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Abstract: The retention of structural elements such as habitat trees in forests managed for timber
production is essential for fulfilling the objectives of biodiversity conservation. This paper seeks to
predict tree-related microhabitats (TreMs) by close-range remote sensing parameters. TreMs, such as
cavities or crown deadwood, are an established tool to quantify the suitability of habitat trees for
biodiversity conservation. The aim to predict TreMs based on remote sensing (RS) parameters is
supposed to assist a more objective and efficient selection of retention elements. The RS parameters
were collected by the use of terrestrial laser scanning as well as unmanned aerial vehicles structure
from motion point cloud generation to provide a 3D distribution of plant tissue. Data was recorded on
135 1-ha plots in Germany. Statistical models were used to test the influence of 28 RS predictors, which
described TreM richness (R%: 0.31) and abundance (R?: 0.31) in moderate precision and described a
deviance of 44% for the abundance and 38% for richness of TreMs. Our results indicate that multiple
RS techniques can achieve moderate predictions of TreM occurrence. This method allows a more
efficient and objective selection of retention elements such as habitat trees that are keystone features
for biodiversity conservation, even if it cannot be considered a full replacement of TreM inventories
due to the moderate statistical relationship at this stage.

Keywords: forest biodiversity; tree related microhabitats; terrestrial laser scanning; UAV; structure
from motion; forest structure

1. Introduction

Forests are enormously important for the conservation of biodiversity and the provisioning of
habitats within forests is closely related to their structural richness or complexity. Forest structure,
therefore, is an important driver for biodiversity among other forest ecosystem services [1-3].
Consequently, forest biodiversity conservation has shifted from a focus on single-species protection
towards understanding and conserving multi-taxon as well as structural indicators of forest
biodiversity [1,4-7] and forest taxa on different scales including fine-scale structures at the tree-level [1].
How to quantify forest structure has therefore become an important challenge for predicting habitat
quality or monitoring forest biodiversity [8-10], yet, the understanding of forest structure and structural
complexity differs to some extent between individual scientific disciplines. Generally, forest sciences
focus on forestry variables such as diameter at breast height (DBH), tree species, basal area, canopy cover
and age structure [8-11], or the number of standing dead trees indicating horizontal heterogeneity [12].
The remote sensing (RS) discipline mainly describes forest structure by summarizing variables that can
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be determined from sensor data. These include maximum height, quantiles of height from surface
models or point clouds, point densities, or structural complexity indices, tree counts, biomass estimates
and many more [3,13-26]. If the aim is to provide a broader perspective of the forest structure, metrics
such as the Stand Structural Complexity Index (SSCI) [4] are for instance applicable.

In forest management, there is a consensus that tree-related microhabitats (TreMs) are decent
descriptors of habitat provision and hence are important indicators of forest biodiversity [1,27]. The
current definition for a TreM is “a distinct, well delineated structure occurring on living or standing dead
trees, that constitutes a particular and essential substrate or life site for species or species communities
during at least a part of their life cycle to develop, feed, shelter or breed” [27]. The main taxonomic
groups that have been addressed in the established typology of TreMs include invertebrates such as
insects, arachnids and gastropods as well as vertebrates such as birds, rodents, bats and carnivores [27].
It is a matter of ongoing research to evaluate which taxa profit directly or indirectly from the provision
of TreMs, so far there is evidence that especially bats, saproxylic beetles and birds are related to the
occurrence of TreMs [1,28-31]. Habitat trees are considered large, old trees that offer a high number of
TreMs compared to the “average” tree in a forest managed for timber production [32]. The selection
of habitat trees based on TreMs has lately been implemented in various regions of Central Europe
managed under continuous-cover forestry and therefore deserves increased attention [29,33-35].

TreM field inventories are commonly used to assess the quality and quantity of habitat trees [34,36]
as remote sensing is not yet able to detect the full set of these relatively small structural attributes
directly at the tree-level [37,38]. Rehush et al. [38] detected TreMs only on the stem section and just for
beech (Fagus sylvatica L.) trees with advanced machine learning techniques and were able to detect
those TreMs with an accuracy of up to 83%. However, close-range remote sensing techniques are able
to describe small-scale structural complexity of forests in increasing detail [4,39-42]. TreM inventories
and RS techniques are often used to answer similar research questions, for instance the quantification
of old-growth attributes in forests [39,43] and the selection of habitat trees [32,44]. If remotely-sensed
data can predict the range of forest structures that offer a high abundance and richness of TreMs,
this would constitute a major step towards a more efficient and objective selection of habitat trees as
retention elements for biodiversity conservation. In addition it could eliminate or reduce the need for
labor-intensive field surveys of TreMs. Remote sensing data collection is more time- and cost-efficient
and has less observer bias than traditional TreM field surveys [45].

To guide the selection of habitat trees, the present study analyzed the abundance and richness
of TreMs measured in the field in relation to fine-scale structural variables that can be detected from
close-range remote sensing. Our research question is to predict TreM abundance and richness, provided
by ground-based assessments of TreMs, by parameters derived from close-range RS metrics.

