 50 – – – – 134 50 433 80
Artificial trench – – – – 133 30 287 60 – – – –
Tidal–flat area – – – – – – – – 169 65 364 100

Marsh – – – – – – – – 259 60 475 120
Dry land – – – – – – – – 169 45 295 80

Paddy field – – – – – – – – 187 55 368 100
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Table 5. Training and testing samples of each land cover type for datasets (Taihu Lake-3, Taihu Lake-4,
Taihu Lake-5).

Land Cover Types
Taihu Lake-3 Taihu Lake-4 Taihu Lake-5

Training Testing Training Testing Training Testing

Pixel ROI Pixel ROI Pixel ROI Pixel ROI Pixel ROI Pixel ROI

River 241 50 396 80 196 30 325 60 121 30 256 50
Lake 98 20 203 40 103 20 194 40 80 30 198 60

Blue roof building 125 80 206 160 134 75 214 140 89 60 167 120
Bright roof building 93 60 162 90 98 50 183 90 98 50 179 100

Other building 135 80 265 160 150 85 299 150 131 70 199 135
Vegetation 90 30 265 50 93 25 169 40 90 30 204 60
Bare land 56 20 124 40 102 30 197 60 – – – –

Red roof building 96 70 183 140 – – – – – – – –
Cement roof building 126 80 268 160 – – – – – – – –

Asphat building 198 100 305 240 – – – – – – – –
Farmland 65 20 93 50 – – – – – – – –

Artificial trench – – – – 111 60 261 110 – – – –
Swag – – – – – – – – 256 142 756 269

Paddy field – – – – – – – – 304 100 661 200
Dry land – – – – – – – – 165 80 297 160

Table 6. Training and testing samples of each land cover type for datasets (Yellow River Estuary,
Poyang Lake-2, Taihu Lake-6).

Land Cover Types
Yellow River Estuary Poyang Lake-2 Taihu Lake-6

Training Testing Training Testing Training Testing

Pixel ROI Pixel ROI Pixel ROI Pixel ROI Pixel ROI Pixel ROI

River 216 50 415 100 169 60 301 120 156 50 281 90
Lake – – – – 142 45 269 80 161 50 287 100

Suaeda salsa 221 80 325 100 – – – – – – – –
Argillaceous beach 196 60 411 120 – – – – – – – –

River flat 203 75 412 100 – – – – – – – –
Paddy field 156 80 296 160 – – – – 168 50 271 100

Reed 154 45 295 90 156 60 268 120 – – – –
Non wetland 169 60 226 120 – – – – — — — —

Salt pan 167 80 301 160 – – – – — — — —
Other vegetation 235 75 421 140 – – – – 97 40 146 60

Swag 92 40 199 80 – – – – – – – –
Paddy field – – – – 183 60 362 120 – – – –

Saline–alkali soil – – – – 189 80 268 140 – – – –
Floating vegetation – – – – 169 50 258 100 – – – –

Yegu grass community – – – – 168 65 333 150 – – – –
Road – – – – 87 40 161 90 – – – –

Dry land – – – – 81 40 152 80 88 50 117 80
Sandbank – – – – 134 60 251 120 – – – –

Submerged vegetation – – – – 75 40 112 80 – – – –
Artificial water body – – – – – – – – 185 60 288 120

Bare land – – – – – – – – 64 20 113 40
Blue roof building, – – – – – – – – 160 102 199 160

Bright roof building – – – – – – – – 175 100 287 200
other building – – – – 96 60 141 100 163 100 194 140

3. Methods

3.1. The Study Framework

Figure 2 depicts the overall framework of our study, which consists of three main parts: (1) data
processing, (2) data fusion, and (3) the comprehensive evaluation of fused images. Some essential
steps are required for the data processing of GF-5 HS data and MS data; i.e., radiation calibration,
atmospheric correction, image registration, and image clipping. The parameters of data fusion
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methods were manually determined for different methods and different datasets. After that, the
performances of different fusion methods were evaluated by using comprehensive evaluation measures;
i.e., quantitative measures, application evaluation measures, and computational efficiency measures.
Finally, the behaviors of different methods for different datasets were analyzed (e.g., fusing GF-5 and
GF-1, GF-5 and GF-2, GF-5 and S2A) to summarize the appropriate fusion methods.
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filtered-based intensity modulation; CNMF: smoothing filtered-based intensity modulation; FUSE: fast
fusion based on Sylvester equation; LANARAS: the method was proposed by lanaras; MAP-SMM:
Maximum a posterior- stochastic mixing model; HCM: hybrid color mapping; Two-CNN-Fu:
Two-branch Convolutional Neural Network.

3.2. Fusion Methods

The current HS and MS fusion methods can be roughly divided into four categories: component
substitution (CS), multiresolution analysis (MRA), subspace-based methods, and color mapping-based
methods. Among them, the nine typical methods mentioned below were tested in this experiment.

3.2.1. CS-Based Methods: GSA

The CS-based methods transform HS images into other feature spaces by matrix transformation.
After histogram matching, MS images are used to replace the intensity components of HS images, and
the spatial resolution of HS images is then enhanced by inverse transformation. The typical method
used in this paper is Adaptive GS (GSA), which is an improved method based on GS by Aiazzi et
al. [23]. It calculates the correlation between hyperspectral and multispectral bands and fuses the bands
in groups. GSA calculates the linear relationship between HS and MS images, and uses regression
coefficients to perform a forward transformation on HS data to extract the intensity component.
The intensity component of HS images is replaced by MS images for inverse transformation. The
mathematical models of GSA can be written as follows:

ĤSik = H̃Sik + gik

(
MSi − Iik

)
, i = 1, · · · , m; k = 1, · · · , n (1)

gik =
cov

(
Iik , H̃Sik

)
var

(
Iik

) (2)

Iik =
n∑

k=1

wik H̃Sik (3)
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where the subscript ik indicates the k-th spectral band of the ith group data. ĤS and H̃S represent the
fused image and the resampled hyperspectral image, respectively. MSi is the i-th multispectral band.
gik and wik are the forward transform coefficient and transform coefficient, respectively. I represents
the intensity component.

