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Abstract: Crop evapotranspiration (ET) is the largest water consumer of agriculture water in an
irrigation district. Remote sensing (RS) technique has provided an effective way to map regional
ET using various RS-based ET models over the past several decades. To map growing season
ET of different crops and partition ET into evaporation (E) and transpiration (T) at regional scale,
appropriate ET models should be further integrated with crop distribution maps in different years
and crop growing seasons determined for each crop pixel. In this study, a hybrid dual-source scheme
and trapezoid framework-based ET Model (HTEM) fed with HJ-1A/1B data was applied in Hetao
Irrigation District (HID) of China from 2009 to 2015 to map crop growing season ET and T at 30 m
resolution. The HTEM model with HJ-1A/1B data performed well in estimating ET in HID, and the
finer spatial resolution of model input data can improve the estimation accuracy of ET. Combined
with the annual crop planting map identified in previous study, and crop growing seasons determined
from fitted Normalized Difference Vegetation Index (NDVI) curves for crop pixels, the spatial and
temporal variations of growing season ET and T of major crops (maize and sunflower) were examined.
The results indicate that ET and T of maize and sunflower reach their minimum values in the
southwest HID with smaller crop planting density, and reach their maximum values in northwest
HID with higher crop planting density. Over the study period with a decreasing trend of available
irrigation water, ET and T in maize and sunflower growing seasons show decreasing trends, while
ratios of T/ET show increasing trends, which implies that the adverse effect of decreased irrigation
water diversion on crop growth is diminished due to the favorable portioning of E and T in cropland
of HID. In addition, the calculation results of crop coefficients show that there is water stress to crop
growth in the study area. The present results are helpful to better understand the spatial pattern of
crop water consumption and water stress of different crops during crop growing season, and provide
the basis for optimizing the spatial distribution of crop planting with less water consumption and
more crop yield.

Keywords: crop evapotranspiration; crop transpiration; crop growing season; dual source
evapotranspiration model; HJ-1A/1B; remote sensing

1. Introduction

Agriculture is a major water consumer in China and around the world, and agricultural water
use accounts for about 70% of the total water uses in the world. In arid and semi-arid areas where
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agriculture relies heavily on irrigation, the proportion of agriculture water use is higher than other
areas [1]. Irrigation water accounts for 90% of the total agriculture water use [2]. With the increasing
domestic, industrial and environmental water uses, the amount of water available for agriculture has
been decreasing in recent years [3,4]. As a result, agricultural production in arid and semi-arid areas is
facing severer challenge. Especially for water shortage areas, the uneven spatiotemporal distribution of
water resources aggravates the challenge of agricultural production. Therefore, quantifying agriculture
water consumption for different crops over large area is important for agricultural water management
in arid and semi-arid areas [5].

Crop evapotranspiration (ET), the total amount of water evaporation from soil (E) and canopy
interception and transpiration by vegetation (T) [6,7], is the largest sink of water for agriculture [8].
Accurate estimation of the spatial distribution and temporal variation of crop growing season ET
is the basis for agricultural water management. Conventional crop ET estimation methods can
generally be categorized into three groups. The first group is ground-based measurement techniques,
such as Bowen ratio (BR) [9,10], eddy covariance (EC) [11,12], and weighing lysimeter systems [13,14].
These methods are generally expensive and time-consuming [6], and applicable only for small scales.
Consequently, their accuracies degrade when extrapolating to regional scale [15]. The second group
includes weather-based calculation formulas, such as the Penman–Monteith equation, recommended
by the Food and Agriculture Organization [16,17], which estimate crop ET by multiplying the reference
evapotranspiration (ET0) calculated from meteorological data by crop coefficients (Kc) based on crop
types and growth stages. However, it is generally difficult to predict the idealized Kc over large
regions [8]. The third group is physically based simulation models that estimate crop ET from simulation
models for water flow in the soil-plant-atmosphere continuum (SPAC) and/or crop growth [18–21].
However, these models require a large number of in situ measured data as parameters and inputs [22].
Therefore, the above-stated methods are generally applicable to small-scale crop ET estimation and
difficult to be extended to large areas.

Fortunately, the application of remote sensing (RS) technology in earth observation provides
an alternative approach for mapping ET at regional and even global scales [5,8,23,24]. Accordingly,
various RS-based ET models based on surface energy balance equation have been developed to adapt
to different underlying surface characteristics [25], such as the Surface Energy Balance Algorithm for
Land (SEBAL) [26], the Two-Source Energy Balance Model (TSEB) [27], and the Hybrid dual-source
scheme and Trapezoid framework based ET Model (HTEM) [28]. SEBAL is a single-source model,
which cannot distinguish E and T from ET. While TSEB and HTEM are dual-source models, which can
distinguish E and T by decomposing component (soil and vegetation) temperatures from the radiative
land surface temperature (LST) observed by satellite RS. TSEB determines component temperatures
by using an iterative approach [27], while HTEM uses the trapezoidal vegetation index (VI) and LST
space [28]. Compared with the measured data of EC flux tower, HTEM performed better than TSEB in
arid area [29]. However, these RS-based ET models usually give instantaneous ET estimates at the
satellite overpassing time or ET on specified periods after temporal upscaling. To study crop ET in the
whole crop growing season or different growing stages using these ET models, knowledge on crop
distribution [30] and crop growing season [22] is necessary.

