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Abstract: The ionospheric delay is of paramount importance to radio communication, satellite
navigation and positioning. It is necessary to predict high-accuracy ionospheric peak parameters for
single frequency receivers. In this study, the state-of-the-art artificial neural network (ANN) technique
optimized by the genetic algorithm is used to develop global ionospheric models for predicting
foF2 and hmF2. The models are based on long-term multiple measurements including ionospheric
peak frequency model (GIPFM) and global ionospheric peak height model (GIPHM). Predictions
of the GIPFM and GIPHM are compared with the International Reference Ionosphere (IRI) model
in 2009 and 2013 respectively. This comparison shows that the root-mean-square errors (RMSEs) of
GIPFM are 0.82 MHz and 0.71 MHz in 2013 and 2009, respectively. This result is about 20%–35%
lower than that of IRI. Additionally, the corresponding hmF2 median errors of GIPHM are 20% to
30% smaller than that of IRI. Furthermore, the ANN models present a good capability to capture the
global or regional ionospheric spatial-temporal characteristics, e.g., the equatorial ionization anomaly
and Weddell Sea anomaly. The study shows that the ANN-based model has a better agreement to
reference value than the IRI model, not only along the Greenwich meridian, but also on a global
scale. The approach proposed in this study has the potential to be a new three-dimensional electron
density model combined with the inclusion of the upcoming Constellation Observing System for
Meteorology, Ionosphere and Climate (COSMIC-2) data.

Keywords: artificial neural network; ionospheric model; genetic algorithm; foF2 and hmF2; COSMIC
and ionosonde

1. Introduction

The F2 layer (roughly 150–500 km above the ground) is the most important ionospheric layer,
especially during the solar-terrestrial quiet time. This layer is populated by huge numbers of ions
and electrons under the dynamic equilibrium condition [1]. The critical frequency of F2 layer (foF2)
and its corresponding peak height (hmF2) are the common parameters to represent ionospheric
variations. These two parameters play a significant role in the long-distance high-frequency (HF) radio
communications since the critical frequency determines the maximum usable frequency according to
the electromagnetic theory [2]. The importance of foF2 in the HF radio communication field has driven
the development of many ionospheric and HF radio propagation models. With the advancements of
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space-borne and ground-based instruments and data processed techniques, more attention has been
paid to the development and improvement of these ionospheric models [3].

In the previous studies, the artificial neural network (ANN), nonlinear least squares and AdaBoost
techniques have been used to predict ionospheric variations with a satisfactory accuracy [4–7]. Among
them, the ANN technique has proven to be a successful tool in the modeling of ionospheric variations
as well as solving the forecast problems in many geophysical applications over a single station, regional
area and global scale [3,8–10]. The neural network was first applied to build the foF2 model over the
Grahamstown station (33◦S, 26◦E) using the data range set of 1973–1983 [11]. This model can predict the
daily noon foF2 value with a root-mean-square error (RMSE) of 0.95 MHz and the monthly averaged
RMSE value was 0.48 MHz. Afterward, this approach has been widely applied in the Asia/Pacific
sector [5], equatorial region [12], European region [13] and the auroral zone [14]. These studies showed
an improvement in the accuracy of the ANN-based models over the International Reference Ionosphere
(IRI) model.

With the advancement of data acquisition, more ionospheric measurements have become available
for the global modelling of foF2. For instance, Oyeyemi et al. [15] used the foF2 data from 59 globally
distributed ionospheric stations to establish the ANN-based prediction model NN2; the RMSE values
of NN2 is better than the International Radio Consultative Committee (CCIR) model by an order of
15–16%. In the past few decades, the Global Navigation Satellite System (GNSS) radio occultation
technique showed its potential to be a powerful tool in probing the ionospheric electron density over
the globe [16]. Until now, the CHAMP (Challenging Minisatellite Payload), GRACE (Gravity Recovery
and Climate Experiment) and COSMIC (Constellation Observing System for Meteorology, Ionosphere
and Climate) satellite missions have collected millions of ionospheric profiles, which include the
three-dimensional structure of electron density with unprecedented detail [6].

The combination of space-borne and ground-based ionospheric measurements opens a new way
to ionospheric modelling with higher accuracy. A good example is the ANN-Based Ionospheric Model
(ANNIM) developed by Tulasi Ram et al. [17]. This model was fed by multiple data from CHAMP,
GRACE, COSMIC and global ground-based digisonde stations, which are first binned into 840 spatial
grids with a spatial resolution of 5◦ in dip latitude and 15◦ in geographic longitude. A neural network
is then trained at each grid using the error back-propagation algorithm. Their results presented the
outperformance of ANNIM in the IRI model: the RMSE values of peak electron density (NmF2) in
solar maximum year 2002 and solar minimum year 2009 are 3.4 × 105 electrons/cm3 and 1.5 × 105

electrons/cm3, respectively, and the corresponding RMSE values of hmF2 in 2002 and 2009 are 29 km
and 25 km, respectively. The accuracy of ANNIM has a great increasing potential, which is related to
the discrepancy between the measurements obtained from different observational carriers.