3.2.2. MRA-Based Methods: MTF-GLP and SFIM

The MRA-based methods inject detail spatial features of MS images into resampled HS images to
enhance spatial resolution of HS data. A general formulation of MRA is given by

ĤSik = H̃Sik + aik(MSi −MSiL), i = 1, · · · , m; k = 1, · · · , n (4)

where MSiL represents the i-th filtered multispectral band. aik is the gain coefficient of k-th hyperspectral
band in the i-th group data.

Two typical methods are Modulation transfer function(MTF)-generalized Laplacian pyramid
(GLP) [32] and smoothing filtered-based intensity modulation (SFIM) [33]. The MTF-GLP categorizes
the bands of HS images into different groups according to the correlation coefficient between HS bands
and MS bands and enhances each group of HS images. It uses a Gaussian MTF filter to perform
low-pass filtering for MS images. The high spatial detail image is obtained by subtracting filtered
images from the original MS data, and then the extracted detail image is injected into HS images by
using the global gain coefficient. SFIM is a fusion algorithm that formulates the relationship between
solar radiation and land surface reflection. It uses the same fusion steps to obtain detailed images
as MTF-GLP; however, SFIM does not use the global gain, but uses the ratio between HS images

and low-pass filter images of MS data as the gain coefficient. In SFIM and MTF-GLP, aik is
H̃Sik
MSiL

and
1, respectively.

3.2.3. Subspace-Based Methods: CNMF, LANARAS, FUSE, MAP-SMM and Two-CNN-FU

Subspace-based methods mainly consist of Bayesian-based approaches, unmixing-based
approaches, and deep learning approaches. Bayesian-based approaches enhance spatial resolution
by maximizing the posterior probability density of the full-resolution images. We implemented
two typical Bayesian-based approaches: i.e., fast fusion based on Sylvester equation (FUSE) and the
maximum a posteriori-stochastic mixing model (MAP-SMM) [34]. FUSE takes the original image
as a prior probability density, and it achieves image fusion by calculating the maximum posterior
probability density of the target image. It implements the alternating direction method of multipliers
(ADMM) [35] and block coordinate descent method [36] to merge prior information into the fusion
program. Moreover, it adopts the Sylvester equation [37] to give a close solution to the optimization
problem, which also greatly improves the computational efficiency. MAP-SMM uses the stochastic
mixing model (SMM) [38] to evaluate the conditional mean vector and covariance matrix of HS images
relative to MS images, and obtains the mean spectrum, abundance map, and covariance matrix of each
endmember. After that, it establishes a maximum a posteriori (MAP) [39] function to optimize the
fused images and obtains the fused images by operating in the principal component subspace of HS
images. A general formulation of Bayesian based approaches is given by

p
(
H̃S , MS|ĤS

)
=

n∏
i=1

p(H̃S |ĤS)p(MS|ĤS) (5)

where n is the number of data bands and i is the i-th band of data. The maximum posterior probability
can be obtained by solving the following formula:

− log p
(
H̃S, MS|ĤS

)
p
(
ĤS

)
= h + j (6)
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h =
n∑

i=1

∑
Ω

∣∣∣∣∣∣∣
−→

H̃Si −
−→

ĤSi

∣∣∣∣∣∣∣
2

2δi2
(7)

j =
∑

Ω

∣∣∣∣∣∣∣∑n
i=1 αi∇

−→

ĤSi −∇
−→
MS

∣∣∣∣∣∣∣
2

2δ2 +
n∑

i=1

∑
Ω

∣∣∣∣∣∣∣∇
−→

ĤSi

∣∣∣∣∣∣∣
S

(8)

where δ represents the standard deviation of the error, Ω stands for an open interval, and S is a constant
term.

Unmixing-based methods decompose the HS and MS data into the HS basis and
low-resolution coefficient matrix, MS basis and high-resolution coefficients matrix, respectively.
The resolution-enhanced HS images can be obtained by reconstructing the HS basis and high-resolution
coefficients. The key formula is described as follows:

ĤS = EA (9)

H̃S ≈ ĤSS = EAS = E
~
A (10)

M̃S ≈ RĤS = REA =
~
EA (11)

where E and A are the hyperspectral basis and high-resolution coefficient matrix, respectively. S
represents the spatial response function, and R represents the spectral response function. Then, E and
A can be obtained by the minimum loss function:

arg min
E,A
||H̃S− EAS||2F + ||M̃S−REA||2F (12)

where ||·||F is the Frobenius norm.
We implement two typical methods: i.e., the coupled nonnegative matrix factorization (CNMF) [40]

and LANARAS [41]. The CNMF, proposed by Naoto Yokoya et al., uses a nonnegative matrix
factorization (NMF) [42] to obtain the endmembers and abundances of HS and MS images. The fused
images are obtained by recombining the endmembers of HS images and the abundances of MS images.
CNMF uses vertex component analysis (VCA) [43] to calculate the initialized endmembers, and the
endmembers and abundances are iteratively updated through the minimum loss function. LANARAS
has similar fusion steps to CNMF, but it uses simplex identification via the split augmented Lagrangian
(SISAL) [44] to initialize the endmembers. It implements sparse unmixing by variable splitting and
the augmented Lagrangian [45] to initialize the abundance matrix and adopts the projection gradient
algorithm to update the endmember and abundance matrices of HS and MS images.