2. Materials and Methods

2.1. Research Site

The study area is located in South-West Germany in the southern Black Forest mountain range
in the state of Baden-Wiirttemberg (Figure 1). The Black Forest rises from the Rhine valley up to
ca. 1500 m a.s.l. at the highest peaks. The research project “Conservation of Forest Biodiversity in
Multiple-Use Landscapes of Central Europe” (ConFoBi) established a network of 1-hectare plots in
existing state-owned forests (Figure 1) [30]. Plots were selected following a procedure to ensure the
independence of single plots by including a minimum distance of 750 m between the plots and to
ensure gradients of forest connectivity and structure. The first gradient was the proportion of forest in
the 25 km? surrounding of the plots and the second gradient was the number of standing dead trees
per plot (see [30] for details). Forests in this area are dominated by Norway spruce (Picea abies L.),
European beech (Fagus sylvatica L.) and silver fir (Abies alba Mill.). A full list of plots, their altitude and
their tree species with the respective basal areas can be found in Table A2. Management of these forests
follows a “close-to-nature” paradigm characterized by single tree and group selection harvests, natural
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regeneration, promotion of mixed and uneven-aged stands, and retention of habitat trees [46]. The
plots were selected so that water bodies, roads, power lines etc. were excluded but smaller man-made
objects like raised hides for hunting, skid tracks, hiking paths etc. could be included. The plots cover a
range of altitudes between 434 m and 1334 m a.s.l. and the variance of the slopes is between 1 and
34°. Eighty-one of the plots are located in formally protected areas of different categories from water
protection areas to strict reserves with different levels of restriction on active forest management.
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Figure 1. Map of the ConFoBi research area with research plots marked as green circles. The dotted

47.50

line indicates the border of the state of Baden-Wiirttemberg to France and Switzerland.
2.2. Assessment of Tree-Related Microhabitats

The field assessment of TreMs was carried out in leafless and snow-free periods between November
2016 and May 2017. The 15 trees with the largest crown area per plot were selected based on RS
data prior to fieldwork. We focused on large trees, since literature has shown that larger trees bear
significantly more TreMs compared to smaller ones [47,48] and we aim to select trees that provide a high
quantity of these structures with the help of remote sensing. The selection of sample trees followed a
stepwise approach. First, we automatically delineated individual tree crowns of all trees in all plots by
applying the TreeVis software [49]. A digital surface model (DSM) was photogrammetrically generated
from a combination of aerial images (40 cm ground sampling distance, (similar to [50]) and a digital
terrain model (DTM) based on LiDAR flights. From the DSM, 15 large living trees per plot, based on
the delineated crown areas, could be identified. The sample size of 15 trees is derived from the local
retention forestry concept that is applied to all state forests in Baden-Wiirttemberg [34]. In this concept,
groups of 15 habitat trees are selected per three hectares as small retention sites. An assessment of all
trees in the plots was not feasible for logistic reasons, but by selecting 15 large trees, we captured most
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of the variation (80% based on a rarefaction analysis) of TreMs in the plots [44]. The tree species was
not a selection criterion and it was not the goal to inventory the absolutely largest trees per plot, but to
find a feasible solution for selecting large trees prior to the full inventory.

The TreM inventory was derived from Kraus et al. [51], which has been slightly adapted and is
now commonly used throughout Europe [27]. The catalogue used for the inventory [51] included these
TreMs (for detailed information as minimum sizes to be recorded see Table A1):

o Cavities: Woodpecker cavities, trunk and mould cavities, branch holes, dendrotelms as well as
insect galleries and bore holes;

e Injuries and wounds: bark loss or exposed sapwood, exposed heartwood or trunk and crown
breakage, cracks and scars

e  Bark: space between bark and sapwood forming a shelter or pocket, coarse structure

e Deadwood: dead branches and limbs or crown deadwood

e  Deformation and growth form: root buttress cavities, witches broom, cankers and burrs

e Epiphytes: fruiting bodies of fungi, myxomycetes, epiphytic crypto- and phanerogams

e  Nests: nests of vertebrates and invertebrates

e  Other: sap and resin run, micro soil

A simple handheld global navigation satellite system (GNSS) was used to locate the pre-selected
sample trees in the field. For each sample tree, DBH, species and an inventory of TreMs were recorded.
All TreMs on a tree were recorded with type and count. TreMs in the upper parts of trees, including
canopy branches, were identified with binoculars. To prevent an observer effect, all inventories were
carried out by the same team of two observers [45]. See supporting material (Table A1) for a full list of
included TreMs. For the statistical analyses, TreM abundance is defined as the sum of all recorded
TreMs of 15 large trees per plot. The richness of TreMs was calculated as the sum of all different TreMs
of the inventoried 15 trees per plot.

2.3. Acquisition of Data with the Unmanned-Aerial Vehicle (UAV)

All research plots were inventoried with a multirotor UAV (OktoXL 6512, Mikrokopter GmbH,
Moormerland, Germany; Figure 2) carrying a consumer-grade full frame RGB camera (Alpha 7R, Sony
Europe Limited, Weybridge, Surrey, UK) with global shutter a 35 mm prime lens. The flights were
carried out in snowless conditions between March 2017 and April 2018. In order to minimize the
data collection timeframe but still include all plots, light and weather conditions varied per flight.
For each flight, the aircraft was set to “automatic mode”, flying over the plots at 80 m above ground
in a crisscross pattern using the onboard GNSS and compass for navigation following a preflight
programmed flight plan (see [52] for details). The camera was aligned nadir and perpendicular to the
flight direction and triggered automatically every 3—4 m by the drone, resulting in forward overlaps
>95% and ground sampling distances (GSD) of about 1.1 cm. The camera was set to an exposure time
of 1/2000 s, aperture F/2.8, the ISO-value was set on site based on the light conditions. Given that the
aircraft only maneuvers according to its relative height to the starting point, we planned flights to begin
at the lowest point of the plot, thus avoiding collisions with trees in steep terrain. Consequently, on-site
assessments of feasible launch locations verified or altered the starting point defined in the preflight
plan. As a result, flight heights were roughly stable within plots but occasionally varied between plots.
The mean realized flight height was 96 m (SD: 19 m), which generated a sideward overlap between
83% and 91% and ground sampling distances that varied between one and two cm [52].
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Figure 2. UAV image acquisition; the top-left panel shows a raw image of the UAV (top right). The
lower-left panel shows a close-up of the same image (frame in top left image) with a log of ca. 5m
length. The lower-right panel illustrates a transect of the resulting point cloud.