Many previous studies have revealed a discrepancy of the peak parameters between the COSMIC
and ionosonde observations over the European region [18], Australia [19], Brazilian region [20] and
China [21]. The discrepancy is dependent on local time, latitude and solar activity, especially in the
equator and polar region, the correlation coefficient between COSMIC measurement and ionosonde
observations is smaller than 0.8 sometimes. Therefore, the discrepancy between different source data
should be corrected before establishing the ionospheric model for higher accuracy.

This paper is structured as follows. The discrepancy between COSMIC data and ionosonde
measurements was first corrected, and the quality of electron density profiles and ionosonde
observational points were evaluated for quality control. Then the data after the quality control
were trained to develop a global ANN-based ionospheric model predicting foF2 and hmF2. To avoid
the “local minimum” effect in the traditional neural network applications, the initial weights of the
artificial neural network were optimized by the genetic algorithm. In addition, the new ANN model
developed in this paper was validated with reference values and the IRI model to evaluate the models’
performance and its capability/capacity in capturing global ionospheric spatial-temporal characteristics.
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2. Materials and Methods

2.1. Materials

In the study, the global distributed ionospheric electron density profiles obtained from the
FORMOSAT-3/COSMIC mission and the observations derived from global ionosonde stations during
2007–2016 were used to build the ionospheric models for predicting foF2 and hmF2. The COSMIC
profiles were provided by the University Corporation for Atmospheric Research (UCAR) community
programs (https://www.cosmic.ucar.edu/), and the ionosonde measurements were supplied from the
Digisonde Global Ionosphere Radio Observatory (GIRO) (http://giro.uml.edu/didbase/scaled.php),
as shown in Figure 1. Figure 1a shows the daily variation of 10.7 cm solar flux (F10.7) during
2007–2016; the solar activity during 2007–2010 was relatively low, and the intensity increased from
2011 to 2014 with the maximum value of 250SFU. Figure 1b shows the number of COSMIC profiles
each month selected in the study; during 2007–2010, the COSMIC constellation provided about 2000
uniformly distributed electron density profiles per day globally. Because of the operational failure
of some microsatellites, the number of GNSS radio occultations gradually decreased from 2011 to
2016 (http://cdaac-www.cosmic.ucar.edu/cdaac/index.html). Figure 1c shows the number of ionosonde
observations each month obtained from GIRO network in the same time range, and the 108 stations
used in the work distribute in the subfigure of Figure 1c. With the increase of the Digisonde in
the global, the Digisonde observations were increasing steadily from 2007 to 2016. It is noted that
the COSMIC occultation only measured peak density directly, rather than peak frequency, the two
parameters can be transformed as follows [22]:

NmF2 = 1.24× 1010
× ( f oF2)2 (1)
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Figure 1. Daily averaged F10.7 and the numbers of COSMIC and ionosonde measurements per month
during 2007–2016.

In the initial stage of data processing, all the observational data should be checked for quality
control. For COSMIC profiles, the measured profiles were simulated by Chapman-α function [23], and
the correlation coefficients between measured profiles and simulated profiles were computed. The
measured profiles with a correlation coefficient of less than 0.85 were removed in the quality control
process. For ionosonde data, the observations that exceeded the bounds determined by mean ± 1.5
times the standard deviation were eliminated [24]. After the process of quality control, the rate of
qualified samples was about 85%. In addition, the parameters that represented the solar-terrestrial
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environment were also used as the input data of neural network; here, the parameters F10.7, sunspot
number (SSN), solar wind speed (Vsw), Dst, Kp and Ap were provided by the Space Physics Data
Facility of National Aeronautics and Space Administration (NASA) (https://omniweb.gsfc.nasa.gov/).

Previous studies have reported that there were great nonlinear discrepancies between COSMIC’s
data and ionosonde’s observations [25–27]; here, we proposed a method to reduce the remarkable
discrepancies. The global ionospheric data during 2007–2016 (same as in Figure 1) observed by
COSMIC/ionosonde was utilized to develop the ionospheric models for foF2 and hmF2 based
on machine learning, respectively, namely COSMIC peak frequency (COSPF), COSMIC peak
height (COSPH), ionosonde peak frequency (IONOPF) and ionosonde peak height (IONOPH). The
corresponding averaged accuracies of the four models were about 0.58 MHz, 19.59 km, 0.92 MHz
and 23.40 km, respectively. Then, the strategy was proposed to correct the discrepancies between
different ionospheric observational systems, which took the parameters of the “corrected point” as
the input information of COSMIC and ionosonde models based on the ANN algorithm, respectively,
including time, geographic position and solar-geomagnetic indices. The discrepancy was computed
by the difference between the outputs of COSMIC and ionosonde models, then, the final corrected
value can be estimated by the sum of pre-corrected value and discrepancy. For example, in this study,
the ionosonde foF2 values would be corrected to the standard of COSMIC technique, then the detail
processes were should be conducted as the following steps.

