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Abstract: We present an enhanced imaging procedure for suppression of the rough surface clutter
arising in forward-looking ground-penetrating radar (FL-GPR) applications. The procedure is based
on a matched filtering formulation of microwave tomographic imaging, and employs coherence factor
(CF) for clutter suppression. After tomographic reconstruction, the CF is first applied to generate a
“coherence map” of the region in front of the FL-GPR system illuminated by the transmitting antennas.
A pixel-by-pixel multiplication of the tomographic image with the coherence map is then performed
to generate the clutter-suppressed image. The effectiveness of the CF approach is demonstrated
both qualitatively and quantitatively using electromagnetic modeled data of metallic and plastic
shallow-buried targets.

Keywords: forward-looking GPR; surface clutter; near-field; antenna arrays; microwave imaging;
coherence factor

1. Introduction

Microwave imaging has undergone significant advances in the last two decades, owing to its increased
adoption and broad application in a variety of disciplines, including applied geophysics, planetary
exploration, and emerging radar technologies [1–7]. Forward-looking ground penetrating radar (FL-GPR)
is one such technology that employs microwave imaging for detection of targets buried at shallow depths in
the ground. Unlike its ground-coupled or near-ground down-looking ground penetrating radar (DL-GPR)
counterparts, FL-GPR provides standoff sensing capability, which allows fast scanning of large areas
for real-time target detection. This capability, however, comes at the expense of energy backscattered
from the illuminated targets and limited image spatial resolution [8–15]. Further, the rough ground
surface generates clutter that tends to obscure the buried targets, rendering target detection difficult and
challenging [12–14].
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Rough surface clutter suppression for array-based FL-GPR imaging was addressed in [11,14,16–24].
In [16], an ambiguity function based detector was proposed which exploits time-frequency characterization
of target and clutter scattering for performance enhancement. Frequency subband processing was
exploited in [11] to obtain the best contrast between target and clutter signals, whereas recursive
side-lobe minimization algorithm for reconstructing FL-GPR images with reduced clutter was proposed
in [17]. Coherent integration of measurements corresponding to multiple radar platform positions was
demonstrated in [18] for rough surface clutter suppression, whereas a nonlinear combining approach
that exploits a similarity measure was developed in [19] to adaptively mitigate imaging artifacts. In [20],
localized clutter outside of the region of interest was suppressed prior to sparse reconstruction. A real-time
three-dimensional (3-D) model of the rough surface scattering was proposed in [21], which can be
subtracted from the FL-GPR measurements to reduce the clutter. A multi-view approach based on
the likelihood ratio tests (LRT) detector was proposed in [14] and its adaptive counterpart was presented
in [22] for effective detection of low-signature targets in the presence of rough surface clutter. A robust LRT
was designed in [23] based on the least favorable target and clutter densities to maximize the worst-case
detection performance over all feasible target and clutter models in FL-GPR images. In [24], infrared
imagery was used to eliminate false alarms in FL-GPR.

On the other hand, a variety of image formation approaches have been considered in the
context of array-based FL-GPR imaging. The most commonly used algorithms are back-projection,
frequency-wavenumber migration, and scalar inverse scattering [12,25,26]. These algorithms rely on a
scalar representation of the electromagnetic field, for which the relevant Green’s function is simplified
by assuming a free-space propagation model. Within the framework of linear inverse scattering,
a two-dimensional imaging algorithm for bistatic FL-GPR systems was recently proposed in [15], whereas
an inverse processing scheme that exploits the intrinsic multi-aperture nature of the FL-GPR geometry was
designed in [14]. Data-adaptive approaches for FL-GPR have also been proposed in the literature [10,13].
Amplitude and phase estimation and rank-deficient robust Capon beamforming were presented in [10],
while an iterative hyperparameter-free maximum a posteriori probability algorithm was proposed in [13].