2.4. Data Acquisition with a Terrestrial Laser Scanner (TLS)

Single scans were conducted between September 2017 and May 2018 at the center of every plot,
which was marked with a metal pin using a real-time kinematic (RTK) GNSS. Each scan was carried
out with a Faro Focus 3D 120 (Faro Technologies Inc., Lake Mary, FL, USA; Figure 3) terrestrial laser
scanner set to 0.044° resolution (7.76 mm point distance at 10 m distance to scanner). A full 360°
horizontal and 150° vertical angular range was covered, resulting in a maximum of 29 million points
per scan. The scanner was placed on a tripod at 1.3 m above ground. Instrument heights, date and
time, GPS-location and qualitative weather information were recorded as metadata for every scan
using a field tablet. The scanner automatically corrected its tilt and rotation using internal sensors. See
Figure 3 for an impression of the dataset quality.
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Figure 3. The left panel shows an example of dataset details for a single tree from TLS scanner (top-right
panel), the scanner position is illustrated by the red icon. In a 10 m long transect through the scan
(lower right panel), trunks are represented in high details whereas the depiction of crowns suffers from
occlusion effects.
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2.5. Processing of Data Obtained by the UAV

The RGB images of each plot (see Figure 2 for an example) were georeferenced by matching the
timestamps from the camera and the onboard GNSS on the copter. Afterward a full structure from
motion (SfM) workflow was performed using the commercial Agisoft Photoscan software (v. 1.3.4,
2017), including image matching, block adjustment, dense point cloud generation, digital surface model
(DSM) and orthomosaic generation. The resolution of the raw images was lowered by a magnitude of
four (1/16th of the original pixel count) before dense point cloud generation to save computing time
(see Frey et al., 2018 for a detailed description of the processing).

The LidR package [53] in R [54] was used for further evaluation of point clouds. We used a DTM
from previous state-wide LiDAR flights (LGL, 2000-2005) with 1 m resolution to normalize the terrain
heights (lasnormalize-function) and clip (lasclip-function) the point cloud to the plot borders. Next,
the lasmetrics-function was used to compute various summary statistics (Table 1).

The DSM of each plot was imported to a PostgreSQL database (v. 9.6; Group and others, 2011),
clipped with the plot borders and normalized with the previously mentioned DTM. Summary statistics
were computed using the PostGIS (v 2.3.3; [55]) functions st_summarystats, st_tri and st_quantile
(Table 1).

2.6. Processing of Data Obtained by the TLS

The raw data from the scanner (Figure 3) was transferred to Faro Scene (v 6.2.4.30) and noise was
removed by applying the standard outlier removal with default parameters. All further processing
was done in R (version 3.5.0, [54]). After normalizing the point clouds using the previously mentioned
DTM, we applied various summary statistics (Table 1) from the literature. These included indices based
on 10 cm® voxels such as the Effective Number of Layers (ENL; [56]), and basic statistical measures to
describe the point heights distribution derived from the DTM normalized point cloud.

An additional category of indices was used to quantify the complexity of distribution of points in
3D space like the Stand Structural Complexity Index (SSCI; [56]). This index is the ratio between the
perimeter and area of a polygon constructed from a single cross section from the scanner as a measure
of spatial complexity [4]. It averages over all cross sections (scan stripes) that the scanner measures
during a full 360° scan. This dimensionless measure of complexity (MFRAC) is afterwards scaled
using the natural logarithm of the ENL (Equation (1); [4]):

SSCI = MFRACM(ENL) 1)

2.7. Terrain Information

A LiDAR-based DTM with 1 m resolution was available based on data from the responsible
federal authorities [57]. From this DTM the average altitude of each plot was extracted. For every
cell the slope was calculated and averaged over the plot. The aspect was calculated based on the four
corners of the plot. All calculations were accomplished using PostGIS functions [55].

2.8. Statistical Analyses

Many common forest variables can be extracted from TLS-data [58,59], yet certain methods are
only applicable to single-layer stands with relatively uniform tree distributions. The influence of
common forest attributes on TreMs has been researched and the prediction based on this information
is well established [44,47]. We build models including the derived RS parameters as predictors for
TreM abundance and richness.
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Table 1. Summary of the included remote sensing variables from UAV and TLS measurements included in the statistical analyses.

7 of 20

Predictor Description Formula Ref.
UAV-NDSM . .
NDSM. Mean Mean vegetation height NDSMyeqn = mean(DSM — DTM)
NDSM_SD Standard deviance of the NDSM
NDSM_TRI Mean NDSM terrain ruggedness mde)_( (mear? difference of a central pixel to its [60]
surrounding 8 pixels)
Gap_Share Proportion of the area with vegetation lower than 2 m. [50]
UAV ng teloud Point-density measured in pt/m?
PR Penetration-rate—share of points in the below 1 m strata.
UAV and TLS point cloud Vertical complexity index. Normalized Shannon index on points in 1 m height bins 40
VCI with a maximum height of 40 m Vel = (- El( [pi In(pi)])) / In(40) (o1l
Z_Kurt kurtosis of height distribution [53]
Z_Mean mean height [53]
Z_Max maximum height [53]
Z_SD standard deviation of height distribution [53]
Z_Skew skewness of height distribution [53]
zQ10 ... zQ90 Height quantiles of normalized point clouds in 40% steps
TLS point cloud Mean fractal dimension index from all cross sections (vertical scanning columns) of MFRAC — 2411(0.25+P) (4]
MEFRAC the TLS scan. Index includes perimeter (P) and area (A) of the cross sections. - mean( In(A) )
ENL Effective number of layers d?scribes Fhe diversity between the forest strata using an ENL =1/ ng 2 [56]
inverse Simpson index and a voxel approach Fall
SSCI Stand structural complexity index combines MFRAC with ENL as scaling factor SSCI = MFRAC!M(ENL) [4]
Mean_Dist Mean measurement distance of the scanner.
DTM . .
Altitude Mean, max, min plot altitude
Slope Mean, max, min plot slope