(1). Ten input parameters (same as the input layer in Figure 2) of ionosonde foF2 points IONOfoF2
were taken as the input information for the COSPF and IONOPF models, respectively.

(2). The foF2 values were simulated by the COSPF and IONOPF models, respectively, namely,
COSPFfoF2 and IONOPFfoF2; then, the difference was computed between COSPFfoF2 and
IONOPFfoF2.

(3). The sum of the pre-corrected ionosonde foF2 value IONOfoF2 and the above difference was
regarded as the final corrected value COSMIC-foF2corr.

For more details about the correction process, please refer to the following equation:
COSMIC− f oF2corr = Iono f oF2 + COSPF f oF2 − IONOPF f oF2

COSMIC− hmF2corr = IonohmF2 + COSPHhmF2 − IONOPHhmF2
Iono− f oF2corr = COSMIC f oF2 −COSPF f oF2 + IONOPF f oF2

Iono− hmF2corr = COSMIChmF2 −COSPHhmF2 + IONOPHhmF2

(2)

The results showed that the RMSEs of ionospheric foF2 model developed by uncorrected “mixed”
data ranged from 1.2 MHz to 1.4 MHz during four seasons. After data correction, the averaged RMSE
of ionospheric model based on the “mixed” corrected data decreased to 0.79 MHz with the negative
ratio of 38.3%, especially in the summer, the averaged RMSE reached to 0.68 MHz. Similar to foF2,
the RMSEs of hmF2 models developed by “mixed” uncorrected data during four seasons were about
28–32 km, and the corresponding RMSEs based on corrected data ranged from 19.8 km, 22.4 km,
21.5 km and 23.9 km, the maximum descending percent was 29.3%. The comparative results indicated
the proposed method was efficient to improve the accuracy of ionospheric models based on the “mixed”
COSMIC and ionosonde measurements significantly.

2.2. Methods

The ANN is an information processing system which is formed by a large number of simple
processing elements known as neurons and has a powerful ability in capturing the nonlinear relationship
between input data and output data [28], it has been widely applied in image recognition, data
classification, modeling etc. Usually a simple neural network consists of three layers, namely, an input
layer, hidden layer and output layer. Back propagation algorithm is the most famous method in training
neural network, which includes two stages: feed-forward and back-forward [29]. In the feed-forward
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stage, input parameters are processed by neural network to generate output parameters, then the
errors between output parameters and targets are calculated. In the back-forward stage, the simulated
errors are transferred from the output layer to input layer, and the input weights are estimated again.
In the study, the back-propagation algorithm was utilized to develop ionospheric models by ANN
technique for foF2 and hmF2. The gradient descent method was also used in developing ANN models,
the training process easily stops when the neural network is caught in the “local minimum” effect.
In order to solve this problem, the ANN used in the study was optimized by the genetic algorithm
(GA). GA is a method based on natural selection for solving both constrained and unconstrained
optimization problems; it has been widely applied in many fields [10,30,31]. The GA in the study was
used to optimize the initial weight of the ANN, the detail steps were described as following steps and
illustrated in Figure 3.

Step 1: Determine the architecture of the neural network, including the numbers of layers and
neurons, and estimate the initial weights and thresholds.

Step 2: Input sample and preprocess data.
Step 3: Initialize the population P, including the crossover scale, crossover frequency Pc, mutation

frequency Pm etc.
Step 4: Train the network over the training set of sample data using the initial weights and

thresholds, and compute the SSE (sum of squared errors) as the fitness value f.
Step 5: Estimate each individual evaluation function, and choose the individual with largest

probability, the individual in the population is evaluated by:

Pi =
fi∑N

j=1 f j
=

fi
fsum

(3)

where Pi and fi are the selected and fitness probability of the individual i, respectively, and fsum is the
sum value of the fitness in the population.

Step 6: Choose the best ranking individuals to generate the new individuals G′i and G′j from the
last generation individuals Gi and Gi+1.

Step 7: Estimate the fitness value of every new individual and replace the worst population with
the new individuals.