The fragmented and inter-annual varied crop planting pattern is very common in China and
many other parts of the world [19,31,32], which restricts the availability of timely crop planting
map. Hetao Irrigation District (HID) in Inner Mongolia is a typical example of such case, which has
a fragmented crop planting pattern due to the special “farmland use rights” [18,33]. The most
frequently used RS-based crop identification method is supervised classification with the basic unit
of a pixel, which classifies each pixel into a specified type of crop according to the training data
based on the sampling points [34,35]. Based on supervised classification, Yu and Shang (2017) [36]
mapped multi-year distribution of major crops in HID at 30 m resolution accurately using ellipse space
of Normalized Difference Vegetation Index (NDVI) and phenological characteristics derived from
HJ-1A/1B charge coupled device (CCD) data.
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The determination of crop growing season is another major factor in estimating growing season
ET. Unlike crop ET simulated by crop growth model [18], crop ET estimation based on RS during
growing season is usually extracted on a monthly scale [30,37]. Crop growing season is related not only
to crop type, but also to agricultural practice and crop growing environment. As a result, the growing
season of the same crop may be different at different locations in an irrigation district [36]. Therefore,
before extracting ET from crop growing season in large irrigation district, the crop growing season
should be determined in advance. At small spatial scale, the crop growing season can be obtained
through field survey [18]. While at regional scale, the crop growing season can be estimated by the
Polyfit–Maximum method, which considers the period of greatest decrease in the seasonal NDVI time
series as the beginning of vegetation dormancy [38–40].

The main objective of this study was to study the growing season evapotranspiration and
transpiration of major crops at irrigation district scale by combining a RS-based dual source ET
model (HTEM), annual crop distribution map, and growing season of maize and sunflower in HID
determined by a simple algorithm from NDVI series. Compared with previous studies on RS-based
ET estimates [6,30,37], this study aimed to estimate pixel-scale ET and T for different crops in their
growing seasons, instead of pixel-scale ET and T in a whole region or in all croplands for a specified
period of time. These results can provide the basis for optimizing the spatial distribution of crop
planting with less water consumption and more crop yield.

2. Materials and Methods

The framework of the study is shown in Figure 1. Firstly, we used HJ-1A/1B satellite data as the
input of HTEM model to estimate the daily ET and T of the whole study area. Secondly, the annual
ET and T at crop pixels were extracted by combining the crop planting map provided by Yu and
Shang (2017) [36]. Thirdly, we determined the crop growing season based on fitted NDVI curve [36],
and finally we mapped crop ET and T during the growing season. Finally, the crop coefficients were
calculated by combining the calculation results of ET and reference evapotranspiration (ET0).
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Figure 1. Flowchart of estimating crop evapotranspiration (ET) and transpiration (T) during growing
season using hybrid dual-source scheme and trapezoid framework-based ET (HTEM) model and
HJ-1A/1B data.

2.1. Study Area

Hetao Irrigation District (HID) is a typical irrigation district of arid region located in the western
Inner Mongolia Autonomous Region in North China. The HID is the third largest irrigation district
and an important food production base in China, which has a good representativeness in arid area as
the largest irrigation district in arid area of China.

In this study, four counties (Dengkou, Hangjinhouqi, Linhe, and Wuyuan) in western and middle
HID were selected as the study area (Figure 2), which spans from 40.1◦N to 41.4◦N and from 106.1◦E to
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109.4◦E, and covers an area of 910,000 ha with 44% being agricultural land (Figure 2). The study area is
characterized by arid continental climate with an annual precipitation of approximately 160 mm and
pan evaporation (20 cm evaporation pan) of approximately 2240 mm during the study period from
2009 to 2015 [36]. The annual precipitation in the study area is much less than potential evaporation,
which results in the high dependence of the agriculture on water diversion from the Yellow River for
irrigation. However, a water-saving rehabilitation program has been carrying out since 1998 to reduce
water diversion from the Yellow River to alleviate the rising of groundwater table and slow down the
loss of river runoff [37,41,42]. Consequently, the reduction of irrigation water may have a negative
impact on crop growth in the study area, and it is necessary to study whether the impact is beneficial
or not.
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Figure 2. Land use maps and location of stations in the study area. YCA and LH refer to Yangchang
canal command area and Linhe, respectively.

Summer maize and sunflower are dominant crops in the study area, and the proportion of maize
and sunflower planting has increased significantly in recent years to over 80% of the total agricultural
land after 2015 [36,43]. Accordingly, this study focused on maize and sunflower. From 2009 to 2015,
the annual average yields of maize and sunflower in the study area ranged from 10.61 t/ha to 11.41 t/ha
and from 3.54 t/ha to 3.87 t/ha, respectively [43].