Deep learning methods obtain the fused images through a neural network framework. The
trained framework includes high-resolution HS (HRHS), high-resolution MS (HRMS), and low spatial
resolution HS (LRHS). We implement one typical deep two-branch convolutional neural network
(two-CNN-Fu). The formula is as follows:

Cl+1
(
Vlr

n , Phr
n

)
= ∂

{
Gl+1

·φ+ ql+1
}

(13)

φ = Chsil
(
Vlr

n

)
⊕Cmsil

(
Phr

n

)
(14)

where Cl+1
(
Vlr

n , Phr
n

)
is the output of the (l + 1)-th layer, Chsil

(
Vlr

n

)
and Cmsil

(
Phr

n

)
are the extracted

features of HS and MS data, respectively, Gl+1 is the weight matrix, and ql+1 is the bias of the fully
connected (FC) layers. ⊕ represents the operation of concatenating HS features and the MS features.
The last FC layer is the spectrum of the fused image.
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3.2.4. Color Mapping-Based Methods: HCM

Color mapping-based methods enhance the spatial resolution of HS images by color mapping. The
conversion coefficient between data is calculated and the MS data is used for inverse transformation to
realize image fusion; the typical method we used is HCM [46]. The HCM obtains the transformation
matrix by using the linear relationship between downsampled MS images and HS images, and utilizes
the MS images and the transformation matrix to obtain the fused images. HCM adds some bands of
HS images into MS images and enhances the correlations between the resolution-reduced MS images
and HS images. In addition, it adds a white band to compensate for the atmospheric effect and other
bias effects. The HCM is defined as

ĤS =
(
M̃S + H̃S1,···θ + Bandwhite

)
×T∗ (15)

where H̃S1,···θ represents the added bands of hyperspectral data, Bandwhite is the white band, T is the
transform coefficient, and the operation ∗ represents the transposition operation of the matrix. T∗ is
defined as follows:

T∗ = arg min
T
‖HS−TMS‖F − λ‖T‖F (16)

where ||·||F is the Frobenius norm, and λ is a regularization parameter. The optimal T∗ is

T∗ = HS×MST
×

(
MS×MST + λI

)−1
(17)

where I is an identity matrix with the same dimension as MS×MST.

3.2.5. Parameter Settings

In the Appendix A, Table A1 lists the main parameters of specific fusion methods. For SFIM and
MTF-GLP, a synthetic image from MS images by regression coefficients is required to calculate the
detailed images. In these algorithms, the bands of HS data are the independent variables and the
bands of MS data are the dependent variables. Then, the least square method calculates the regression
coefficient matrix between the independent variables and the dependent variables by tge loss function.
The synthetic image is obtained by HS data multiplied by the coefficient matrix. Figure 3 shows the
specific use of the least square method. In CNMF, the virtual dimensionality (VD) algorithm [47]
analyzes the typical eigenvalue of HS data by PCA and estimates the number of spectrally distinct
signal sources in the data. The number of spectrally distinct signal sources is the initial number of
endmembers (K). Based on the Neyman–Pearson hypothesis test, the VD algorithm is as follows:

k̂ = arg max
k

Pk(θ ≥ µ
∣∣∣ϕ1) (18)

ϑ0 =

∫
∞

µ
Pk(θ|ϕ0)dθ (19)

where k is the number of endmembers, θ represents the output of the identification algorithm, and ϕ1

and ϕ0 are the alternate hypothesis and the null hypothesis, respectively. µ is a threshold that separates
the two hypotheses, ϑ0 represents the desired false alarm density, and Pk(x) represents the probability
density function for k endmembers.

The Hysime algorithm [48] evaluates the correlation matrix between signal and noise in HS
data. The eigenvector quantum set of the correlation matrix is calculated, which stands for the signal
subspace. The subspace of HS data is obtained by minimizing the sum of the noise power and
projection error power, which are the decreasing and increasing functions of the subspace dimension,
respectively. When the dimension of the subspace of HS data is overestimated, the noise power term is
dominant; otherwise, the projection error power term is dominant. The Hysime algorithm is used to
obtain the subspace consisting of two sequential stages: the noise estimation and the signal subspace
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estimation. For the LANARAS, parameter settings in the original research [18] were firstly verified,
and the fine-tuning of the endmembers (k) was then manually performed. Using the same method
as LANARAS, we manually set the numbers of subspaces (S), the endmembers (K) and the number
of mixture classes (m) for MAP-SMM. There are three important parameters in HCM, including the
number of extracted bands from HS image (B), the patch size (T), and the regularization parameter (Z).
Using cross-validation, we manually set the B as 280 and Z as 0.01 to offer the best fusion effect. A
small pitch size T causes a poor visualization effect of the fused images, and we accordingly chose the
minimum number of columns and row sizes as the proper value.
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3.3. Comprehensive Evaluation Measures

We implement evaluation measures considering three different aspects: quantitative evaluation,
application evaluation, and computation efficiency measures.