Step 8: Repeat the steps 5–7 until exceed the termination criterion.
Step 9: Output the optimal weights as the initial weights of neural network and train the network

to optimize the weights for optimal solutions.
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In the study, the input parameters of the neural network consisted of day of year (DOY), universal
time (UT), geomagnetic latitude (GLAT) and geographic longitude (LON). In addition, ionospheric
variation is affected by solar-geomagnetic activity seriously, the parameters represent solar-terrestrial
environment were also as the inputs. The parameters SSN (sunspot number), Vsw (solar wind speed)
and F107 (10.7cm solar flux) were used to represent the intensity of solar radiation. The values Dst, Kp
and Ap were selected to represent geomagnetic environment. Our study found that the neutral wind
did not play a great role in improving the accuracy of the ANN model; hence, the meridional wind
and zonal wind were not used as the input parameters. This ANN structure contained three hidden
layers in the study, and the network was trained for more than thousands of times to search for the
optimal simulated results. The RMSE of this ANN was minimum when the numbers of nodes in each
hidden layer were 16, 14 and 12, respectively, and the corresponding active functions in these hidden
layers were tansig, tansig and sigmoid. The architecture of the ANN is shown in Figure 2. After the
input parameters and the structure of ANN model were determined, the entire “mixed” corrected
measurements were used to develop the ANN-based ionospheric models wholly. In the study, the
input parameters, model’s structure and modeling strategy were different from the ANNIM model in
literature [32].

3. Results

The remarkable discrepancies between ionospheric observations obtained from multiple
techniques are reduced by the proposed method based on machine learning. Then, the corrected
“mixed” measurements are used to develop the Global Ionospheric Peak Frequency Model (GIPFM)
and Global Ionospheric Peak Height Model (GIPHM) by ANN optimized by the GA. It is noted that
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the “mixed” data represent the entire COSMIC measurements and ionosonde observations. In order to
validate the accuracies of ANN models, comparisons between GIPFM/GIPHM and the International
Reference Ionosphere (IRI) in the solar minimum year (2009) and solar moderate year (2013) were
conducted. The version of the IRI model was 2016.

3.1. Validation of Accuracy in the Solar Minimum Year

To evaluate the accuracies of GIPFM and GIPHM in 2009, the observations of ionosonde stations
distributed in six continents, excluding Antarctica, were gathered over the entire year. Then, the
data sets were extracted from the total observations randomly; each data set contained 10,000 points.
Therefore, the selected points were not equally distributed among all seasons and all local times. It was
noted that the data set extraction should be conducted before establishing ionospheric models. After
that, the selected points were simulated by the GIPFM/GIPHM and IRI-2016, respectively. The results
are shown in Figures 4 and 5.

In Figure 4, the abscissa axis represents the ionosonde measurements, and the vertical axis
represents the simulated values. The red and green points are the simulations of the ANN model
and IRI, respectively. Generally, the simulations of the ANN model agree well with those of the
IRI, but the former correlation was obviously higher than the latter correlation. In 2009, the RMSEs
of IRI simulations over six stations were 0.76, 0.63, 1.14, 0.88, 0.82 and 0.67 MHz, while the RMSEs
of GIPFM simulations were 0.71, 0.54, 0.96, 0.75, 0.69 and 0.61 MHz, respectively. The GIPGM’s
simulated accuracies over six ionosondes improved by 6.58%, 14.28%, 15.79%, 14.77%, 15.85% and
8.96%, respectively. Compared with RMSE, the median errors of GIPFM were smaller than those of IRI
with an average rate of more than 20%, except over the station LM42B.
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Similar to the results for foF2 in Figure 4, the performances of the GIPHM model also experienced
a great improvement, but the improvement was different over different ionosondes. For example, the
RMSEs of simulations at low latitudes (Station JI91J, LM42B, and LV12P) decreased from 38.36, 26.60
and 38.36 km (IRI) to 30.59, 21.76 and 23.17 km (GIPHM), with decreasing ratios of 20.26%, 18.33%
and 39.6%, respectively. Furthermore, the RMSEs of GIPHM simulations in middle latitudes (Stations
BP440, DB049, and MHJ45) were about equal to the simulations of IRI. However, the median errors
of GIPHM simulations were lower than those of the IRI results over all six stations. As shown in
Figure 5a–l, the median errors of GIPHM simulations were lower than the IRI simulated errors by
about 28.16%, 29%, 22.49%, 29.38%, 56.44% and 24.04%. These results indicate that both GIPHM and
IRI cannot simulate “questionable” data well (here, questionable data means some points far away
from the regression line), but the simulated performances of the ANN model are always better than
those of the IRI.