2.2. Satellite Data and Auxiliary Data

China launched the HJ-1A/1B satellite constellation for environment and disaster monitoring on
6 September, 2008, the satellite image of HJ-1A/1B has the same band division and spatial resolution
(30 m) as that of Landsat, while the revisit time of HJ-1A/1B (2–4 days) is much shorter than that of
Landsat (16 days). In this study, RS-based ET estimation requires four visible bands (B1–B4) data of the
charge coupled device (CCD) carried by HJ-1A and HJ-1B satellites and thermal infrared band (B8) data
of the infrared spectrograph (IRS) carried by HJ-1B [44,45]. Specifically, B1-B4 are blue (0.43–0.52 µm),
green (0.52–0.60 µm), red (0.63–0.69 µm), and near-infrared (0.76–0.90 µm) bands, respectively, with a
spatial resolution of 30 m and a temporal resolution of 2 days, and B8 is thermal infrared (10.5–12.5 µm)
band with a spatial resolution of 300 m and a temporal resolution of 4 days [44]. The original images
were downloaded from the China Centre for Resources Satellite Data and Application (CRESDA)
(http://cresda.spacechina.com), and then were all re-projected into Universal Transverse Mercator
(UTM) projection and resampled with a spatial resolution of 30 m. The satellite images used in this
study consisted of 145 HJ-1A/1B CCD images and 145 HJ-1B IRS images of Level 2A for Hetao Irrigation
District covering the years from 2009 to 2015, with the cloud cover less than 5%. Consequently, there
was at least one date with the above satellite images per week during the crop growing season.

http://cresda.spacechina.com
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The preprocessing procedures for HJ-1A/1B images mainly include radiometric calibration and
atmospheric and geometric corrections, and more details can refer to Li (2014) [45] and Yu and Shang
(2017) [36]. Then, the parameters of HTEM model can be retrieved from the pre-processed satellite
images, in which CCD image was used to retrieve vegetation index and surface albedo, and IRS image
was used to retrieve land surface temperature, and the detailed calculation equations can be found in
Li (2014) [45].

Land use map (1:100,000) of the study area (Figure 3) for the year 2000 was provided by
Environmental and Ecological Science Data Center for West China, National Natural Science Foundation
of China (http://westdc.westgis.ac.cn), which was also resampled to a spatial resolution of 30 m.
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Daily meteorological data at the Linhe (LH) (40.73◦ N and 107.37◦ E, and 1041.1 m above sea level)
Meteorology Station (Figure 2) are available from China Meteorology Data Sharing Service System
(http://data.cma.cn).

Statistics on water balance components of the study area were provided by the General
Administration of Hetao Irrigation District (http://www.zghtgq.com).

2.3. Determination of Crop Growing Season

Many studies have shown that Normalized Difference Vegetation Index (NDVI) sequences of
crops are closely related to crop phenological processes [46,47]. Due to the limitation of satellite revisit
time and the effect of cloud cover, daily NDVI retrieved from RS is discontinuous, which needs further
processing. Available studies have shown that an asymmetric logistic curve can be used to fit the NDVI
time series [48], which has also been successfully applied in our study area [36,41]. Following Royo et
al. (2004) [48], the fitting curve equation is

NDVI = a + (b/k) · (1 + n)−(k+1)/k
· n · (k + 1)(k+1)/k, (1)

n = exp[(t + d · ln(k) − c)/d], (2)

where t is the day of year (DOY), a, b, c, d, and k are curve parameters (Figure 3) and can be calibrated
from NDVI series of each crop pixel using least-squares method [36].

As can be seen from Figure 3, the fitted NDVI curve has three characteristic points, that is,
the left inflection point (t_inf_1, NDVI_inf_1) with the maximum growth rate, the peak point (t_max,
NDVI_max) with the maximum NDVI, and the right inflection point (t_inf_2, NDVI_inf_2) with the
maximum withering rate. The equations for calculating the above characteristic values can be obtained
from Yu and Shang (2017) [36].

Based on the crop identification results in the study area [36], we extracted multi-year characteristic
values of NDVI curves for maize and sunflower pixels and analyzed their distributions. It was found

http://westdc.westgis.ac.cn
http://data.cma.cn
http://www.zghtgq.com
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that t_inf_1 and t_inf_2 were closely related to the sowing and harvest dates of crops, respectively.
In our study area, the multi-year average values of t_inf_1 and t_inf_2 of maize pixels are the 183rd
day and 253rd day, respectively, while those for sunflower pixels are the 191st day and 243rd day,
respectively. According to field survey, the actual sowing dates of maize and sunflower are early
May and early June, respectively, and the actual harvest dates of both crops are late September [36].
Considering the relationship between the actual crop growing season and the characteristic values of
NDVI curve, the estimation equations of sowing and harvest dates of maize and sunflower in HID are
as follows:

SOSm = t_inf_1− 60, (3)

EOSm = t_inf_2 + 15, (4)

SOSsf = t_inf_1− 45, (5)

EOSsf = t_inf_2 + 25, (6)

where SOS and EOS represent the start and end of growing seasons, respectively, and subscripts m and
sf represent maize and sunflower, respectively.