3.3.1. Spectral Evaluation Measures

Quantitative measures assess both the spectral and spatial distortions of fused HS images. The
spectral angle measure (SAM) [49], erreur relative globale adimensionnelle de synthèse (ERGAS) [50], and
peak signal-to-noise ratio (PSNR) [51] were used to quantify the spectral distortions between fused
HS images and reference images. The reference image does not exist in the real experiments, and the
resampled GF-5 images are used as reference images to evaluate the spectral distortions. To resample
the GF-5 images, a cubic convolution interpolation algorithm was implemented (see Section 5 for
details on the advantages and disadvantages of resampling algorithms).

SAM calculates the spectral angle between corresponding pixels of reference and fused images,
which is defined as

SAM
(
z j,

^
z j

)
= arccos

 zT
j

^
z j∣∣∣∣∣∣∣∣z j||2

∣∣∣∣∣∣∣∣^z j||2

 (20)

where z is the reference image,
^
z is the fused image, and z j ∈ Rm×1 and

^
z j ∈ Rm×1 represent the spectral

signatures of the jth pixel in the reference image and the fused images, respectively. A larger SAM
means a more severe spectral distortion of the fused images. When the SAM equals 0, the fused images
have the smallest spectral distortion.
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ERGAS is a global index for measuring spectral distortion, which is defined as

ERGAS
(
z,

^
z
)
= 100p

√√√√√√
1
m

m∑
i=1

‖ zi −
^
zi ‖

2
2(

1
n 1T

n zi
)2 (21)

where zi ∈ Rn×1 and
^
zi ∈ Rn×1 represent the i-th band of the reference image and fused images,

respectively. p is the ratio of the spatial resolution between MS and HS images, and n is the number of
pixels in the images. A larger ERGAS brings about more spectral distortion. When ERGAS is equal to
0, the spectral distortion is the smallest.

PSNR is the ratio of the maximum power of a signal to the noise power that affects its
representational accuracy. It evaluates the reconstruction error of fused images, which is defined as

PSNR
(
zi,

^
zi

)
= 10· log10

 max(zi)
2

‖ zi −
^
zi ‖

2
2 /n

 (22)

where max(zi) is the maximum value in the ith band of the reference image, in which a higher PSNR
means a better result.

3.3.2. Spatial Evaluation Measures

Meanwhile, the high-frequency correlation coefficient (HCC) was utilized to measure spatial
distortion. We adopt edge detection technology to extract edge information from MS images and fused
images, respectively. Taking the edge detection results of MS images as the reference images, the
correlation coefficients between the detection maps of fused images and MS images are calculated. We
use the Sobel operator to extract the edge information. The HCC is defined as

HCC(A, B) =

∑e
i=1

(
Ai −

¯
A
)(

Bi −
¯
B
)

√∑e
i=1

(
Ai −

¯
A
)2 ∑e

i=1

(
Bi −

¯
B
)2

(23)

where A and B are the reference edge images and the evaluated edge images, respectively; Ai and Bi

are the samples of A and B; e is the total number of the samples; and
¯

A and
¯
B are the means of A and B.

The ideal value of HCC is 1.

3.3.3. Classification Evaluation Measures

The overall accuracy (OA) [52] and Kappa coefficient (KC) [53] are used to quantify the classification
accuracy of fused images and evaluate the application performance. OA is a commonly used indicator
for evaluating the behaviors of image classification, which is defined as

OA =

∑w
i Xii

u
(24)

where w is the number of classes, u represents the total number of samples, and Xii represents the
observation in row i and column i. A higher OA means a better classification result.

KC is another reliable indicator for the accuracy evaluation of image classification. The formula is
defined as follows:

KC =
u
∑w

i=1 Xii −
∑w

i=1(Xi+ ×X+i)

u2 −
∑w

i=1(Xi+ ×X+i)
(25)
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where Xi+ and X+i represent the marginal total in row i and column i, respectively. The range of KC is
between 0 and 1, and a larger KC means higher classification accuracy.

3.3.4. Computational Efficiency Measures

The running time is recorded to evaluate the computational efficiency of different fusion methods.
All the fusion methods are implemented in MATLAB 2016a, and their codes are run on a WIN10
computer with Intel Core i7 processor and 64 GB RAM.

4. Results

4.1. Fusion Results of GF-5 and GF-1

Table 7 describes the quantitative evaluation results of fused images from GF-5 and GF-1 data. The
bold type represents the best result, and the second-best result is underlined. Figure 4 shows the fused
image of nine methods for the Taihu lake-1 dataset. The observations in Table 7 and Figure 4 show the
robustness of GSA, CNMF, LANARAS, and FUSE in terms of spatial fidelity. The reason for this is
that GSA injects spatial details of MS data into HS data via component substitution and has an ideal
transformation coefficient to maintain the spectral separation of HS data. The two unmixing-based
methods and FUSE formulate the relationships between HS data, MS data, and fused images, and
implement the minimum loss function to reduce the approximation error while eliminating the effects
of noise. It is interesting that FUSE has good spectral fidelity in the Poyang Lake-1 dataset, whereas it
suffers serious spectral distortion in the Taihu Lake-1 area and Taihu Lake-2 area. Our assumed reason
for this is that the Hysime is unsuitable for identifying the subspaces of data in complicated building
areas. MTF-GLP, SFIM and MAP-SMM have good spectral fidelity, but SFIM and MAP-SMM have
severe spatial distortion. MRA-based methods obtain detailed information by filtering MS data in
the fusion process. They inject detailed information into HS data with the gain coefficient, and the
spectral information of HS data is not modified in the fused images. In contrast, the gain coefficient of
SFIM is not as ideal as that of MTF-GLP, resulting in an insufficient injection of spatial details in SFIM.
The number of endmembers in MAP-SMM affects the behaviors of SMM and accordingly limits the
enhancement of spatial resolution of HS data [18].