3.2. Validation of Accuracy in the Solar Moderate Year

In a moderate year of solar activity, the simulations of GIPFM agreed well with those of the IRI.
In general, the simulated errors of both GIPFM and IRI in 2013 were higher than the errors in 2009,
which is associated with the high peak frequency caused by strong solar radiation. The RMSE values
of GIPFM simulations were also obviously lower than those of IRI, and the improvement of simulated
accuracies in the solar moderate year was more remarkable than that in the solar minimum year. For
example, Figure 6 shows that the RMSEs of the IRI simulations over six ionosondes decreased from 0.97,
0.85, 1.18, 1.11, 1.16 and 0.92 MHz to 0.77, 0.68, 1.13, 0.88, 0.76 and 0.71 MHz, following simulations
by GIPFM, and the corresponding accuracies improved by about 20.62%, 20%, 4.24%, 20.72%, 34.48%
and 22.83%, respectively. The simulated accuracies of GIPFM were 20% higher than IRI over most
ionosondes, except in station JI91J, located in the southern crest of the equatorial ionization anomaly
(EIA). In the solar moderate year, the ionospheric variation near the geomagnetic equator was very
complex and was controlled by many kinds of physical–chemical effects and dynamic processes, such
as the fountain effect, eastward electric field, neutral winds etc. It is a great challenge to predict the
ionospheric variations near the geomagnetic equator with high accuracy, especially in South America
and Southeast Asia.
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The RMSEs of GIPHM simulations were also lower than the simulated errors of IRI in the solar
moderate year, and the ratios of the six ionosondes were 23.91%, 10.65%, 13.25%, 17.64%, 5.18% and
13%, respectively. The improved accuracy for hmF2 was lower than that for foF2. In Figures 4 and 6,
the foF2 values were distributed densely around the regression line, while Figure 7 shows some hmF2
points far away from the regression line, which may have been caused by instrument failure; these
points were regarded as “questionable” data. We believe that it is these “questionable” data contribute
to the “unsatisfied” performances of GIPHM simulations. The median parameter can represent the
“typical” value of a data set, because it is not overly skewed by having a small proportion of extremely
large or small values. Figure 7 shows that the median values of hmF2 errors decreased from 15.23,
16.01, 31.28, 19.26, 18.15 and 16.87 km (simulated by IRI) to 11.84, 11.36, 25.45, 13.33, 12.52 and 12.18 km
(simulated by GIPHM), with decreasing ratios of 22.26%, 29.04%, 18.64%, 30.79%, 31.02% and 27.80%,
respectively. The performance of the median error was much more remarkable than that of the RMSE.
Therefore, we believe the GIPHM could improve the hmF2 prediction under a strong solar radiation
environment with an accuracy of more than 20% on a global scale.
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3.3. Validation of Accuracy over the Greenwich Meridian

In addition to global spatiotemporal variations, the ionosphere also contains several prominent
regional anomalies, such as the equatorial ionization anomaly and the Weddell Sea anomaly. These
regional anomalies have strong latitudinal characteristics. In order to evaluate the simulated
performance of an ANN model dependent on the geographic latitude, the simulated maps of the ANN
and IRI models were compared with the reference product along the reference meridian. In this study,
the Greenwich meridian was selected as the reference meridian, and the products obtained from the
Pushkov Institute of Terrestrial Magnetism, Ionosphere and Radiowave Propagation of the Russian
Academy of Sciences (IZMIRAN) were selected as the reference maps. IZMIRAN takes the hourly
global ionospheric map (GIM) as an input to the IRI-plas (International Reference Ionosphere model
extended to the plasmasphere) to obtain more realistic scale parameters from foF2 and hmF2. The global
foF2 and hmF2 maps provided by IZMIRAN can be regarded as new GIM-TEC products [32]. The
GIM-TECs are estimated by the dual-frequency observations obtained from hundreds of International
GNSS Service (IGS) stations with spherical harmonics and have been widely applied in scientific
research and practical productions [33–36]. Therefore, the IZMIRAN maps were capable of meeting
the requirements of this study. Here, the peak parameters’ time series simulated by ANN and IRI
were compared with the IZMIRAN product during 2010–2017. The difference was calculated by the
ANN/IRI time series minus the reference values. The comparative results are shown in Figure 8.
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Figure 8. Comparative results of foF2 and hmF2 from the Pushkov Institute of Terrestrial Magnetism,
Ionosphere and Radiowave Propagation of the Russian Academy of Sciences (IZMIRAN), ANN and
IRI along the Greenwich meridian during 2010–2017.