In addition, we compared the growing seasons of maize and sunflower determined by the above
equations with the field measured data in Yangchang canal command area (YCA) observation site
and the statistical data of Linhe (LH) Meteorology Station (Figure 2) to validate the accuracy of the
estimation Equations (3)–(6).

2.4. A Brief Description of HTEM Model

The HTEM model uses a layer approach to allocate total net radiation (Rn) (W·m−2) for
canopy (Rnc) and soil (Rns) components (Equations (7) and (8)), and adopts a patch approach to
partition available energy into the latent heat (LE), sensible heat (H), and ground heat fluxes (G)
(Equations (9) and (10)) [28].

Rnc = Rn(1− exp(−kcLAI)), (7)

Rns = Rn −Rnc, (8)

Rnc = Fc(LEc + Hc), (9)

Rns −G = (1− Fc)(LEs + Hs), (10)

where substitutes c and s represent the canopy and soil components, respectively; kc is the extinction
coefficient of radiation attenuation within the canopy (dimensionless); LAI is the leaf area index
(m2
·m−2); and Fc is the fractional vegetation cover that can be computed from remotely sensed

NDVI [49].

Fc = 1−
(

NDVImax −NDVI
NDVImax −NDVImin

)0.696

, (11)

where NDVImax is the NDVI for complete canopy cover, and NDVImin is the NDVI for bare soil.
Ground heat flux in HTEM is assumed to be a constant fraction of the soil net radiation [50]:

G = cRns, (12)

where c is the ratio of G over Rns, and is taken to be 0.30 here.
For each component, the sensible heat flux is computed from Norman et al. (1995) [27]. Based

on the surface energy balance, the latent heat flux for each component is computed as a residual in
Equations (13) and (14):

FcLEc = Rnc − FcHc = Rnc − FcρCp
Tc − Ta

rh
a

, (13)
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(1− Fc)LEs = Rns −G− (1− Fc)Hs = Rns −G− (1− Fc)ρCp
Ts − Ta

ra
a + rs

a
, (14)

where ρ is air density (kg·m−3); Cp is specific heat capacity of air at constant pressure (J·kg−1 K−1);
Tc and Ts are canopy and soil surface temperatures (K), respectively; Ta is air temperature (K) at
the reference height; ra

h, ra
a and ra

s are the aerodynamic resistances that can be estimated following
Sánchez et al. (2008) [51].

According to the above equations, the prerequisite for calculating the latent heat flux is to know
surface temperatures for soil and canopy, which can be obtained from a trapezoidal Fc/LST space [52]
in HTEM (Figure 4). As shown in Figure 4, there are four critical points (A, B, C, and D) corresponding
to four extreme conditions in the trapezoidal space. Specifically, A and B represent completely dry
points in the bare soil and the fully vegetated areas, respectively, while C and D represent non-water
stress points in the fully vegetated and the bare soil areas, respectively. Furthermore, it is assumed
that the evapotranspiration rate on the warm edge AB is zero, and that on the cold edge CD is
equal to its potential rate. Some existing soil wetness isolines were found in the Fc/LST space via
soil-vegetation-atmosphere transfer modeling [53]. It is assumed that soil with a uniform texture and
sharing the same moisture content is also isothermal. Points E and F represent any two pixels on
the same soil wetness isoline in the study area, which have the same soil wetness and temperature.
The slope of line EF (any isoline) can be retrieved by interpolating the slopes of the warm edge (a) and
cold edge (b) according to the temperature differences between the pixel and the warm and clod edges.
Then, the soil temperature can be computed from

Ts = Fc
b

a + b
(Ts_max − Tc_max) + LST (15)
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According to Sánchez et al. (2008) [51], the canopy temperature can be estimated from

Tc =
1
Fc

[LST− (1− Fc)Ts] (16)

After calculating the soil and canopy temperatures, the sensible and latent heat fluxes can be
calculated from Equations (13) and (14). Then the instantaneous ET can be calculated.

Assuming that the reference evapotranspiration fraction (EF), the ratio of ET over ET0, is constant
throughout a day, the instantaneous ET can be scaled up to daily ET [54]. The instantaneous EF
on days without RS image can be obtained by linearly interpolating the EF values between two
adjacent days with RS images [55]. Specifically, the instantaneous and daily ET0 were calculated using
Penman–Monteith method, recommended by the Food and Agriculture Organization (FAO) [17].
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2.5. Evaluation of HTEM Performance

The HTEM model has been validated with ground measurements of ET for different crops in
previous studies, including the Soil Moisture-Atmosphere Coupling Experiment (SMACEX) campaign
conducted in the summer of 2002 in Iowa, USA, with the main crops of corn and soybean [28],
the Weishan flux site in the North China Plain during the growing season of winter wheat and
summer corn in 2007 [28], and the MUlti-Scale Observation EXperiment on Evapotranspiration over
heterogeneous land surfaces 2012 (MUSOEXE-12) campaign in the Heihe River Basin in Northwest
China [29]. Meanwhile, the model was also validated with ET and T measurements over a semiarid
shrub ecosystem at the Lucky Hills study site of the U.S. Department of Agriculture-Agricultural
Research Service (USDA-ARS) Walnut Gulch Experimental Watershed in southeastern Arizona,
U.S. [56].