Table 7. Evaluation results of different fused methods on GF-5 and GF-1 data in terms of spectral
(spectral angle measure (SAM), erreur relative globale adimensionnelle de synthèse (ERGAS), peak
signal to noise ratio (PSNR)), spatial (high-frequency correlation coefficient (HCC)), and computational
efficiency (Time) measures. (The double underline value is the best accuracy in each case, followed by
single underline).

Datasets Criteria
Image Fusion Methods

CNMF FUSE GSA HCM LANARAS MAP-
SMM

MTF-
GLP SFIM Two-

CNN-Fu

Taihu
Lake-1

SAM 3.61 20.04 10.80 5.82 5.60 3.24 3.18 3.53 22.71
ERGAS 34.84 57.43 44.48 35.24 36.11 28.63 27.45 30.02 98.40
PSNR 28.76 20.47 24.87 29.17 28.17 32.20 32.93 31.37 14.74
HCC 0.25 0.33 0.49 0.19 0.48 0.17 0.34 0.24 0.15
Time 375 51 51 13 824 3086 370 9 3150

Taihu
Lake-2

SAM 4.44 15.75 6.73 4.13 5.01 3.33 3.21 3.43 25.78
ERGAS 34.43 52.42 37.45 29.82 34.21 28.29 26.88 28.68 94.82
PSNR 27.60 20.89 26.82 30.88 27.82 31.14 32.05 30.90 13.70
HCC 0.50 0.51 0.65 0.28 0.51 0.16 0.46 0.35 0.22
Time 199 33 33 7 475 1818 253 7 1936

Poyang
Lake-1

SAM 2.99 3.42 4.73 3.31 4.75 2.99 2.92 2.90 17.17
ERGAS 30.61 31.41 36.04 29.79 36.85 30.15 29.98 31.37 80.36
PSNR 27.42 27.03 24.82 29.47 24.45 27.82 28.20 27.21 9.94
HCC 0.68 0.32 0.51 0.36 0.64 0.19 0.40 0.28 0.18
Time 1919 159 136 26 2191 4919 763 21 5015
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Figure 4. Experimental results of the Taihu Lake-1 dataset, presenting the original GF-1 and GF-5 data
and the resulting image of each tested fusion method.

HCM has good visualization behaviors but has severe spatial distortion and regular spectral
fidelity. It adds some bands of HS data into MS data, and the spatial resolutions of these added
bands are not well enhanced by color mapping. The fused images accordingly preserve all spectral
information of MS data but only part of the spectral information of HS data. In two-CNN-Fu, due
to the lack of HRHS, the spectral response function was used to downsample the HS as HRMS, the
Gauss fuzzy kernel and point distribution function were used to calculate HS to get LRHS, and the
original HS is used as HRHS. In the experiment, the neural network framework was trained by using
the simulation data set, which made the trained neural network framework have great defects, and the
image with the worst fusion effect was obtained.

Figure 5 shows an example of the classification results, and Figure 6 plots the classification
accuracy of all fused images on the three datasets (see Table 4 for the categories of objects). The KC
and OA of fused images are higher than those of HS and MS data. All fused images obtain similar
and good classification behaviors in Poyang Lake-1, and their classification performances diverge
greatly for the Taihu Lake-1 and Lake-2 datasets. We guessed that their divergent performances result
from different land covers in the three datasets. The building areas in Taihu Lake-1 and Lake-2 have
complicated spectral information and rich spatial detail, which demonstrates the behaviors of different
fusion methods. GSA, FUSE and LANARAS have higher classification accuracies, SFIM, MAP-SMM,
HCM and two-CNN-Fu have the worst KC and OA, and MTF-GLP and CNMF are unstable.
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Figure 5. Classification results of the Taihu Lake-1 dataset, presenting the original GF-1 and GF-5 data
and the resulting image of each tested fusion method.
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Figure 6. Classification accuracy of GF-1, GF-5 and fused images. (a) Taihu Lake-1 area. (b) Taihu
Lake-2 area. (c) Poyang Lake-1 area.

4.2. Fusion Results of GF-5 and GF-2

As shown in Table 8 and Figure 7, GSA, the unmixing-based methods—FUSE and MTF-GLP—show
robustness in terms of spatial fidelity when fusing GF-5 data with GF-2 data (see the detail on the Taihu
Lake-3 dataset in Figures 7 and 8). MAP-SMM, MTF-GLP, and SFIM exhibit less spectral distortion,
while HCM and two-CNN-Fu has severe spatial distortions and regular spectral fidelity. However,
compared with those of GF-5 data and GF-1 data, the SAMs of all fused images increase. A larger ratio
of spatial resolution between GF-5 and GF-2 data requires more pixels of GF-2 data to be obtained to
perform the image interpolation in the fusion process. That would involve more heterogenous pixels
and then cause the spectral distortion of HS data. Except for two-CNN-Fu, all fusion methods have
good spectral fidelity in the Taihu Lake-4 and Lake-5 areas. Except for CNMF, MAP-SMM, MTF-GLP
and SFIM, the other five methods have serious spectral distortions in the Taihu Lake-3 area. The
spectral fidelity of CNMF, MAP-SMM, MTF-GLP, and SFIM is the most robust. In terms of the spatial
fidelity of GSA, the unmixing-based methods FUSE and MTF-GLP are more stable than others.
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Figure 7. Experimental results of Taihu Lake-3 dataset, presenting the original GF-1 and GF-5 data and
the resulting image of each tested fusion method.
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Figure 8. Classification results of Taihu Lake-3 dataset, presenting the original GF-1 and GF-5 data and
the resulting image of each tested fusion method.
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Table 8. Evaluation results of different fused methods on GF-5 and GF-2 data in terms of spectral (SAM,
ERGAS, PSNR), spatial (HCC), and computational efficiency (Time) measures. (The double underline
value is the best accuracy in each case, followed by single underline).