Aspect

Plot orientation in divergence from north
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As a first step, we tested all predictors for collinearity using a correlation plot. Since several of
the predictor variables are strongly collinear related we used a principal component analyses (PCA)
to combine the predictors into a smaller set of independent components. We selected components
to cover 90% of the variance of the original predictors. In the case this resulted in eleven principal
components (PC), which were used as new predictor variables in the final statistical analyzes. With
this setup, we followed the procedure described in Ciuti et al. [21]. To account for possible nonlinear
relationships between the predictors and the response we used generalized additive models (GAMs).
GAMs combine General Linear Models with smoothing splines, thereby allowing to fit the response
curves as closely as possible to the data, within a permitted level of smoothing. The smoothing
function avoids that the flexible model structure over-fits the data. GAMs with cubic splines and
shrinkage (method = ‘REML’), conducted in the R MGCV package were used to fit one model for
TreM-richness with poisson error distribution and one for TreM-abundance with negative binomial
error distribution (R version 3.5.0, [54]). To gain a better understanding of the factors that drive the
abundance and richness of TreMs we correlated the original predictors with the PCs to see which
had the most significant influence using the dimdesc function in the FactorMineR package in R [62].
We repeated the modelling steps for single sensor datasets (UAV or TLS) to verify that the models
improve from the combinations of sensors. The predictive performance of the models for abundance
and richness including both sensors was additionally checked using a 1000 fold cross validation, while
leaving % of the data as test dataset out each time. Models were fitted excluding the test data (training
dataset) and we predicted the response values for training and test dataset separately and compared
the root mean squared errors (RMSE) over the 1000 repetitions using a t-test.

3. Results

We were able to efficiently reduce the number of predictor variables using the PCA from 28 to
eleven predictors while still covering more than 90% of the explained variance of the original predictors
according to the PCA. The resulting models described 44.3% of the deviance of TreM abundance (R%:
0.31) and 37.8% of the richness (R%: 0.31). Five of the PCs had a significant influence on the TreM
abundance and four on the richness. These are described in Table 2 in more detail.

The significant PCs cover a wide range of variables including those describing the height variations
of the point cloud and therefore the horizontal layer complexity (PC2), the canopy complexity and
height (PC3), the terrain slope (PC4), the shape complexity (PC6) as well as the terrain altitude (PC10),
according to the correlations between the variables and the PCs (Table 2).

Results of the prediction compared with the observed TreMs (Figure 4) show that the prediction
underestimates the abundances and richness of TreMs in plots which provide greater numbers of TreMs.
In contrast, in plots with few TreMs the model overestimates slightly. There are less observations
of plots with a high and a low abundance and richness of TreMs compared to the medium level of
TreM provisioning.
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Table 2. Statistical significant principal components (p-values: * < 0.05, ** < 0.01, *** < 0.001) according
to the GAMs and their most important influencing variables based on the correlation between the PC
and the predictor calculated by the dimdesc function from the factominer package [62].

Principal

Most Influencing Predictor Variables

Component Significant For (Correlation) Description
UAV Z SD (0.87)
PC2 Abundance *** UAV NDSM SD (0.77) Horizontal layer
TLS mean dist. (-0.28) complexity
Richness *** UAV zQ10 (-0.61)
UAV Gap share (0.56)
UAV PR (0.43) Canopy complexity
*
PCs Abundance UAV z Mean (-0.51) & canopy height
NDSM Mean (-0.60)
Max Slope (0.68)
PCa Abundance * Min Slope (0.63) Slope & point
Richness *** TLS zQ10 (-0.33) cloud density
tehness AV PD (~0.72)
Abundance ** UAV PR (0.44)
PCoé TLS S5CI (0.39) Shape complexity
Richness ** Max Slope (—0.40)
Min. Slope (-0.42)
Avg Altitude (0.51)
P10 Abundance *** UAV VCI (0.35) Terrain altitude &
Rich . UAV TRI (-0.23) slope
reness Min Slope (-0.33)
(a) (b)
8'0 1&0 ; 11) 1‘5 ;D

TreM abundance

TreM richness

Figure 4. Observed vs. predicted abundance (a) and richness (b) of tree-related microhabitats. The
predicted TreM abundance and richness (y-axes) is compared with the observed one (x-axes). The 1:1
lines are displayed in light grey, while the trend-lines are black and have a fixed intercept of 0. The

whiskers show the 95% confidence interval of the prediction.

The cross validation showed no significant differences between the RMSEs of the training and test
datasets neither for abundance (p: 0.23) nor for richness (p: 0.51). Figure 5 shows the mean RMSE over
the number of cross validations.
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Figure 5. Results of the cross validation. Straight lines indicate the mean RMSE of the training data
and dotted lines of the test data as cumulative mean up to the specific test (all RMSEs averaged until
n-test). The left panel shows the results for TreM abundance, the right panel for TreM richness.

The model that contained only data collected by UAV performed a little better for the TreM
abundance prediction (+6% deviance explained), while the model that contained data collected by TLS
predicted the TreM richness slightly better (+4% deviance explained). The models containing both
sensors explained on average 4% more deviance than the single sensor datasets.