However, there was no ground measurement of T during the study period in the study region,
and we validated the model with crop ET measurements in one experiment study, annual regional ET
estimates from water balance analysis, and modelled ET and T in one experiment site. Similar validations
were also used in previous studies of ET and T estimations in the same study region using RS-based
ET models [6,37].

At field scale, the daily ET estimated by HTEM model was compared with average ET of 5–7 days
measured at Dengkou Agricultural Experiment Station (Figure 2) in 2009 [41,57] and modelled ET and
T at Yangchang canal command area (YCA) observation site. Specifically, during the growing season
of 2009, soil moisture at 0–20, 20–40, 40–60, 60–80, and 80–100 cm soil layers were measured by both
oven drying method and Time domain Reflectometry with Intelligent MicroElements (TRIME-IPH)
methods with the sampling interval of 5–7 days. ET between sampling days were obtained through the
calculation of soil water balance. Meanwhile, the estimated ET and T in 2012 were compared with the
simulation results of Ren et al. (2016) [18] during the same period at YCA observation site (Figure 2)
using the HYDRUS-1D Software package for simulating the one-dimensional movement of water, heat,
and multiple solutes in variably-saturated media [58].

At regional scale, Annual ET during growing seasons of 2009–2015 produced by HTEM model
was compared with regional water balance analysis [6].

ET_Water Balance = P + I −D− ∆S, (17)

∆S = ∆G×A× µ, (18)

where ET_Water Balance is regional annual ET calculated from regional water balance equation (mm);
P is annual precipitation; I is irrigation water; D is drainage water; ∆S is annual variation of total water
storage in the unsaturated zone and unconfined aquifer; ∆G is annual change in groundwater table
depth; A is total area in the study area; and µ is the specific yield taken as 0.046 [37].

To evaluate the performance of HTEM model, two indicators, including the root mean square
error (RMSE) and mean relative error (MRE), were defined as follows [59]:

RMSE =

√√√
1
N

N∑
i=1

(Si −Oi)
2, (19)

MRE =
1
N

N∑
i=1

(Si −Oi) × 100
Oi

, (20)

where N is the number of data pairs to evaluate the model performance; Si and Oi, i = 1, 2, . . . , N,
are the ith model simulated and observed (or other model simulated) values of ET, respectively.
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3. Results and Discussion

3.1. Crop Growing Season

The average estimated values of SOS and EOS of maize and sunflower pixels were compared
with the observed sowing and harvest dates of crops at YCA observation site [18] (Figure 2) in 2013
and the statistical sowing date of maize and sunflower from 2010 to 2013 provided by LH Meteorology
Station (Figure 2), respectively (Table 1). As shown in Table 1, the absolute errors between estimated
and observed SOS of maize range from 2 days (YCA in 2013) to 11 days (LH in 2011), while those of
sunflower range from 0 (LH in 2011) to 3 days (YCA in 2013). The estimated EOS of maize in 2013 at
YCA is 3 days earlier than the observation, while that of sunflower is 3 days later than the observation.
In general, the estimation accuracy of sunflower growing season is higher than that of maize. The main
reason is that the SOS of sunflower changed little between years, while that of maize varied greatly, for
example, there was a 10-day difference between 2010 and 2012. In general, the accuracy of estimated
growing seasons of maize and sunflower is acceptable. In addition, crop ET is small in the early stage
of growing season; therefore, the effect of estimation error of growing season on the total ET during
crop growing season can be neglected.

Table 1. Validation of estimated start (SOS) and end (EOS) of growing seasons of maize and sunflower
at Line (LH) Meteorology Station and Yangchang canal command area (YCA).

Crop Type Estimation/Observation
SOS at LH (DOY) SOS and EOS at

YCA (DOY)

2010 2011 2012 2013 SOS
(2013)

EOS
(2013)

Maize
Estimation 120 129 125 124 120 268

Observation 127 118 117 118 122 265

Sunflower
Estimation 157 155 161 158 151 262

Observation — 155 — 157 154 265

Furthermore, we extracted the SOS and EOS of maize and sunflower pixels from 2009 to 2015
(Figures 5 and 6) based on crop planting map [36].