Datasets Criteria
Image Fusion Methods

CNMF FUSE GSA HCM LANARAS MAP-
SMM

MTF-
GLP SFIM Two-

CNN-Fu

Taihu
Lake-3

SAM 4.50 14.17 8.06 6.09 6.63 3.82 3.56 3.75 30.23
ERGAS 38.70 48.12 39.13 34.47 37.93 29.32 28.56 30.13 75.11
PSNR 23.54 21.15 24.16 27.05 24.72 29.28 29.65 28.70 12.01
HCC 0.60 0.53 0.59 0.33 0.49 0.29 0.51 0.40 0.21
Time 489 124 112 40 2908 2954 358 24 2988

Taihu
Lake-4

SAM 4.61 7.95 6.87 4.48 5.84 3.85 4.02 4.22 28.11
ERGAS 37.77 40.69 37.87 30.55 35.53 30.32 30.07 31.63 76.05
PSNR 25.77 24.80 26.37 29.32 27.22 29.93 30.18 29.26 14.72
HCC 0.52 0.69 0.69 0.23 0.55 0.30 0.57 0.46 0.21
Time 625 216 158 35 6301 4496 476 26 4502

Taihu
Lake-5

SAM 3.73 6.85 6.00 4.70 5.41 3.40 3.40 3.60 26.85
ERGAS 38.01 39.51 36.84 31.95 37.42 29.95 29.90 31.76 75.36
PSNR 27.27 26.31 27.90 31.13 28.32 31.59 31.74 30.71 13.64
HCC 0.49 0.60 0.58 0.21 0.46 0.30 0.47 0.38 0.18
Time 357 83 74 22 3376 2127 259 12 2994

An example of classification results is shown in Figure 8, and Figure 9 plots the classification
accuracy of GF-5 data, GF-2 data and all fused images (see Table 5 for the categories of objects).
Similar to Figure 4, the fused images show better behaviors than the original HS data and MS data.
SFIM and MAP-SMM show relatively poor classification accuracy in Taihu Lake-4, while the other
methods always achieve similar and robust classification results. GSA, FUSE and MTF-GLP have
better classification accuracies when GF-5 data are fused with GF-2 data.
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4.3. Fusion Results of GF-5 and S2A

Table 9 shows the evaluation results and fused images of all nine methods for GF-5 and S2A data.
Compared with GF-2 and GF-1 data, the divergences of SAM from the nine fused images are smaller.
The explanation for that is that GF-5 and S2A data have a smaller ratio of spatial resolutions. GSA and
unmixing-based methods show more robustness in the spatial fidelity.
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Table 9. Evaluation results of different fused methods on GF-5 and S2A data in terms of spectral (SAM,
ERGAS, PSNR), spatial (HCC), and computational efficiency (Time) measures. (The double underline
value is the best accuracy in each case, followed by single underline).

Datasets Criteria
Image Fusion Methods

CNMF FUSE GSA HCM LANARAS MAP-
SMM

MTF-
GLP SFIM Two-

CNN-Fu

Yellow
River

Estuary

SAM 2.09 5.55 3.30 0.99 4.51 1.43 1.31 1.39 34.65
ERGAS 33.22 30.27 28.60 16.19 48.16 20.07 19.61 20.73 79.18
PSNR 22.36 24.74 25.87 36.87 21.26 32.22 32.61 31.66 7.27
HCC 0.58 0.25 0.55 0.14 0.66 0.13 0.34 0.27 0.26
Time 1479 91 154 37 1836 8886 638 23 9543

Poyang
Lake-2

SAM 3.23 3.15 3.95 4.34 4.67 2.45 2.27 1.52 22.85
ERGAS 31.29 29.45 34.50 32.57 35.89 26.64 26.16 24.85 80.70
PSNR 26.56 27.61 25.23 26.96 24.31 29.40 29.83 30.39 9.61
HCC 0.56 0.24 0.55 0.37 0.66 0.21 0.36 0.27 0.33
Time 2587 53 96 17 1545 7594 476 17 7975

Taihu
Lake-6

SAM 3.26 6.31 5.85 4.58 5.34 3.32 3.42 3.53 26.65
ERGAS 37.71 36.88 35.09 30.83 35.39 28.18 27.89 29.18 75.53
PSNR 26.28 26.94 28.17 30.65 27.74 31.68 31.88 31.08 14.23
HCC 0.72 0.76 0.79 0.63 0.74 0.32 0.47 0.42 0.38
Time 478 41 74 15 3600 4635 326 13 5103