In this paper, we present an FL-GPR image enhancement procedure that employs tomographic
imaging and coherence-factor (CF) based masking operation for rough surface clutter suppression. More
specifically, we first employ a matched-filtering (MF) based tomographic imaging approach for image
formation, which exploits the vectorial nature of the incident and scattered electric fields, in conjunction
with coherent combining of multiple measurements from different aperture positions. This approach
builds on the MF formulation of [27] for DL-GPR imaging. Following image reconstruction, we perform
a masking operation with a coherence map of the scene for clutter suppression. The coherence map is
generated using the CF, which represents a measure of the relative coherence of the received signals
across all antennas. We consider three variants of the CF, namely, the amplitude CF (ACF), the phase
CF (PCF), and the sign CF (SCF) [28–30]. The capability of the proposed procedure to significantly
suppress the clutter generated by the backscattering from a rough surface is demonstrated using near-field
electromagnetic modeled numerical data corresponding to a scene with both plastic and metallic targets
buried at shallow depths below a rough interface [31]. The improvements achievable are quantified
in terms of the image-domain signal-to-clutter ratio (SCR), starting with the preliminary investigation
reported in [32]. We show that all variants of the CF successfully suppress the rough surface clutter with
comparable SCR values, and the hybrid MF-based imaging and CF-based masking procedure outperforms
the case when CF masking is used in conjunction with standard back-projection (BP). It is noted that
two-dimensional (2D) versions of the CF, recently proposed in [33] for sidelobe suppression in radar
imaging, can also be employed in the proposed scheme. However, as our objective is to demonstrate
the offerings of the hybrid procedure and not specifically identify an optimal method for coherence map
generation, we will not consider the 2D versions in this paper.
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The remainder of this paper is organized as follows. The various methods considered in this paper
are presented in Section 2. More specifically, the MF-based tomographic imaging algorithm is described in
Section 2.1, while the BP algorithm is briefly discussed in Section 2.2. The CF-based image enhancement
method is presented in Section 2.3, wherein the three variants of CF and the SCR in the image domain are
defined. In Section 3, we describe the considered FL-GPR configuration and simulation set up, and provide
both the imaging and CF-based enhanced results. BP-based results are also presented for comparison
therein. Insights into the performance of the proposed scheme are provided in Section 4. Conclusion
follows in Section 5.

2. Methods

2.1. Matched-Filtering-Based Near-Field Tomographic Imaging

We consider an FL-GPR system consisting of an NT-element linear transmit array and an NR-element
linear receive array. The transmit and receive antennas are oriented parallel to the y-axis in the yz-plane and
mounted on top of a vehicle at different heights (z-coordinates). The investigation domain is located on the
ground in front of the vehicle along the x-axis (see Figure 1). The transmitters are assumed to be activated
sequentially, with simultaneous reception at all receivers, as the vehicle moves forward. For convenience,
we assume that a single transmitter is active for each platform position. Thus, a full-aperture measurement
set comprises NT NR observations from NT consecutive platform positions. The frequency band of
operation extends from ωL to ωH .

Figure 1. Side-view of the forward-looking ground-penetrating radar (FL-GPR) configuration and data
collection geometry.

Considering a 3-D version of the well-known scattering equation, a linear scattering model can be
established under the Born approximation for the near-field imaging conditions of the considered scenario
as [34].

Es(rrn, rtm, ω) = k2
b

∫∫
D

G(r, rrn, ω) · Einc(r, rtm, ω)O(r)dr. (1)

This model represents the relationship between the scattered field Es from the investigation domain
D, recorded at the n-th receive location rrn with the m-th active transmitter at rtm, and the unknown scene
reflectivity O(r) for angular frequency ω. In (1), G is the dyadic Green’s function of the problem, Einc is
the incident field, which under the Born approximation represents the total field inside the domain D,
k0 = ω

√
(ε0µ0) is the free-space wavenumber, kb =

√
εrk0 is the wavenumber of the subsurface medium,

and r represents a generic point in the domain D. The vectors r, rtm, and rrn are defined as

rtm = xtmx0 + ytmy0 + ztmz0

rrn = xrnx0 + yrny0 + zrnz0

r = xx0 + yy0 + zz0,

(2)
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with x0, y0, and z0 denoting the unit vectors along the x, y, and z directions, respectively. The operator
(·) in (1) represents the dyadic product and is implemented as the typical matrix-vector product between
the 3× 3 matrix Green’s function G and the 3× 1 vector incident field Einc. Equation (1) accounts for the
dyadic nature of the interaction between the electric field and the probed scene.