In Figure 8, the left and right columns indicate the comparative results of foF2 and hmF2,
respectively. The panels in the left column indicate that both simulated maps of ANN and IRI agree
well with the reference maps. During 2010–2017, the maximum value of ionospheric foF2 along the
Greenwich meridian increased from 10 MHz (2010) to 14 MHz (2015). After that, the maximum
value gradually decreased to 6–10 MHz, which was associated with the intensity of solar radiation.
In addition, both models showed the ability to simulate the ionospheric prominent phenomenon,
equatorial ionization anomaly, as two high foF2 crests were distributed at 10◦–30◦N/S. Figure 8d,e show
the differences between ANN/IRI simulations and reference maps. The differential results indicate
that there are some discrepancies between simulations and observations, and the discrepancies are
dependent on time and latitude. As shown in Figure 8e, the ANN simulations generally produce lower
measurements than IZMIRAN in the low latitude area. Most negative differences appear in 2014–2015
with a maximum amplitude of −3 MHz. Moreover, in the middle-high latitudes, the ANN simulations
have periodically larger measurements than IZMIRAN in the winter hemisphere. The maximum
amplitude of positive difference is within 2 MHz. Compared with Figure 8d, the difference between
IRI simulations and IZMIRAN measurements is more remarkable, and the maximum amplitudes of
positive and negative differences exceeded 4 MHz and −4MHz, respectively. The simulated error of the
IRI model is 25%–50% larger than that of the ANN model, which is consistent with the simulated results
shown in Sections 3.1 and 3.2. In addition, the simulated error of the IRI model is more expanded than
the results of the ANN model.

The right column shows that the simulated hmF2 maps of the ANN and IRI models are consistent
with the IZMIRAN measurements. The hmF2 value is inversely proportional to the geographic latitude.
The maximum hmF2 value over the geographic equator is over 400 km, which is one to two times
larger than that in the high latitudes. Furthermore, the high hmF2 crest extends to the South Pole
in December. This phenomenon is in accordance with the physical characteristics of the Weddell
Sea anomaly. Figure 8i,j show that there were remarkable discrepancies between hmF2 simulations
and reference values. In Figure 8i, the simulated hmF2 maps of the ANN model are periodically
larger than the IZMIRAN maps in the summer hemisphere. However, in the winter hemisphere, the
simulated value is lower than that of the reference, which is contrary to the foF2 comparative results.
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The maximum values of positive and negative differences are about 60 km and –80 km, especially in
2013–2015. The results indicate that the performance of the ANN model is inversely proportional to the
intensity of the solar radiation. Compared with the results in Figure 8i, the differences between IRI’s
simulations and the reference maps are more remarkable, and the maximum amplitudes of positive
and negative differences exceed 100 km and −100 km, respectively. The results conclude that the
simulated accuracy of the IRI model is 20% lower than the level of the ANN model for hmF2.

3.4. Validations of Global Spatiotemporal Characteristics

The sections above demonstrate that the ionospheric models developed by the ANN technique
provide a great improvement when predicting a peak parameter over a single station or meridian line.
Meanwhile, the capability of capturing the global ionospheric spatiotemporal characteristics is also
an important criterion for evaluating the performance of ANN models. In this study, the global foF2
and hmF2 maps were simulated by the ANN and IRI models at UT 12:00 in the four seasons of 2014,
respectively. It is noted that the days selected in the four seasons were equinoxes and solstices, and the
corresponding DOYs (days of year) were 81, 173, 265, and 356. The simulated maps were compared
with IZMIRAN measured maps to evaluate the geophysical performances of two models on a global
scale. The comparative results are shown in Figures 9 and 10.
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The left three columns in Figure 9 represent IZMIRAN measured maps and the foF2 maps
simulated by the ANN and IRI models, respectively. The global foF2 maps simulated by ANN and IRI
models agree well with the reference values. Both models have the ability to capture the ionospheric
spatiotemporal characteristics. The ionospheric foF2 value in the sunlit hemisphere is two to three
times larger than that in the night-time hemisphere, and the foF2 value is proportional to the geographic
latitude, which is associated with the intensity of solar radiation. In addition, both models are capable
of simulating the prominent regional ionospheric features, such as equatorial ionization anomaly,
Weddell Sea anomaly etc. The right two columns indicate the differences between the ANN/IRI
simulated maps and IZMIRAN measurements. Generally, the simulated performances of the ANN
model in the summer solstice and autumn equinox are much better than those in the spring equinox
and winter solstice. In summer and autumn, the amplitude of the simulated error of the ANN model
ranges from −1 to 1 MHz, while in spring and winter, the simulated foF2 of the ANN model is lower
than the reference value in most regions, especially in the regions near the geomagnetic equator. The
maximum amplitude of simulated error exceeds −2 MHz. Compared with ANN’s simulations, the
simulated errors of the IRI model are larger, not only in the magnitude, but also in the scope. In spring
and winter, the simulated values of the IRI model are usually smaller than those of the references, and
the negative differences are mainly distributed in Africa, Europe, the Pacific and Western Australia
with a maximum amplitude of more than −2 MHz (see Figure 9e,t). Additionally, the simulated errors
of the IRI model in the summer solstice were not consistent with the ANN model. The values of IRI’s
simulated maps are much larger than the references in the southern hemisphere. Most simulated
errors appear in the Indian Ocean with a magnitude of 4 MHz, while the simulated errors of the ANN
model are smaller than 1 MHz over the same region at the same time. Therefore, the comparative
results in Figure 9 prove that the ionospheric foF2 model developed by the ANN technique not only
has a strong ability to capture the ionospheric spatiotemporal characteristics but also improves the
simulated accuracy of global ionosphere significantly.