4. Discussion

The models were able to explain between 44% and 38% of the deviance in abundance and richness
of tree-related microhabitats respectively based on close-range remote sensing parameters. The selected
remote sensing data, therefore, allows a moderate prediction of the occurrence of TreMs in forests. This
analysis helps to clarify which forest structural variables derived from remote sensing are related to
TreMs. Through our results guidance for the selection of areas with high quality habitat trees based on
measures of forest structure derived from close-range remote sensing can be established.

Forest structure could be described by two dimensions in our models taken from the PCA
that significantly predicted the abundance and richness of TreMs. One of the dimensions could be
summarized as indication of canopy complexity and height expressed by PC3 which relate to gaps
in the canopy. It is known that gaps are related to forest biodiversity [63] and the size influences
forest dwelling species, for instance ants [64] which are in turn related to TreMs. In addition remote
sensing techniques have been used to detect habitat thresholds for indicator species as the three-toed
woodpecker (Picoides tridactylus) based on canopy properties such as the amount of deadwood crown
size [19], which will eventually result in canopy gaps and points in a similar direction as our results.
Therefore, we could suggest to focus selection activities of habitat trees to forest areas with a certain
degree of gaps in the canopy. Similarly, a second dimension of the PCA (PC2) could be summarized
as a description of the horizontal layer complexity. One group of TreMs that is relatively great in
abundance in our study area and particularly influenced by the canopy structure are epiphytes [65,66].
This might to some extent reflect why the canopy structure influences both the abundance and richness
of TreMs.

From a more technical point of view, the penetration rate and shape complexity expressed by the
SSCI are as well significant in the prediction of the abundance and richness of TreMs (PC6). Here,
we might refer to the importance of large trees per se that shape the structure of the forest [67,68]
and especially relate to the extent of buttressing as well as the occurrence of cavities. Another reason
why shape complexity recorded by remote sensing and expressed as the SSCI index influences the
abundance and richness of TreMs might refer to tree species richness [56]. Forests with a more
diverse tree species composition commonly show a more complex structure, especially if the applied
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silvicultural system is close-to-nature forest management [46]. Thus, the factor explaining the relation
of shape complexity and TreMs might be a well-known complementary effect of tree species mixtures
related to forest type, an effect especially meaningful for TreM richness [44,69]. This includes the
fact that forest types including broadleaved trees provide a higher abundance and richness of TreMs
compared to less complex coniferous forest types [44,69]. The influence of mixtures including especially
broadleaf tree species, and in our case larger shares of beech, increase the abundance and richness of
TreMs as well as the shape complexity of the inventoried forests [44,47].

Other factors that were included in the axes of the PCA as significant predictors refer to geographic
particularities of the study area in the Black Forest. It has been shown that altitude measured in the
field increases the number of TreMs per plot [44], this similarly and not surprisingly holds true for the
altitude derived from RS (PC10). We assume that this increase of TreMs in higher elevations is related
to disturbances that differ from lower elevations such as longer periods of snow cover, with snow
and substrate movements creating injuries at lower stem sections as well as differences in substrate
e.g., less humus that allows the formation of a greater number of buttress cavities [44]. In addition
to altitude, the slope of the plots was included as a principal component that significantly predicts
the abundance and richness of TreMs (PC4). On steeper slopes, less intense management took place
due to harvesting difficulties [70], hence more broadleaved trees remained compared to less steep and
intensively managed areas dominated by the main commercial coniferous species Norway spruce and
silver fir. Therefore, more TreMs can be found on steeper slopes as trees with TreMs that could be
considered as “defects” for timber production are not removed as rigorous as in less steep terrain.

The relatively low importance of stand height to TreM abundance was surprising, since the
occurrence of TreMs has been shown to correlate with forest age and DBH, which is correlated with the
stand height [47]. Two factors might address this result, both related to the study design. First, the
TreM sampling approach was based on the 15 trees with the largest crown radius, instead of a full
census of all trees in the plots. In the majority of instances, these large living trees were in the top
canopy layer and thus had a similar height distribution per plot. Therefore, the overall vegetation
height in our plots was relatively uniform and thus not a strong descriptor of TreM abundance and
richness. Secondly, the plots in our data set are relatively homogenous: the project design selected
plots with tree ages above 60 years, and many of the plots were previously managed. We expect
vegetation height being a better descriptor for TreMs in more variable forest structures since there is a
positive relationship between DBH and TreM abundance and richness [47,71,72].

A further limitation of the study design was that the TLS sampling used only one scan at the
center of the research plot and did not cover the full area of the plot, due to heavy occlusion effects [73].
A design with multiple scan locations might have covered the plot better, however Ehbrecht et al. [56]
have shown for the ENL index as structural descriptor, that single scans are representative for a
stand, which should be valid for other stand characteristics as well. Single scans require far less effort
than multiple scans. This holds not just true during the scanning phase, but as well in the following
processing steps, as the labor-intensive target placement and matching is not required. It might still be
very helpful in the future and a further step towards a more efficient and objective selection of habitat
trees, to scan individual trees on a 360° angle. This might as well allow a full detection of TreMs on each
individual tree, which was not the research aim of this particular study. In situations with very dense
undergrowth matching might not even been feasible. These points apply as well to the TreM inventory,
since sampling all trees would be extremely time consuming. Earlier studies have shown that the 15
largest trees cover most of the variance of TreM richness and abundance (80%) in the plot [44]. The
UAV-5fM dataset is easily recordable for the whole plot, but the positioning was suboptimal, which
makes all the datasets only comparable to a limited extend. Nevertheless, all applied techniques
sample the stand in a specific manner for a certain goal and create a limited, but representative model
of the stand with an acceptable effort. The great number of plots and their distribution in the landscape
required a very efficient sampling design, which is time-effective as well. Further advances in sensor
technologies with very dense aerial or UAV LiDAR might overcome these shortcomings of incomplete



Remote Sens. 2020, 12, 867 12 of 20

representation of the geometry of the stand and make new structural indices or the full detection
of TreMs possible [38,74]. The sampling effort of the different methods (manual inventories, UAV,
mobile or terrestrial RS) differs strongly. While currently terrestrial and manual inventories might
take multiple hours per ha, UAV systems can cover a similar area within 10-20 min. Mobile scanning
systems and advances in UAV technology might lower the sampling effort even further [74].