Modeling the transmitting elements as Hertzian electric dipoles oriented along z0, the incident electric
field can be expressed as

Einc(r, rtm, ω) = −jωµ0 I0lG(r, rtm, ω) · z0, (3)

where I0l is the current moment associated with the short dipole directed along z0 and is assumed to be
equal to 1 A·m. Therefore, (1) can be rewritten as

Es(rrn, rtm, ω) = −jωµ0k2
b

∫∫
D

G(r; rrn, ω) · [G(r; rtm, ω) · z0]O(r)dr. (4)

Under the assumptions that (i) the separation in height between the transmit and receive elements is
negligible, and (ii) the targets are either on the ground surface or buried at shallow depths, the dyadic
Green’s function and, subsequently, the incident field can be approximated as those modeling propagation
in a homogeneous medium having the electromagnetic properties of free-space [34]. That is,

G(r, rs, ω) =

[
I +
∇∇
k2

0

]
e−jk0|r−rs |

4π|r− rs|
, (5)

where I is the unit dyad and s = rn or tm.
Dividing the domain D into a finite number of pixels, say Q, we assume only one point scatterer

exists per pixel. Ignoring the mutual interactions between scatterers, the point target at the q-th pixel can
be modeled as an impulse located at the considered pixel, whose position vector is denoted by rq. As a
result, the scattered field from the q-th image pixel recorded by the n-th receiver with the m-th transmitter
active and directed along z0 is given by

Es(rrn, rtm, ω) = −jωµ0k2
0
[
G(rq, rrn, ω)

]
·
[
G(rq; rtm, ω) · z0

]
O(rq). (6)

If only the z-component of the electric field is measured by the receiving antenna (i.e., through a linear
polarized receiving antenna modeled as a short dipole oriented along z0), we can express the recorded
electric field Esz as

Esz(rrn, rtm, ω) = z0 · Es(rrn, rtm, ω) = − jωµ0k2
0
(
GzxGxz + GzyGyz + GzzGzz

)
O(rq), (7)

where the Green’s functions components, Gij, with i and j representing the Cartesian coordinates x, y, z,
can be derived from (5) [5].

With both transmitting and receiving antennas linearly polarized along the z-axis, we define the
frequency response Hzz(rrn, rtm, rq, ω) of a filter matched to a point scatterer with unit reflectivity at pixel
rq, when the m-th antenna is transmitting and the n-th antenna is receiving, using (7) as

Hzz(rrn, rtm, rq, ω) =
{
− jωµ0k2

0
(
GzxGxz + GzyGyz + GzzGzz

) }∗
, (8)
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with ‘∗’ denoting complex conjugation. The reflectivity estimate Ônm(rq) of the q-th pixel is obtained by
applying the matched filter to the recorded measurements by the n-th receiver when the m-th antenna is
transmitting over the bandwidth of interest as

Ônm(rq) =
∫ ωH

ωL

Hzz(rq, rtm, rrn, ω)Esz(rrn, rtm, ω)dω. (9)

Note that (9) provides the reflectivity estimate for each pixel as a function of the transmitter and
receiver locations. The reflectivity estimate for the pixel at rq , corresponding to all NT transmitting and
NR receiving z-polarized antennas, can be obtained by exploiting (8) and (9) as,

Ô(rq) =
NR

∑
n=1

NT

∑
m=1

Ônm(rq)

= jωµ0k2
0

NR

∑
n=1

NT

∑
m=1

∫ ωH

ωL

(
GzxGxz + GzyGyz + GzzGzz

)∗Esz(rrn, rtm, ω)dω.

(10)

The spatial map, Ô(rq) of the scene reflectivity is the desired image of the investigated domain D
and is the final outcome of the MF-based imaging algorithm. It is noted that coherent integration of
measurements corresponding to multiple full apertures, resulting from radar platform motion, can also be
employed within the MF imaging framework to reduce artifacts and rough surface clutter prior to the
CF-based masking operation [14,18].

2.2. Back-Projection Algorithm

An alternative approach to generating FL-GPR images is the BP algorithm, which is based on scalar
wave theory [1]. The mathematical formulation for the BP-based image formation method can be essentially
derived by simplifying the dyadic Green’s function in (5) to a scalar model. Thus, the reflectivity estimate
at pixel location rq, assuming a free-space propagation model, is achieved as

ÔBP(rq)=
NR

∑
n=1

NT

∑
m=1

ÔBP
nm(rq)=

NR

∑
n=1

NT

∑
m=1

∫ ωH

ωL

ejk0 | rq−rtm | ejk0 | rq−rrn | Esz(rrn, rtm, ω)dω. (11)

The spatial map, ÔBP(rq), of the scene reflectivity represents the BP-based image of the investigated
domain D.