Similar to foF2, the global hmF2 maps simulated by ANN and IRI models were compared with
IZMIRAN products, and the results are shown in Figure 10. From the left three columns, it can be
seen that the simulated maps are consistent with the reference maps. In the sunlit hemisphere, the
ionospheric peak height is proportional to the geographic latitude, and the hmF2 over the geomagnetic
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equator is one to two times larger than that in the polar regions. While the hmF2 crests gradually move
to higher latitude regions in the night, the two crests are distributed within 40◦–60◦N/S latitudes in the
night-time hemisphere. The right two columns show the differences between ANN/IRI’s simulations
and reference maps, respectively. In the spring equinox, autumn equinox and winter solstice, the
simulated hmF2 values of the ANN model are generally higher than the measured heights in the
low–middle latitude areas. The maximum hmF2 differences appear in Africa and the southern Pacific
with a magnitude of 40–60 km. However, in the summer solstice (see Figure 10i), ANN’s simulated
maps have much lower values than IZMIRAN’s values with magnitudes ranging from −20 to −60 km;
especially over the oceans of the southern hemisphere and Antarctica, where the maximum difference
exceeds −60 km. The panels in the right column indicate that the differences between IRI’s simulations
and references are larger than those of the ANN model in the equinoxes (see Figure 10e,o). The positive
differences are mainly distributed in Africa, Southeast Asia and the southern Pacific with a maximum
magnitude that exceeds 80 km. However, IRI’s simulated maps are in better agreement with the
measured maps than ANN’s performances in the summer solstice, and the IRI’s simulated errors
during this period are within −40 to 40 km, which is different from the simulated performances of the
GIPFM model at the same time.

4. Discussion

In Section 3, the ANN technique shows a powerful capacity and capability to capture ionospheric
spatiotemporal characteristics, and the genetic algorithm was able to improve the learning efficiency of
the proposed neural network approach significantly. In the study, the learning efficiencies of the ANN
approach were also evaluated with and without the application of the GA method. Thousands of
experiments showed that the ANN technique optimized by the GA method can improve the learning
efficiency and decrease the simulated error remarkably. The average period of linear regressions
optimized by the GA method was 32.7 min with RMSEs of 0.92 MHz for foF2 and 23.7 km for hmF2,
while the averaged linear regression without the GA method took about 46.2 min with RMSEs of
1.16 MHz for foF2 and 31.2 km for hmF2, respectively. The comparative results indicate that the
learning efficiency of linear regression optimized by GA improves by about 29.22%, and the simulated
errors for foF2 and hmF2 decrease by about 20.69% and 24.04%. Therefore, the results demonstrate
that the GA method could improve the performance in ionospheric modeling by the ANN technique
significantly, which may be a promising tool for further ionospheric studies based on machine learning.

The proposed method used to reduce the discrepancies between multiple instrument measurements
shows a strong ability to improve the ionospheric model’s accuracy. In previous studies, many
researchers focused on ionospheric modeling based on deep learning with GNSS space-borne
occultations or ground-based observations [15,17,24]. In the literature [15], the measurements obtained
from 59 ionosondes were used to develop the global foF2 model by a feed-forward neural network.
The averaged RMSE values in the solar moderate activity and solar minimum activity were 1.112 MHz
and 0.807 MHz, respectively, which are larger than the RMSEs in the corresponding periods (0.82 MHz
and 0.71 MHz) in this study. In addition, due to the limitation of geographic distribution of the selected
stations, this model fails to capture the ionospheric peak parameters information over the ocean exactly.
In order to solve the problem, a previous study [17] multiplied the instrument’s measurements to
build the improved ionospheric model ANNIM, such as COSMIC, CHAMP, GRACE and ionosonde.
This model was shown represent global ionospheric spatiotemporal characteristics well, but the
RMSEs in the solar maximum year (2002) and solar minimum year (2009) for NmF2 were 3.4 × 105
electrons/cm3 and 1.5 × 105 electrons/cm3, and the corresponding RMSEs for hmF2 were 29 km and
25 km, respectively. The RMSE values were much larger than the simulated RMSEs for GIPFM and
GIPHM in our study. Many studies have demonstrated that the use of multiple measurements is very
helpful to enhance the physical features of ionospheric models, but the technical standard of each
measurement is different, and the remarkable discrepancies between different measurements may
affect the performance of ionospheric models. This study demonstrates that the proposed method is
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capable of reducing the discrepancies between multiple measurements and improving the accuracy
of the ionospheric model significantly. It is believed that data correction will be an important step in
further ionospheric modeling.