Through comparison, it was found that SOS of crops was generally earlier in the western part,
which is consistent with the agricultural practices in HID. For maize, the multi-year average value of
SOS in Wuyuan is the 127th day, which is five days later than that in Dengkou. Similarly for sunflower,
the multi-year average value of SOS in Wuyuan (the 159th day) is seven days later than that in Dengkou.
Compared with SOS of crops in HID, the EOS values of maize and sunflower in different counties had
little difference. The multi-year average values of SOS and EOS of maize in the whole study area are
the 124th day and 268th day, respectively, while those of sunflower are the 157th day and 268th day,
which are in good agreement with those of the field survey in 2012 [36].
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3.2. Validation of HTEM

At field scale, the HTEM estimated daily ET closely matches the field observed values [57]
(Figure 7a), with the RMSE of 0.52 mm/day and the MRE of 11.9%. Compared with the ET estimation
results of HTEM-ABL (Atmospheric Boundary Layer) (0.63 mm/day for RMSE and 13.0% for MRE) [6]
and SEBAL (0.53 mm/day for RMSE and 14.6% for MRE) [37] fed with Moderate Resolution Imaging
Spectroradiometer (MODIS) data at 250 m resolution in the same study area, the model performance
in this study at 30 m resolution is slightly better. Therefore, in HID, where the crop planting pattern is
complex [19], the finer spatial resolution of satellite images may be favorable to improve the estimation
accuracy of ET. However, the model precision was only assessed with limited field experiment data.
More experiment data should be collected in the future to examine whether the spatial resolution of RS
data influences the precision of ET models.



Remote Sens. 2020, 12, 865 12 of 22

Remote Sens. 2020, 12, x FOR PEER REVIEW 12 of 21 

 

improve the estimation accuracy of ET. However, the model precision was only assessed with limited 

field experiment data. More experiment data should be collected in the future to examine whether 

the spatial resolution of RS data influences the precision of ET models. 

At regional scale, the comparison between ET during growing season estimated by HTEM 

model and the output of water balance model shows good agreement, with the RMSE of 48.9 mm 

and the MRE of 9.1%, respectively (Figure 7b). Compared with other similar studies [6,30], the ET 

estimation accuracy of this study is slightly lower at the regional scale (especially in 2011 with fewer 

satellite images). This is because the temporal resolution of HJ-1B IRS images is lower than that of 

MODIS and other data fusion products, which will result in slightly greater errors due to temporal 

interpolation errors. 

 

 

Figure 7. Validation of HTEM estimated ET at field (a) and regional (b) scales. 

In areas with no ground measurements of ET and T, it is common to evaluate the model 

performance with ET estimates from regional water balance, which has been widely used in previous 

studies [6,30,37,41]. According to equations (17) and (18), precipitation (P), irrigation water (I), 

drainage water (D), and the change in groundwater table depth (ΔG) are all measured values, only 

the specific yield (µ) is an empirical value. Here the specific yield took the value of 0.046 that has been 

used in previous studies [6,37]. Moreover, the variation of total water storage in the unsaturated zone 

and unconfined aquifer is not significant at the annual scale. As a result, the ET estimates from 

regional water balance has relatively high accuracy, which can be taken as reference data to validate 

model outputs. 

At the YCA observation site, relative differences of maize ET and T estimated in this study and 

those modelled by Ren et al. (2016) [18] are only 1% and 3%, respectively, while the differences for 

sunflower ET and T are both 11%, which also showed that the accuracy of crop growing season ET 

and T estimates in this study are satisfactory. 

3.3. Spatial Patterns of Crop Growing Season ET and T 

Compared with RS-based single-source ET model [30,37,57], the prominent advantage of the 

dual-source model is that it can obtain the spatial distribution of both ET and T [6,27]. According to 

the above calculation results of crop growing season (Figures 5 and 6), we extracted the ET and T 

distribution of maize and sunflower during the growing season, as shown in Figures 8 and 9. 

Overall, no matter for maize or sunflower, the spatial patterns of ET and T in different years are 

similar, and the spatial variation of T is consistent with ET for each crop. Specifically, for maize 

(Figure 8), ET and T both reach their minimum values in Dengkou with the multi-year average values 

of 473 and 313 mm, respectively, while reach their maximum values in Hangjinhouqi with the multi-

year average values of 537 and 364 mm, respectively. Similarly, for sunflower (Figure 9), ET and T 

are also minimum in Dengkou with the multi-year average values of 397 and 270 mm, respectively, 

while maximum in Hangjinhouqi with the multi-year average values of 460 and 326 mm, 

Figure 7. Validation of HTEM estimated ET at field (a) and regional (b) scales.

At regional scale, the comparison between ET during growing season estimated by HTEM model
and the output of water balance model shows good agreement, with the RMSE of 48.9 mm and the MRE
of 9.1%, respectively (Figure 7b). Compared with other similar studies [6,30], the ET estimation accuracy
of this study is slightly lower at the regional scale (especially in 2011 with fewer satellite images).
This is because the temporal resolution of HJ-1B IRS images is lower than that of MODIS and other
data fusion products, which will result in slightly greater errors due to temporal interpolation errors.