2.3. Coherence-Factor-Based Image Enhancement

In this section, we present the CF-based processing for the enhancement of cluttered FL-GPR images.
We consider the following three variants of the CF: the amplitude CF (ACF), the phase CF (PCF), and the
sign CF (SCF).

The ACF is defined as the ratio of the total coherent power received by the antenna array (generated
by the presence of targets in the domain under investigation) to the total incoherent power (produced by
the rough surface clutter for the case under consideration). Mathematically, it can be expressed as [32]

ACF(rq) =

∣∣∣∣∣ NR
∑

n=1

NT
∑

m=1
Ônm(rq)

∣∣∣∣∣
2

NRNT
NR
∑

n=1

NT
∑

m=1

∣∣Ônm(rq)
∣∣2 , (12)
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with Ônm given by (9) and NRNT representing the total number of receive channels in the full aperture.
From (12), it follows that the ACF varies from zero to unity. It assumes small values for low-coherence
image regions corresponding to rough surface clutter and high values for target regions. As such,
the coherence map of the scene, generated by computing (12) for all Q pixels, can be used to perform a
corrective action on the MF-based image, Ô(·), as

ÔCF(rq) = ACF(rq)Ô(rq). (13)

That is, the enhanced image is the pixel-by-pixel multiplication of the coherence map, defined by (12),
times the output of the MF-based tomographic algorithm in (10). Clearly, low-coherence rough surface
clutter will be suppressed or significantly attenuated.

Unlike the ACF, the PCF exploits the phase disparity across the antenna array [35,36]. It is defined as

PCF(rq) = 1− std(ej∠Ô(rq)), (14)

where ∠Ô(rq) = {∠Ônm(rq), n = 1, . . . , NR, m = 1, . . . , NT} and “std” denotes the standard deviation of
the complex exponential term. The PCF corrected image is obtained through (13) by simply replacing
ACF(rq) with PCF(rq) defined by (14).

The SCF can be derived from the PCF by introducing a sign bit as follows [37]. The pixel phase
∠Ônm is quantized with a single bit, thereby splitting the interval [−π, π] in two sub-intervals, namely,
(−π/2, π/2] and [−π,−π/2] ∪ (π/2, π], and the sign bit bnm is obtained as,

bnm(rq) =

{
−1, real(Ônm(rq)) < 0

+1 real(Ônm(rq) ≥ 0
. (15)

The SCF can then be defined as,

SCF(rq) = 1− std(bq), (16)

where bq = {bnm(rq), n = 1, . . . , NR, m = 1, . . . , NT}. Again, the SCF corrected image is obtained using
(13) by substituting CF(rq) with SCF(rq).

We note that the CF-based correction, proposed for enhancing images obtained with the MF-based
tomographic algorithm, can also be applied to images generated using the BP algorithm in (11);
the coherence map, generated using any variant of the CF, will also then be based on the BP approach.
That is, the pixel values Ônm(rq) in (12)–(16) will be replaced with the corresponding values of the
back-projected image. It is important to note that applying the definitions of the ACF, PCF, and SCF,
as presented in (12)–(16), to MF-based imaging provides enhanced imaging compared to the case when
these coherence factors are applied to the BP-based imaging. The former exploits the vector nature of
the scattering mechanism unlike the latter. Thus, the proposed hybrid MF-based imaging and CF-based
masking provides a two-fold advantage in terms of modeling accuracy over its BP-based counterpart.

In order to obtain a quantitative assessment of the image enhancements offered by the CF-based
procedure, we employ the image-domain SCR as a metric [29,38]. The SCR is defined as the ratio of the
average amplitude of the pixels associated with the targets in the enhanced image to the average of those
related to clutter. That is,

SCR = 10log10


1
N ∑

rq∈Rt

∣∣ÔCF(rq)
∣∣2

1
M ∑

rq∈Rc

∣∣ÔCF(rq)
∣∣2
 , (17)
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where N and M denote the respective number of pixels in the target region Rt and the clutter region Rc.
A region growing algorithm can be used to isolate the targets comprising Rt [39], and the remainder of the
image constitutes Rc.