5. Conclusions

In this study, a new method based on deep learning method was proposed to reduce the
remarkable discrepancies between multiple instrument measurements, such as space-borne COSMIC
radio occultation and a ground-based ionosonde. The results show that this method is very helpful
for improving the performances of ionospheric models. Then, the “mixed” corrected data (COSMIC
and ionosonde) were utilized to develop the ionosphere models for the predictions of foF2 and hmF2
using an artificial neural network optimized by the genetic algorithm, namely, GIPFM and GIPHM.
The results indicate that the genetic algorithm could improve the learning efficiency of the proposed
neural network approach significantly. The learning efficiency of a linear regression method optimized
by the genetic algorithm improved by about 29.22% compared with the experiments without the
application of the genetic algorithm. In addition, the above steps also improve the accuracy of the
ionospheric model. The accuracy of GIPFM and GIPHM was compared with that of the IRI-2016
model in the solar minimum year (2009) and solar moderate year (2013), respectively. The RMSEs
of GIPFM in 2009 and 2013 were about 0.71 MHz and 0.82 MHz, respectively. Both RMSEs were
smaller than those of the IRI-2016 model. Especially in a moderate year of solar activity, the simulated
performance of the ANN model improved by about 20%–34%. Due to some “questionable” data in the
hmF2 sample, the RMSEs of GIPHM did not decrease significantly compared with IRI’s simulations.
However, the simulated median errors of GIPHM were still smaller than those of the IRI over the
six ionosondes. The improvement in the GIPHM’s accuracy ranged from 20% to 50%. The model
validation demonstrates that the GIPFM and GIPHM models developed by the ANN approach are
useful for predicting ionospheric foF2 and hmF2 with a higher accuracy.

The performances of the GIPFM and GIPHM models were also compared with the products of
IRI and IZMIRAN to evaluate the capability for capturing ionospheric spatiotemporal characteristics.
The comparative results indicate that the foF2 and hmF2 maps simulated by the ANN model are
in better agreement with the reference values than IRI’s products. In the Greenwich meridian, the
differences between GIPFM’s foF2 values and references ranged from −3 MHz to 2 MHz during
2010–2017, and the GIPFM’s simulated error was 25%–50% lower than IRI’s results. Contrary to
foF2’s results, for hmF2, the simulated performances of GIPHM were inversely proportional to the
intensity of solar radiation. The GIPHM’s simulations were periodically larger than IZMIRAN’s
values in the summer hemisphere, while the opposite phenomenon occurred in the winter hemisphere.
The amplitudes of negative and positive differences ranged from −80 km to 60 km, which is 20% lower
than IRI’s errors. In addition, the ANN models showed a powerful capability to capture ionospheric
characteristics, not only global spatiotemporal variations but also some prominent regional anomalies,
such as the equatorial ionization anomaly and Weddell Sea anomaly. Furthermore, the global simulated
errors of the ANN models were significantly smaller than those of IRI’s simulations. For foF2, the
GIPFM’s simulations were generally smaller than those of the references throughout the whole year
with an amplitude of −2 MHz to 1 MHz. Especially in the summer solstice and autumn equinox, the
model’s performance was much better than the IRI’s with the maximum simulated error exceeding
4 MHz. For hmF2, the GIPHM’s performance was better than the IRI’s on the equinoxes, not only in
terms of the simulated accuracy, which improved by about 20%–50%, but also in terms of the scope
of the simulated error, which was smaller. However, in the solstices, the GIPHM’s results were not
satisfied. Especially in the summer solstice, the simulated errors were mainly distributed in the oceans
of the southern hemisphere and Antarctica with the maximum amplitude exceeding −60 km. The
simulated errors were two to three times larger than those of the IRI simulation in this region.

This study concludes that the performance of GIPFM and GIPHM developed by the ANN
technique optimized by the GA is better than those of previous models, and these models have a
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high capacity/capability to capture the global or regional ionospheric spatiotemporal characteristics.
Therefore, the approach proposed in this study should be extended to more application fields. In further
analyses, the global GNSS radio occultations obtained from FORMOSAT-3/COSMIC, the upcoming
FORMOSAT-7/COSMIC-2 and the ground-based Digisonde data can be used to develop a complete
three-dimensional electron density model by the ANN technique [37].
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