In areas with no ground measurements of ET and T, it is common to evaluate the model
performance with ET estimates from regional water balance, which has been widely used in previous
studies [6,30,37,41]. According to Equations (17) and (18), precipitation (P), irrigation water (I),
drainage water (D), and the change in groundwater table depth (∆G) are all measured values, only the
specific yield (µ) is an empirical value. Here the specific yield took the value of 0.046 that has been
used in previous studies [6,37]. Moreover, the variation of total water storage in the unsaturated
zone and unconfined aquifer is not significant at the annual scale. As a result, the ET estimates from
regional water balance has relatively high accuracy, which can be taken as reference data to validate
model outputs.

At the YCA observation site, relative differences of maize ET and T estimated in this study and
those modelled by Ren et al. (2016) [18] are only 1% and 3%, respectively, while the differences for
sunflower ET and T are both 11%, which also showed that the accuracy of crop growing season ET and
T estimates in this study are satisfactory.

3.3. Spatial Patterns of Crop Growing Season ET and T

Compared with RS-based single-source ET model [30,37,57], the prominent advantage of the
dual-source model is that it can obtain the spatial distribution of both ET and T [6,27]. According
to the above calculation results of crop growing season (Figures 5 and 6), we extracted the ET and T
distribution of maize and sunflower during the growing season, as shown in Figures 8 and 9.

Overall, no matter for maize or sunflower, the spatial patterns of ET and T in different years
are similar, and the spatial variation of T is consistent with ET for each crop. Specifically, for maize
(Figure 8), ET and T both reach their minimum values in Dengkou with the multi-year average values of
473 and 313 mm, respectively, while reach their maximum values in Hangjinhouqi with the multi-year
average values of 537 and 364 mm, respectively. Similarly, for sunflower (Figure 9), ET and T are also
minimum in Dengkou with the multi-year average values of 397 and 270 mm, respectively, while
maximum in Hangjinhouqi with the multi-year average values of 460 and 326 mm, respectively. In the
study area, the planting density of crops in Dengkou is the smallest, while that in Hangjinhouqi is the
largest [36]. It can be seen that the higher the planting density, the higher ET and T. Moreover, the main
land use type in Dengkou is sandy land (Figure 2), which has poorer water holding capacity, which
leads to poorer crop growth. The spatial patterns of crop ET are consistent with the results obtained



Remote Sens. 2020, 12, 865 13 of 22

by Yang et al. (2012) [37] and Chen et al. (2018) [41] using the SEBAL model. Moreover, the spatial
variation of crop T is greater than that of crop ET.
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3.4. Temporal Variations of Crop Growing Season ET and T

Figures 10 and 11 show the temporal variations of crop growing season ET and T during growing
season of different counties from 2009 to 2015.

For maize, the multi-year average ET values (Figure 10a1–d1) range between 383 (10th percentile)
and 558 mm (90th percentile) in Dengkou where crop ET is lower, while between 411 (10th percentile)
and 608 mm (90th percentile) in Hangjinhouqi where crop ET is higher. The multi-year average T
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values (Figure 10a2–d2) range between 198 (10th percentile) and 424 mm (90th percentile) in Dengkou,
while between 262 (10th percentile) and 461 mm (90th percentile) in Hangjinhouqi.

In terms of the inter-annual variations of maize ET and T from 2009 to 2015, the average maize
ET over the whole study area range from 456 (2014) to 591 mm (2009), while average maize T range
from 282 (2015) to 394 mm (2012). In addition, both maize ET and T show decreasing trends due to the
annual decrease of irrigation water diversion [6], while T/ET of maize show an increasing trend.
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Figure 10. Temporal variations of maize growing season ET (a1–d1) and T (a2–d2) in Dengkou (DK),
Hangqinhouqi (HH), Linhe (LH), and Wuyuan (WY) counties. The bottom and top of the box represent
the first and third quartiles of crop ET or T, and the ends of the whisker represent the 5th and 95th
percentiles of crop ET or T, and the hollow square point in the middle is the average value of crop ET
or T.
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Figure 11. Temporal variations of sunflower growing season ET (a1–d1) and T (a2–d2) in Dengkou
(DK), Hangqinhouqi (HH), Linhe (LH), and Wuyuan (WY) counties.

For sunflower, the multi-year average ET values (Figure 10a2–d2) range between 315 (10th
percentile) and 480 mm (90th percentile) in Dengkou where crop ET is lower, while between 395 (10th
percentile) and 525 mm (90th percentile) in Hangjinhouqi where crop ET is higher. The multi-year
average T values (Figure 11a2–d2) are between 159 (10th percentile) and 380 mm (90th percentile) in
Dengkou, while between 227 (10th percentile) and 419 mm (90th percentile) in Hangjinhouqi.