3. Results

In this section, we describe the electromagnetic simulation set up and then present CF-based image
enhancement results which demonstrate the capability of the proposed procedure to suppress rough
surface clutter in FL-GPR images.

3.1. Radar Configuration

A stepped-frequency multi-antenna FL-GPR, mounted on top of a vehicle, is modeled in AFDTD,
which is a full-wave near-field electromagnetic software based on a finite-difference time-domain (FDTD)
algorithm [18,31]. The radar system operates over the 0.3–1.5 GHz frequency band, with a forward-looking
coverage angle spanning approximately 5◦–20◦ with respect to the horizon. Two transverse electromagnetic
horn antennas are used as transmitters, whose near-field configuration is represented by an equivalent
current distribution. In between the two transmitters are the 16 uniformly-spaced receiving short-dipole
antennas. Both the transmit and receive antennas are distributed over a 2-m wide aperture and are placed
2 m and 1.9 m above the rough ground surface, respectively. The radar system parameters are summarized
in Table 1.

Table 1. Main characteristics of the radar system and the investigation area.

Investigation area Size: 10× 16 m εr = 6; σd = 10 hrms 1.8 cm , l = 14.26 cm

Antenna height Tx antennas: 1.9 m Rx antennas: 2 m

Linear antenna array Aperture extent: 2 m Rx antennas: 16 Tx antennas: 2

System parameters Frequency: 0.3–1.5 GHz Coverage angle: 5◦–20◦

For each position of the moving platform, only one of the two transmitters is activated. By alternating
between the left and right antennas from one platform position to the next, a full aperture comprising 32
receive channels is obtained from two consecutive platform positions or scans. The first position of the
system on the surface is at x = −12 m and the last one at x = 11 m, as shown in Figure 2. Since the system
radiates and collects data along the x-direction with a discretized step of δx = 0.33 m, we have a total of 70
scans (represented in Figure 2 with black vertical lines). The ground is modeled as a non-dispersive and
non-magnetic homogeneous medium with effective relative dielectric constant εr = 6 and conductivity
σd = 10 mS/m. A rough profile for the interface separating the upper and lower dielectric half-spaces is
introduced and a statistical model is exploited to provide a realistic representation in the numerical code.
The model is described by two functions [18]: the probability density function of the height variations and
the surface autocorrelation function. For the numerical data considered in this paper, a 2-D zero-mean
surface profile represented by Gaussian statistics (described by two parameters: the rms height hrms and
the correlation length lc) is assumed. Thus, the scattered electric field is considered to be a random process
and evaluated by means of a Monte Carlo simulation [18,40].
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Figure 2. Top view of the numerical simulation geometry. Six different full-aperture measurements have
been highlighted in blue, which are used in coherent combining for the first image segment indicated in
green (the positions of transmitters and receivers are not drawn to scale within the image frame).

The investigation area (indicated by a black dashed rectangle in Figure 2 has dimensions of
10 m × 16 m along y and x directions, respectively, and is populated by a total of nine targets at distinct
locations. The target characteristics are summarized in Table 2.

Table 2. Target characteristics.

Target No. Type State Size

1 Metallic anti-personnel landmine Buried Diameter: 100 mm; Height: 55 mm

2 Plastic anti-personnel landmine On surface Diameter: 100 mm; Height: 55 mm

3 Metallic artillery shell Buried Diameter: 155 mm; Length: 585 mm

4 Metallic anti-tank landmine Buried Diameter: 300 mm; Height: 125 mm

5 Metallic anti-tank landmine On surface Diameter: 300 mm; Height: 125 mm

6 Metallic artillery shell Buried Diameter: 155 mm; Length: 585 mm

7 Metallic artillery shell Buried Diameter: 155 mm; Length: 585 mm

8 Plastic anti-personnel landmine On surface Diameter: 100 mm; Height: 55 mm

9 Plastic anti-tank landmine Buried Diameter: 300 mm; Height: 125 mm

Buried targets are positioned 3 cm below the surface. The plastic targets have a relative dielectric
constant εr = 3.1 and conductivity σ = 2 mS/m. For the rough ground surface, hrms = 1.6 cm and
lc = 14.26 cm. The characteristics of the investigation area are summarized in Table 1.
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3.2. Image Formation Results