In the Yellow River Estuary area and Poyang Lake-2 area, FUSE has severe spatial distortion, but
the enhancement of spatial resolution is obvious in the Taihu Lake-6 area (for detail, see Figure 10).
Two-CNN-Fu has the worst fidelity in both spatial and spectral aspects. HCM could preserve the
spectral information of MS data and part of the spectral information of HS data during the fusion
process. It achieves the best spectral fidelity in Yellow River Estuary, but has relatively regular
performance in terms of spectral fidelity on the Poyang Lake-2 and Taihu Lake-6 datasets. The reason
for this is that different time lags in collection data make the spectral divergence of GF-5 and S2A in
the Yellow River Estuary smaller than those in Poyang Lake-2 and Taihu Lake-6.Remote Sens. 2020, 01, x FOR PEER REVIEW  19 of 25 
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Figure 10. Experimental results of Taihu Lake-6 dataset, presenting the original GF-1 and GF-5 data
and the resulting image of each tested fusion method.
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An example of classification results is shown in Figure 11, and Figure 12 plots the OA and KC of
GF-5, S2A data and all fused images (see Table 6 for the categories of objects). The classification results
of the fused images are superior to the original HS data and MS data. GSA, SFIM, MAP-SMM and
two-CNN-Fu have the best classification performance, with the highest OA and KC. The classification
accuracies of MTF-GLP, FUSE, CNMF, LANARAS and HCM are unstable, and these methods perform
better for Taihu Lake-6 than in the Yellow River Estuary and Poyang Lake-2 areas.
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Figure 11. Classification results of Taihu Lake-6 dataset, presenting the original GF-1 and GF-5 data
and the resulting image of each tested fusion method.
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5. Discussion

In this paper, we propose a comprehensive evaluation framework, which is very effective
in comparing the current fusion methods. Although our predecessors have undertaken several
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corresponding works—for example, in 2014, Vivone et al. conducted a comparative analysis on
the methods of MS pansharpening—they only used quantitative indicators to evaluate various
methods [17]. Loncan et al. conducted a comparative analysis of the HS pansharpening methods
in 2015 and conducted a quantitative evaluation of several methods [20], and the computational
efficiency of various methods was also evaluated. In 2017, Yokoya et al. evaluated various HS and
MS fusion approaches from a quantitative and applied perspective [18]. However, our evaluation
framework adds HCC evaluation indicators, which can effectively evaluate the spatial distortion
of various methods, which was not the case in previous literature. Our framework simultaneously
evaluates spectral distortion, spatial distortion, application performance, and computational efficiency.
In addition, previous papers used simulation datasets to evaluate various methods, but we used real
datasets to verify the performance of different methods, which led to a more objective evaluation result.

In this experiment, real datasets were used for fusion, and resampled HS data were used as
reference data to evaluate the fused data. Therefore, we summarized and analyzed the existing image
interpolation methods. The current image interpolation methods mainly include nearest neighbor
interpolation [54], bilinear interpolation [55], and cubic convolution interpolation [56]. The advantage
of the nearest neighbor interpolation method is that the calculation is very small and the operation
speed is fast. However, it only uses the gray value of the pixel closest to the sampling point to be tested
as the gray value of the sampling point, without considering the influence of other neighboring pixel
points. Therefore, after resampling, the gray value has obvious discontinuity, the image quality loss is
large, and there will be obvious mosaic and saw tooth phenomena [57]. Bilinear interpolation is better
than nearest neighbor interpolation, but the calculation is a little large, the algorithm is more complex,
and the computational time of the program is a little long. The image quality after zooming is high,
which basically overcomes the feature of the discontinuous gray value of nearest neighbor interpolation.
The reason for this is that it considers the influence of four direct neighbors around the sampling point
to be tested on the correlation of the sampling point. However, this method only considers the influence
of the gray values of the four direct neighboring points around the testing sample, and it does not
include the influence of the change rate of the gray value between the neighboring points. Accordingly,
it has the property of a low-pass filter, which leads to the loss of the high-frequency components of the
image after scaling, and the image edge becomes fuzzier to a certain extent. Compared with the input
image, the output image after zooming by this method still has the problems of image quality damage
and low calculation accuracy due to the poor consideration of interpolation function design [58]. Cubic
convolution interpolation is the most widely used algorithm. It not only considers the influence of
the gray values of the four neighboring pixels but also considers the influence of the change rate of
their gray values. Therefore, it overcomes the shortcomings of the former two methods, with generally
smoother edges than bilinear interpolation and high calculation accuracy [59].

Besides this, the performance of each fusion method was discussed comprehensively when fusing
GF-5 data with GF-1, GF-2 and S2A data, respectively. In Table 10, more points indicate better fusion
performance. By adding the scores of each method in SAM, HCC and KC, this comprehensive score
result in overall terms is obtained.

When fusing GF-5 with three typical MS data sources, the spatial resolution enhancement of GSA is
obvious when replacing intensity components of HS data, and spectral distortion is also caused during
the image fusion process. MAP-SMM, MTF-GLP, and SFIM have better performance in terms of spectral
fidelity, and MTF-GLP behaves well when enhancing the spatial resolution. However, MAP-SMM is
sensitive to the number of endmembers, and SFIM is affected by the gain coefficient, which limits their
performance in image fusion. HCM simultaneously preserves the spectral information of MS data
and HS data by color mapping. However, the added bands have poor behaviors in spatial resolution
enhancement, and that causes HCM to have clear defects. Two-CNN-Fu has the worst spectral and
spatial fidelity for all datasets.
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Table 10. Comprehensive evaluation of all methods for fusing GF-5 with GF-1, GF-2 and S2A data on
the basis of spectral (SAM), spatial (HCC), classification (Kappa coefficient (KC)), and all-inclusive
(overall) features.