Another limitation of our study, which may explain the weak link between some measurements
of forest complexity or structure, was the absence of old-growth forests in our research site. Despite
the inclusion of some strict reserves and other protected areas in the study, most plots are located in
forests that are managed or where the structure is still strongly influenced by previous management. It
is possible that old-growth forests will show a stronger link between the present RS indices and TreM
assessments for structural elements affecting forest biodiversity [39,43].

While different RS- and TreM-based studies have shown promising results for the quantification
of diversity of different taxa [1,3,13,38], their potential as combined descriptors of biodiversity had not
yet been researched. As technical progress advances, new options for the detection of particular TreMs
at very fine scales will become available [38], and information on the most applicable set of predictors
can help to identify the most objective, cost and time efficient inventory methods for the selection of
key retention elements as habitat trees for forest biodiversity.

5. Conclusions

This study detected several relationships between measures of structural complexity and the
abundance and richness of TreMs in the southern Black Forest. Most notably, structural indices that
can be derived from data collected by combination of UAV and TLS, are related to the abundance and
richness of TreMs. This supports our ecological understanding of structural complexity as significant
driver of the provisioning of TreMs at the plot-level. The RS techniques offer a complementary approach
for identifying relevant predictors of forest structures that provide a high abundance and richness
of TreMs and thus facilitate the selection of retention elements such as habitat trees beyond the level
of single-species information. None of the proposed models alone might be able to predict TreMs
sufficiently for a habitat tree selection based on RS only, but our results offer new evidence for forest
biodiversity conservation. This might for instance apply to a pre-selection of areas of retention interest,
where habitat trees can be found in greater numbers and quality based on the prediction of a higher
abundance and richness of TreMs. In these patches that offer a more complex fine-scale forest structure
described by RS, more individuals suitable as habitat trees might be found.
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Appendix A

Table A1. Microhabitat type, detailed description and number of records from microhabitat inventory.

Microhabitat Type Code Description N
Bark BA11 Bark shelter, open bottom 26
Bark BA12 Bark pocket, open top 10
Woodpecker cavity Ccvil Cavity entrance about @ =4 cm 2
Woodpecker cavity CV12 Cavity entrance about o = 5-6 cm w 9
Woodpecker cavity CV13 o > 10 cm Woodpecker hole in the trunk 6
Woodpecker cavity CV14 @ > 10 cm feeding hole 13
Woodpecker cavity CV15 Woodpecker “flute”/cavity string 6
Trunk/ mould cavity Cv21 @ > 10 cm (ground contact) 14
Trunk/mould cavity Cv22 @ > 30 cm (ground contact) 13
Trunk/mould cavity Cv23 @ > 10 cm (no ground contact) 21
Trunk/mould cavity Cv24 o 2 30 cm (no ground contact) 11
Trunk/mould cavity CV25 o 2 30 cm/semi-open 4
Trunk/mould cavity CV26 @ > 30 cm/open top 0
Branch hole CV32 @ > 10 cm holes from breakage 39
Branch hole CV33 Hollow branch, o > 10 cm 133
Dendrotelm Cv42 @ > 15 cm/trunk base 11
Dendrotelm CV44 @ > 15 cm/crown 6
Insect gallery/bore holes CV51 Gallery with single small bore holes 4
Insect gallery/bore holes CV52 Large bore hole 1
Dead branch DE11 2 10-20 cm, > 50 cm, sun exposed 125
Dead branch DE12 @ > 20 cm, > 50 cm, sun exposed 7
Dead branch DE13 0 10-20 cm, > 50 cm, not sun exposed 231
Dead branch DE14 o > 20 cm, > 50 cm, not sun exposed 21
Dead branch DE15 Dead top o > 10 cm 12
Fungi fruiting body EP11 Annual polypores, o > 5 cm 2
Fungi fruiting body EP12 Perennial polypores, o > 10 cm 4
Fungi fruiting body EP13 Pulpy agaric, o > 5 cm 4
Fungi fruiting body EP14 Large ascomycetes, o > 5 cm 0
Myxomycetes EP21 Myxomycetes, o > 5 cm 1
Epiphyte EP31 Epiphytic bryophytes, >25% trunk 311
Epiphyte EP32 Epiphytic foliose/lichens, >25% trunk 387
Epiphyte EP33 Lianas, coverage >25%, 16
Epiphyte EP34 Epiphytic ferns, >5 fronds 5
Epiphyte EP35 Mistletoe in tree crown 275
Root buttress cavity GR12 @ > 10 cm, natural cavity 956
Root buttress cavity GR13 Trunk cleavage, length > 30 cm 11
Witches broom GR21 Witches broom, & > 50 cm 72
Witches broom GR22 Water sprout, dense epicormics 6
Canker or burr GR31 Cancerous growth, g > 20 cm 14
Canker and burr GR32 Decayed canker, & > 20 cm 25
Bark loss IN11 Bark loss 25-600 cm?, decay stage < 3 255
Bark loss IN12 Bark loss > 600 cm?, decay stage < 3 63
Bark loss IN13 Bark loss 25-600 cm?, decay stage = 3 24
Bark loss IN14 Bark loss > 600 cm?, decay stage = 3 23
Exposed heartwood IN21 Broken trunk, ¢ > 20 cm at broken end 5
Exposed heartwood IN22 Broken tree crown/fork 11
Exposed heartwood IN23 Broken limb, & > 20 cm at broken end 19
Exposed heartwood IN24 Splintered stem, & > 20 cm 0
Crack or scar IN31 Length > 30 cm 15
Crack or scar IN32 Length > 100 cm 13
Crack or scar IN33 Lightning scar 2
Crack or scar IN34 Fire scar, >600 cm? 0
Nest NE11 Large vertebrate nest, o > 80 cm 2
Nest NE12 Small vertebrate nest, o > 10 cm 40
Nest NE21 Invertebrate nests in trunk 0
Sap and resin run OT11 Sap flow, >50 cm, fresh, deciduous 0
Sap and resin run OT12 Resin flow/pockets, >50 cm, coniferous 542
Micro soil OT21 Crown micro soil 9
Micro soil OT22 Bark micro soil 11
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Table A2. Overview of the plots inventoried including DBH, microhabitat abundance and richness, altitude, management type as well as forest type.