In order to maintain a similar cross-range resolution over the entire image, the investigation area is
divided into four segments, each of dimension 10 m × 4 m. The first segment is highlighted in Figure 2
with a green rectangle. Since coherent integration has been shown to reduce clutter [31], we coherently
add multiple images of each segment generated with measurements from a set of full apertures using
the MF-based tomographic algorithm detailed in Section 2.1. The CF-based processing of Section 2.3
is then applied to the resulting composite image. The set of apertures for each segment are selected so
that the standoff distances are the same across all the image segments. Instead of choosing consecutive
apertures for each segment, we opt for a set of apertures wherein any two neighboring apertures are
separated by 4δx = 4(0.33) = 1.32 m, with the aperture closest to the segment at a standoff distance of
1 m. Figures 2 and 3 depict the respective sets of full apertures used for the first and the last segments
(indicated as blue dashed vertical lines). Such a choice provides a larger variation of the clutter across the
various images being combined. For more details on the coherent combining procedure, see [14].

Figure 3. The last image segment is highlighted in green and the relevant full aperture measurements to be
exploited in coherent combining are indicated in blue (the positions of transmitters and receivers are not
drawn to scale within the image frame).

In Figure 4, we present the MF-based composite image corresponding to two full apertures (ones
closest to each segment), whereas that corresponding to six full apertures is depicted in Figure 5. These
results and all subsequent images in this paper are plotted on a 40 dB dynamic range, unless otherwise
stated, with the maximum intensity value in each image normalized to 0 dB. The target positions are
indicated with white crosses in both Figures 4 and 5. The clutter generated by the rough surface dominates
the image in Figure 4 and obscures the low-signature targets. Owing to the integration of a larger number
of apertures permitted by the considered FL-GPR configuration, the clutter in Figure 5 is reduced as
compared to Figure 4. Nonetheless, there is still substantial residual clutter in Figure 5, which would
render target detection challenging. This demonstrates the need for further enhancements via the proposed
CF procedure.
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Figure 4. Image obtained by integrating two apertures for the scene containing nine targets and a rough
surface (hrms = 1.6 cm). The true position of targets is indicated with a white cross.

Figure 5. Image obtained by integrating six apertures for the same scene as in Figure 4.

For comparison, we provide in Figures 6 and 7 the images obtained by exploiting the same apertures
as in Figures 4 and 5, but with a BP algorithm [1]. As expected, the coherent combining of six full
apertures allows for higher clutter suppression. Comparing the MF-based images with their respective BP
counterparts, the improvements offered by the more accurate vector model adopted by the MF tomographic
algorithm over the scalar-model-based BP algorithm are clearly visible in the central part of the images,
where the clutter manifests itself as relatively weaker in strength. These qualitative observations are also
validated by the corresponding SCR values, listed in Table 3. More specifically, the MF algorithm provides
an improvement of 1.3 dB and 2.9 dB over the BP algorithm for the 2- and 6-apertures cases, respectively.
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Figure 6. Image as in Figure 4, but generated through the back-projection (BP) algorithm.

Figure 7. Image as in Figure 5, but obtained by means of the BP algorithm.

Table 3. Signal-to-clutter ratio (SCR) for back-projected and matched-filtering (MF)-based tomographic images.

Figure Number SCR (dB)

MF 2 apertures Figure 4 −7.4

MF 6 apertures Figure 5 −0.4

BP 2 apertures Figure 6 −8.7

BP 6 apertures Figure 7 −3.3

3.3. CF Enhanced Results

We first apply the enhancement procedure based on ACF to both MF and BP images, and demonstrate
the superior clutter suppression capability yielded by the MF-based ACF over that defined using the
scalar-model-based BP algorithm.

Figure 8 depicts the image obtained by means of the ACF-based masking operation applied to
the two-aperture MF image of Figure 4. The image enhancements in terms of clutter mitigation are
clearly visible with respect to the original. Figure 9 shows the two-aperture BP image of Figure 6 after
the BP-based ACF masking operation was applied. Comparing Figures 8 and 9, we observe that the
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MF-based enhancement procedure provides a higher degree of clutter suppression. The six-aperture MF
and BP images after application of the ACF-based correction are shown in Figures 10 and 11, respectively.
As expected, more clutter has been suppressed with respect to the two-aperture configuration for both
cases. Similar to the two-apertures case, the MF-based definition of the ACF provides a cleaner image,
which would lead to an improved detection performance.