Fusion
Datasets

Criteria
Fusion Methods

CNMF FUSE GSA HCM LANARAS MAP-
SMM

MTF-
GLP SFIM Two-

CNN-Fu

GF-5
and GF-1

SAM •• • • •• •• ••• ••• ••• •

HCC •• •• ••• • ••• • •• • •

KC • ••• ••• •• ••• • •• •• •

Overall • •• ••• • ••• • ••• •• •

GF-5
and
GF-2

SAM •• • • •• •• ••• ••• ••• •

HCC •• ••• ••• • •• • ••• • •

KC •• ••• ••• • • •• ••• •• ••

Overall •• ••• ••• • • •• ••• •• •

GF-5
and S2A

SAM •• • •• •• • ••• ••• ••• •

HCC ••• • ••• •• ••• • •• •• •

KC •• • ••• • • ••• •• ••• ••

Overall •• • ••• • • •• •• ••• •

The classification performance of all fused images exceeds those of HS and MS data. GSA,
MTF-GLP, SFIM, and two-CNN-Fu achieve competitive classification results for some fused data.
CS-based methods have serious spectral distortion, but the replacement of components enlarges
the spectral divergences of different ground objects and then improves the classification accuracy.
MTF-GLP and SFIM could enhance the spatial resolutions of GF-5 data, and their excellent spectral
fidelity benefits the classification accuracies of fused images. Subspace-based methods have different
fusion behaviors for various datasets, mainly because different ratios of spatial resolution affect the
fusion results and classification accuracies. LANARAS shows a competitive classification result when
GF-5 is fused with GF-1 data. FUSE performs the best when GF-5 is fused with GF-2 data. MAP-SMM
has a higher classification accuracy when GF-5 is fused with S2A data. Two-CNN-Fu exhibits unstable
performance of classification for different datasets. HCM exhibits poor classification results for all
the datasets. The reason for this is that it has limitations in the enhancement of the spatial resolution
and regular spectral fidelity of GF-5 data. The experimental results also show that the classification
behaviors do not fully depend on the spectral and spatial fidelity of fused images, and GSA is a
typical example. Tables 7–9 illustrate that two-CNN-Fu, MAP-SMM and LANARAS have the lowest
computational speeds, while SFIM and HCM have the shortest computational time.

From the above comprehensive evaluation, when GF-5 is fused with GF-1 data, GSA and
LANARAS have the best spatial fidelity, and LANARAS, GSA, FUSE show the best classification
behaviors. The overall performances of GSA and MTF-GLP are the best. For the fusion of GF-5 and
GF-2 data, GSA, MTF-GLP, and FUSE have the best enhancement performance in terms of spatial
resolution, and the best classification results are obtained by MTF-GLP, GSA, and FUSE. MTF-GLP
and GSA show the best overall behaviors. When GF-5 is fused with S2A data, GSA, LANARAS, and
CNMF perform best, and HCC, GSA, SFIM, and MAP-SMM obtain good classification results. The
overall performances of GSA and SFIM are the best of all.

6. Conclusions

GF-5 data provides 330 spectral bands with a spatial resolution of 30 m, which presents great
advantages over on-orbit or planned spaceborne HS sensors. By means of fusion, the spatial resolution
of GF-5 data can be improved and further applied to the high-resolution mapping of urban surface
materials, minerals, plant species and so on. This paper investigates the performance of nine fusion
methods in fusing GF-5 with GF-1, GF-2, and S2A data, respectively. A set of comprehensive measures
including quantitative spectral and spatial evaluation (SAM, ERGAS, PSNR, and HCC), classification
accuracy (OA and KC), and computation time (time) are employed to evaluate the behaviors of
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each method for different datasets. The experimental results show that the fused images are more
advantageous than the original data, and the various methods behave divergently for different datasets.
GSA, MTF-GLP, and SFIM are more competitive than others when GF-5 data are fused with GF-1,
GF-2 and S2A data. Subspace-based methods have lower robustness in terms of spectral fidelity and
slower computational speeds than GSA MTF-GLP and SFIM, but they have good spatial fidelity. HCM
and two-CNN-Fu have drawbacks and relatively poor fusion results. Therefore, LANARAS, GSA and
MTF-GLP are recommended when fusing GF-5 with GF-1 data, MTF-GLP and GSA are recommended
when fusing GF-5 with GF-2 data, and GSA and SFIM are recommended when fusing GF-5 with
S2A data.
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Appendix A

Table A1. List of the main parameters in the specific fusion methods.

Fusion
Datasets

Study Area Methods

LANARAS MAP-SMM HCM Others

GF-5 and GF-1
Taihu Lake-1 K = 27 S = 6, K = 5, m = 126 B = 280, T = 1125, Z = 0.01
Taihu Lake-2 K = 35 S = 5, K = 4, m = 35 B = 280, T = 945, Z = 0.01 —

Poyang Lake-1 K = 33 S = 4, K = 3, m = 10 B = 280, T = 1875, Z = 0.01

GF-5 and GF-2
Taihu Lake-3 K = 30 S = 6, K = 5, m = 126 B = 280, T = 1740, Z = 0.01
Taihu Lake-4 K = 35 S = 5, K = 4, m = 35 B = 280, T = 1875, Z = 0.01 —
Taihu Lake-5 K = 25 S = 5, K = 4, m = 35 B = 280, T = 1245, Z = 0.01

GF-5 and S2A
Yellow River Estuary K = 31 S = 6, K = 5, m = 126 B = 280, T = 2010, Z = 0.01

Poyang Lake-2 K = 30 S = 6, K = 5, m = 126 B = 280, T = 2100, Z = 0.01 —
Taihu Lake-6 K = 28 S = 5, K = 4, m = 35 B = 280, T = 1200, Z = 0.01
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