Plot Mean DBH (cm) (SD) Microhabitat Abundance Microhabitat Richness Altitude (m) Management Forest Type

1 66.1 (19.7) 99 21 1247 Strict-protection Coniferous-broadleaved
2 53.1 (20.8) 49 16 873 Uneven-aged Mixed-coniferous

3 66.7 (17.2) 73 19 1226 Strict-protection Coniferous-broadleaved
5 69.5 (21.3) 44 14 806 Even-aged Coniferous-broadleaved
7 43.5 (13.2) 47 14 1334 Strict-protection Coniferous-broadleaved
8 42.6 (10.1) 35 7 1295 Mixed Management Coniferous-broadleaved
9 55.4 (12.9) 34 10 716 Even-aged Coniferous-broadleaved
10 69.9 (16.4) 45 11 713 Strict-protection Coniferous-broadleaved
11 50.8 (9.4) 25 8 904 Mixed Management Mixed-coniferous

14 57.8 (13.6) 21 10 512 Even-aged Coniferous-broadleaved
15 70.6 (11.5) 59 13 1069 Even-aged Coniferous-broadleaved
16 82.2(23.2) 141 23 947 Even-aged Coniferous-broadleaved
17 61.4(9.1) 71 9 1069 Even-aged Pure-coniferous

18 69.5 (14.3) 72 6 947 Even-aged Mixed-coniferous

19 57.2 (11.4) 72 16 1014 Even-aged Coniferous-broadleaved
20 59.6 (9.9) 52 8 992 Even-aged Mixed-coniferous

21 52.2 (10.8) 53 11 1088 Even-aged Coniferous-broadleaved
22 48.7 (10.6) 17 6 715 Even-aged Coniferous-broadleaved
28 70.0 (11.6) 53 16 1026 Even-aged Coniferous-broadleaved
30 58.6 (9.4) 11 4 510 Even-aged Coniferous-broadleaved
31 43.6 (7.2) 21 10 541 Even-aged Coniferous-broadleaved
33 53.5 (13.7) 39 9 985 Even-aged Mixed-coniferous

34 43.3 (7.2) 32 7 928 Even-aged Pure-coniferous

35 54.4 (5.5) 66 9 533 Even-aged Coniferous-broadleaved
36 449 (7.3) 34 6 1050 Even-aged Pure-coniferous

37 58.1 (8.2) 81 13 1056 Even-aged Coniferous-broadleaved
38 49.2 (14.2) 30 9 904 Even-aged Mixed-coniferous

39 66.3 (15.6) 76 13 649 Even-aged Coniferous-broadleaved
44 61.3 (7.8) 35 10 835 Mixed Management Coniferous-broadleaved
45 54.0 (10.8) 34 8 587 Even-aged Coniferous-broadleaved
47 53.9 (19.3) 73 15 744 Even-aged Coniferous-broadleaved
48 54.7 (17.3) 52 13 704 Even-aged Coniferous-broadleaved
50 77.9 (18.5) 86 13 775 Uneven-aged Mixed-coniferous

53 64.2 (12.9) 36 6 950 Uneven-aged Mixed-coniferous

54 44.3 (21.1) 16 11 734 Even-aged Coniferous-broadleaved
55 58.4 (11.7) 32 10 767 Mixed Management Coniferous-broadleaved
56 53.1(7.5) 28 11 443 Mixed Management Coniferous-broadleaved
57 58.7 (9.0) 41 10 640 Even-aged Coniferous-broadleaved

14 of 20
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Table A2. Cont.

Plot Mean DBH (cm) (SD) Microhabitat Abundance Microhabitat Richness Altitude (m) Management Forest Type

58 40.4 (20.9) 20 11 694 Mixed Management Coniferous-broadleaved
59 36.9 (10.0) 16 6 634 Even-aged Mixed-coniferous

60 56.9 (21.9) 29 13 613 Even-aged Mixed-coniferous

61 50.6 (8.0) 24 6 515 Even-aged Coniferous-broadleaved
63 56.7 (14.5) 37 9 566 Even-aged Coniferous-broadleaved
64 48.8 (14.7) 49 15 717 Even-aged Coniferous-broadleaved
65 404 (16.8) 12 6 684 Even-aged Mixed-coniferous

67 494 (11.1) 18 7 740 Even-aged Mixed-coniferous

68 40.4 (18.3) 5 3 792 Even-aged Coniferous-broadleaved
69 64.4 (15.9) 43 10 794 Even-aged Mixed-coniferous