Figure 8. MF based image of Figure 4 after application of the ACF-based enhancement procedure. The target
position and type are indicated with a white cross and number.

Figure 9. BP image of Figure 6 after application of the amplitude coherence factor (ACF)-based enhancement
procedure. The target position and type are indicated with a white cross and number.



Remote Sens. 2020, 12, 857 13 of 17

Figure 10. MF image of Figure 5 after ACF based enhancement.

Figure 11. BP image of Figure 7 after ACF based enhancement.

Having demonstrated the superiority of the MF-based proposed procedure over the BP-based
enhancement, we next compare and contrast the performance of the CF-based scheme when ACF, PCF,
and SCF are individually used to generate the coherence maps for clutter suppression in MF images.
We consider the MF image of Figure 5 (six-aperture case) for this purpose. Figures 12 and 13 present the
resulting images after application of the clutter suppression procedure via PCF and SCF, respectively.
Comparing Figure 12 and Figure 13 with the ACF corrected image of Figure 10, we observe that the
different coherence map definitions provide comparable degree of clutter suppression. This is also
demonstrated by the corresponding SCR values, provided in Table 4. More specifically, all three variants
of CF provide SCR improvements of 7 to 8 dB over the original image of Figure 5. Similar results were
obtained when the three variants of the CF were applied to the MF image obtained through the coherent
combining of two apertures.
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Figure 12. MF Image of Figure 5 corrected via phase coherence factor (PCF).

Figure 13. MF image of Figure 5 corrected via sign coherence factor (SCF).

Table 4. SCR for six-aperture images after CF-based enhancement.

Figure Number SCR (dB)

ACF MF Figure 10 6.7

ACF BP Figure 11 5.6

PCF MF Figure 12 7.0

SCF MF Figure 13 7.6

4. Discussion

The qualitative and quantitative results of Section 3 clearly demonstrated the superior performance
of the CF clutter suppression approach based on MF image formation over its BP-based counterpart.
This superiority is attributed to the high-accuracy vector model employed by the MF algorithm over
the scalar-model-based BP algorithm. Further, coherent integration of measurements from multiple full
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apertures should be employed, whenever possible, in conjunction with the CF-based approach for a higher
degree of clutter suppression. Furthermore, performance evaluation of different coherence map definitions,
namely, ACF, PCF, and SCF, showed that all three variants of CF provide comparable levels of clutter
suppression. In terms of the impact of the CF-based processing on the target regions, we observed that
both ACF and PCF had a minimal effect, as evident from Figures 10 and 12. However, each target region in
the SCF-corrected image split up into multiple lobes, as evident in Figure 13, which may be problematic for
subsequent target detection schemes. Finally, we note that target 9 did not survive the clutter suppression
process and was missing from all CF-corrected results reported in Section 3. This is because the target in
question is the only plastic target buried in the ground. Buried plastic targets are especially hard to detect
due to (i) the limited dielectric contrast between the target and the soil background, and (ii) interference
from rough surface scattering. This observation is consistent with what has been previously reported in
the literature [31].

5. Conclusions

In this paper, we proposed a matched filtering formulation of tomographic near-field imaging and
presented a coherence-factor-based rough surface clutter mitigation technique for FL-GPR imaging. The CF
was used to generate a coherence map, which was then applied as a correction mask to the microwave
image. Improvements achievable, in terms of reduction of the incoherent component produced by the
rough surface with respect to coherent scattering from targets, were assessed using numerical data of
metallic and plastic targets both on-surface and buried at shallow depths. The performance of the proposed
scheme was also quantified by evaluating the improvements in image-domain SCR and contrasted with
that obtained using a standard back-projection imaging algorithm. The proposed approach was shown
to outperform the back-projection-based scheme. Different definitions of the CF were considered and
compared. It was shown that the three variants of the CF all yielded comparable but excellent SCR
enhancements. While the SCF generated some artifacts by splitting each target into multiple lobes, both
the ACF and PCF exhibited minimal impact on the weak target signatures.
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