In terms of the inter-annual variations of sunflower ET and T from 2009 to 2015, the average
sunflower ET over the whole study area range from 391 (2014) to 492 mm (2012), while average
T from 260 (2015) to 351 mm (2012). Similar to maize, sunflower growing season ET and T both
show decreasing trends due to the annual decrease of irrigation water diversion [6], while T/ET of
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sunflower show an increasing trend. Our results imply that the adverse effect of the reduced irrigation
water diversion on crop growth is narrowed due to new portioning of evaporation and transpiration
in cropland.

3.5. Crop Coefficients

Based on the calculation results of daily crop ET and T and daily ET0 obtained by Penman–Monteith
method [17], we calculated daily crop evapotranspiration coefficient (Kc, the ratio of ET over ET0) and
transpiration coefficient (Kcb, the ratio of T over ET0) per crop pixel in the study area. We extracted the
average values of maximum and mean Kc and Kcb of maize and sunflower in each county of the study
area during growing season (Figures 12 and 13).

As shown in Figure 12, the multi-year average values of maximum Kc (Kc, max) of maize and
sunflower over the whole study area are 1.003 and 0.996, respectively, while those of maximum Kcb

(Kcb, max) of maize and sunflower are 0.894 and 0.898, respectively. The maximum Kc of maize is
slightly greater than that of sunflower, while the maximum Kcb of maize is slightly smaller than that of
sunflower. In addition, Kc of maize and sunflower both reach their maximum values in 2012, which
are 1.101 and 1.087, respectively. The results of this study are slightly less than the standard crop
coefficients recommended by FAO [17]. According to the values of crop coefficients, smaller Kc, max

and Kcb, max in Dengkou indicate that maize and sunflower in Dengkou are likely to suffer from severer
water or other stresses in the study region, while smaller Kc, max and Kcb, max in 2014 indicate severer
stresses to crop growth in 2014 during the study years.Remote Sens. 2020, 12, x FOR PEER REVIEW 17 of 21 
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Dengkou (DK), Hangqinhouqi (HH), Linhe (LH), and Wuyuan (WY) counties.

As shown in Figure 12, the multi-year average values of mean Kc (Kc, mean) of maize and sunflower
over the whole study area are 0.594 and 0.621, respectively, while those of mean Kcb (Kcb, mean) of maize
and sunflower are 0.396 and 0.407, respectively (Figure 13). Both the Kc, mean and Kcb, mean of sunflower
are slightly higher than those of maize. Similar to Kc, max and Kcb, max, the Kc, mean and Kcb, mean of
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maize and sunflower both reach the minimum values in Dengkou; however, the differences of Kc, mean

and Kcb, mean between different counties are less than those of Kc, max and Kcb, max.

Remote Sens. 2020, 12, x FOR PEER REVIEW 17 of 21 

 

  

Figure 12. The maximum values of Kc and Kcb of maize and sunflower during crop growing seasons 

in Dengkou (DK), Hangqinhouqi (HH), Linhe (LH), and Wuyuan (WY) counties. 

 

Figure 13. The mean values of Kc and Kcb of maize and sunflower during crop growing seasons in 

Dengkou (DK), Hangqinhouqi (HH), Linhe (LH), and Wuyuan (WY) counties. 

As shown in Figure 12, the multi-year average values of maximum Kc (Kc, max) of maize and 

sunflower over the whole study area are 1.003 and 0.996, respectively, while those of maximum Kcb 

Figure 13. The mean values of Kc and Kcb of maize and sunflower during crop growing seasons in
Dengkou (DK), Hangqinhouqi (HH), Linhe (LH), and Wuyuan (WY) counties.

4. Conclusions

In this study, the HTEM model fed with HJ-1A/1B data with the spatial resolution of 30 m
performed well in estimating crop ET and T during the growing seasons from 2009 to 2015 in Hetao
Irrigation District. Compared with the ET estimates based on MODIS data with 250 m spatial resolution,
the finer spatial resolution of model input data here may be favorable to improve the estimation
accuracy of ET at both field and regional scales. We also developed a simple NDVI curve fitting
method to estimate the growing seasons of maize and sunflower in the study area with relative higher
accuracy. By integrating the estimated daily ET and T series, and maize and sunflower planting maps
and growing seasons, we extracted the spatial and temporal distribution of growing season ET and T
of maize and sunflower in the study area.

Our results showed that the total ET and T of maize and sunflower in the growing season
both reach their minimum values in Dengkou, while reach their maximum values in Hangjinhouqi.
The higher the crop planting density, the higher the crop ET. From 2009 to 2015, ET and T of both maize
and sunflower show decreasing trends, while T/ET of both maize and sunflower show increasing
trends, which imply that there is no obvious adverse effect on crop growth due to the reduction of
irrigation water diversion in HID. The calculated crop coefficients showed that the crop growth in the
study area is under certain water or other stresses. Crops in Dengkou suffered severer stress in the
study region, while crops in 2014 suffered severer stress during the study period.

In future studies, crop yield [43] and crop water consumption estimated in this study can be
integrated to assess water productivity and planting suitability of major crops in the study region,
so as to find optimal crop planting pattern with less water consumption and more crop yield/benefit.
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