71 45.7 (6.4) 18 5 678 Even-aged Mixed-coniferous

72 51.6 (15.0) 25 4 713 Even-aged Mixed-coniferous

73 62.5 (18.0) 35 10 871 Uneven-aged Coniferous-broadleaved
75 45.5 (11.6) 36 13 885 Even-aged Coniferous-broadleaved
76 53.3 (7.4) 39 13 504 Even-aged Coniferous-broadleaved
77 39.9 (6.1) 17 5 778 Even-aged Mixed-coniferous

78 61.7 (19.8) 67 20 697 Mixed Management Coniferous-broadleaved
79 63.2 (13.4) 64 16 922 Even-aged Mixed-coniferous

83 48.6 (5.4) 61 10 971 Even-aged Coniferous-broadleaved
84 71.3 (12.8) 45 11 754 Even-aged Mixed-coniferous

85 53.5 (13.8) 28 12 769 Even-aged Mixed-coniferous

86 45.2 (4.2) 24 5 713 Even-aged Coniferous-broadleaved
87 49.3 (10.9) 76 6 1018 Even-aged Coniferous-broadleaved
89 74.9 (10.4) 28 9 701 Even-aged Mixed-coniferous

91 64.9 (17.7) 72 15 1082 Even-aged Coniferous-broadleaved
93 64.8 (16.0) 46 14 665 Strict-protection Coniferous-broadleaved
94 47.8 (14.9) 27 12 1000 Even-aged Coniferous-broadleaved
96 45.3 (9.0) 33 10 750 Uneven-aged Coniferous-broadleaved
98 54.9 (8.2) 60 9 1120 Uneven-aged Mixed-coniferous
101 74.7 (13.6) 40 10 986 Uneven-aged Mixed-coniferous
102 52.3 (14.2) 16 6 877 Even-aged Mixed-coniferous
103 41.3 (9.9) 17 6 841 Even-aged Coniferous-broadleaved
104 49.1 (12.5) 37 14 580 Mixed Management Coniferous-broadleaved
105 55.5(9.0) 26 10 833 Even-aged Coniferous-broadleaved
106 52.4 (16.8) 27 10 774 Even-aged Coniferous-broadleaved
107 53.0 (16.8) 38 10 733 Even-aged Mixed-coniferous
108 53.3 (10.2) 25 8 1126 Uneven-aged Mixed-coniferous

15 of 20
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Table A2. Cont.

Plot Mean DBH (cm) (SD) Microhabitat Abundance Microhabitat Richness Altitude (m) Management Forest Type

109 63.5(7.3) 47 12 888 Uneven-aged Coniferous-broadleaved
110 43.3 (11.4) 36 7 930 Even-aged Coniferous-broadleaved
111 60.6 (15.2) 58 12 682 Even-aged Coniferous-broadleaved
113 419 (74) 32 4 1160 Even-aged Coniferous-broadleaved
114 76.6 (11.6) 48 12 516 Even-aged Mixed-coniferous
117 52.8 (14.3) 23 13 857 Even-aged Mixed-coniferous
118 76.8 (11.8) 77 19 657 Uneven-aged Coniferous-broadleaved
119 67.2 (17.6) 48 16 887 Uneven-aged Coniferous-broadleaved
121 56.2 (7.7) 29 12 632 Even-aged Coniferous-broadleaved
122 56.0 (14.7) 30 13 527 Even-aged Coniferous-broadleaved
123 53.4 (6.8) 38 9 646 Even-aged Mixed-coniferous
124 52.6 (12.8) 35 10 929 Mixed Management Coniferous-broadleaved
125 48.5(13.2) 31 12 533 Even-aged Coniferous-broadleaved
127 59.8 (9.6) 23 8 516 Even-aged Mixed-coniferous
128 53.9 (12.1) 63 18 982 Even-aged Coniferous-broadleaved
129 69.1 (12.8) 88 22 549 Even-aged Coniferous-broadleaved
130 59.5 (11.2) 60 17 978 Even-aged Coniferous-broadleaved
131 59.7 (12.0) 84 10 1033 Even-aged Pure-coniferous

132 45.6 (5.7) 13 6 862 Mixed Management Mixed-coniferous
133 63.8 (10.0) 80 23 743 Mixed Management Coniferous-broadleaved
134 53.5 (12.2) 18 8 898 Even-aged Mixed-coniferous
135 44.2 (7.0) 22 7 569 Uneven-aged Mixed-coniferous
137 66.5 (11.0) 25 7 815 Uneven-aged Mixed-coniferous
138 55.8 (7.3) 34 6 853 Uneven-aged Mixed-coniferous
140 49.7 (14.4) 8 5 744 Even-aged Mixed-coniferous
148 54.9 (23.0) 29 7 831 Even-aged Coniferous-broadleaved
151 60.9 (10.2) 20 5 851 Even-aged Mixed-coniferous
156 54.8 (12.9) 29 9 797 Even-aged Coniferous-broadleaved
165 449 (12.1) 28 8 924 Even-aged Coniferous-broadleaved
167 42.2(7.1) 12 3 813 Even-aged Mixed-coniferous
176 48.6 (7.7) 27 7 749 Even-aged Mixed-coniferous
177 47.4 (6.8) 29 6 972 Even-aged Pure-coniferous

178 49.9 (25.7) 36 14 663 Strict-protection Coniferous-broadleaved
179 50.3 (11.0) 23 10 1003 Even-aged Mixed-coniferous
181 58.9 (16.0) 31 7 903 Mixed Management Coniferous-broadleaved
186 38.0(8.1) 22 11 787 Even-aged Coniferous-broadleaved

16 of 20
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