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Abstract: An unprecedented rate of global climate change as a result of human impacts has affected
both endotherms and ectotherms. This is of special concern for ectotherms, such as reptiles, as
these species are suffering from large population declines and lack the dispersal ability of other
taxa. There are many protected areas across the United States; however, these areas are fragmented,
which hinders dispersal. We examined species distribution and dispersal capabilities for Terrapene
carolina carolina, a relatively narrow range, low dispersal, and vulnerable species. We created climatic
suitability models to predict changes in suitable habitat and identified important predictor variables.
We modeled three time periods using MaxEnt and hypothesized that there would be an increase in
northern habitat. We found that most of the suitable habitat changed at the northern end of the range
and that mean temperature of driest quarter had the most influence on future predictions. Overall
there were relatively moderate changes in suitable habitat, but where these changes occur affects
accessibility. As an example, we examined these local scale movements within Oak Openings Region
and found that individuals are capable of dispersing to new suitable habitats; however, other physical
barriers will hinder movements. In conclusion, there is a critical need to protect this vulnerable
reptilian species and our results suggest that T. c. carolina will expand their distribution northward.
We suggest that land managers increase connectivity among protected areas to facilitate dispersal,
but future studies should incorporate other dynamic ecological factors at finer spatial scale.
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1. Introduction

Global biodiversity is under major threat by a multitude of factors, such as nutrient loading,
carbon dioxide enrichment, and invasive species; similar to these other threats, land-use and climate
change pose considerable challenges [1]. Climate change distresses both endotherms and ectotherms
by affecting various population aspects including density, distribution shifts, phenology, morphology,
and genetics [2]. Many species are unable to adapt fast enough to the rapid rate of rising global
average temperature. Although the impacts on endotherms is concerning, there have been relatively
few studies examining the decline of less charismatic, but highly vulnerable and climatically sensitive
ectothermic species [3–7]. This is especially concerning for reptiles, such as turtles, because these
species lack the dispersal ability of other taxa such as birds, mammals, and many fishes [8] and
population declines are expected to be expedited [5]. Additionally, ectotherm physiology plays a
strong role where it is influenced by thermal conditions, which in turn are often highly affected by
the local scale physical characteristics of a habitat [9]. In a changing climate, thermal heterogeneity is
crucial for providing both sunny, warm patches and shady, cool patches to move in or out of as needed.
However, maintaining optimal thermal physiology can be difficult in thermally variable environments,
and consistent sub-optimal conditions can reduce population viability and directly impact dispersal
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and population persistence [10,11]. Terrapene carolina carolina has been shown to have a thermal body
temperature range of 20 ◦C–25 ◦C [12–14] or 27 ◦C–31 ◦C [15]. They are often found in less optimal
temperatures within closed, forested habitat; however, open habitats tend to peak frequently above
35 ◦C especially during the active season [16]. When interacting with temperatures above 35 ◦C, turtles
often seek to lower their body temperature and avoid their lethal upper limit of 43 ◦C [17]. Forests
may be thermally suboptimal; however, they provide refuge from excessive temperatures, reduced
desiccation risk, and access to resources [16]. Rising temperatures will make it more challenging for
T. c. carolina to behaviorally regulate body temperature and will likely require increased movement to
find optimal thermal environments. As with this species, other reptiles will face similar issues with
warming climate, such as overheating and will require greater fine-scale heterogeneity.

There are many protected areas across the United States; however, many of these areas are
fragmented by the large network of roads and human-dominated land cover, which make it difficult
for species to relocate. This reduces connectivity and negatively impacts reptilian populations by
reducing gene flow and dispersal. Efforts made to increase connectivity among protected areas can
enhance species resilience to factors such as climate change, especially with the expected potential
shifts in distribution ranges [18]. These climatic changes will likely cause species to shift their range,
change their population dynamics, adapt to new climates or become extirpated from local sites. It is
imperative to understand how they will respond to these changes across multiple scales [2,8,19–28].
It is expected that changes will be concentrated in areas with the largest temperature changes such
as higher latitudes and altitudes with fewer changes in other areas [2]. Therefore, it is important to
examine expected changes from unsuitable to suitable, or vice versa, across a species distribution range
and manage the areas that vary in climate extremes. In other words, there is a need to translate large
scale climate changes to local scale habitat alterations to better manage for vulnerable species. Species
that live in areas with large changes from current or historical temperature regimes may have increased
vulnerability to declines or extirpation.

Species distribution models have become commonplace to predict potential changes from current
conditions to varying climate scenarios [3,29]. These models have been used to infer species distributions
or habitat suitability in past, current, and future scenarios for speciation, refinement of protected areas
for different species, prediction of invasive species distributions, and impacts of climate change on
wildlife [21,23,30–48]. One major drawback to climatic prediction modeling is that it may solely rely
on the correlation between abiotic factors and species presence creating a “bioclimatic envelope” [6]
and selected parameters often include sources of uncertainty [49–52]. However, advances in species
distribution modeling have helped to reduce prediction uncertainties by using robust statistical
modelling, which can create forecasts at different scales [53–55]. Although these models cannot directly
predict species occurrence in the future, we can predict changes in suitability over time using direct
connections of occurrence data to habitat and direct habitat alterations linked to climate change. Species
dispersal plays a strong role in distributions, which should be included in models to aid identification
of future suitable habitat. Predicting suitable habitat is meaningless if the organism is unable to
disperse to the location. Therefore, efforts to assess current and projected land use and climate changes
are critical to conserve diverse wildlife communities [56].

In the present study, (a) we used climate suitability models (CSMs) to estimate impact scenarios on
the geographic extent of T. c. carolina, a relatively narrow range, low dispersal, and vulnerable species,
(b) examined changes in suitable climatic habitat between model time periods, and (c) identified
dispersal capabilities within a changing climate context. We modeled three time periods (Last Glacial
Maximum or LGM, current, and future 2050) using MaxEnt models for habitat suitability. Our study
incorporated other studies’ methodologies to build our MaxEnt models and evaluate change over
time [6,57,58]; however, our approach to evaluate change over time with current thermal usage and
least cost pathways are novel. Our main objectives were to model climatic habitat suitability and
changes over time while assessing the main climatic variables influencing suitable habitat regions.
We hypothesized that there would be an increase in suitable habitat in the northern portion of the
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range as a result of increased warming and precipitation. Therefore, we predicted that there would
be a northward shift in distribution. We predicted that habitat suitability would increase over time
with greater gains for higher greenhouse gas concentration scenarios. We hypothesized that mean
temperature of warmest quarter and precipitation of driest quarter would drive T. c. carolina responses
as a result of increased vulnerability to very hot and dry conditions.

2. Materials and Methods

2.1. CSMs (Regional Scale)

CSMs were created for the range of T. c. carolina by combining (a) species occurrence data
with (b) bioclimatic layers to identify past, current, and future distributions of habitat using MaxEnt.
MaxEnt applies maximum entropy modeling, a machine-learning technique, which includes a set of
environmental layers with georeferenced occurrence localities. Then the model creates a probability
distribution for the species where each grid cell contains a predicted suitability condition. Climate
suitability was modeled at different time periods using six bioclimate variable layers. We used
presence-only data in MaxEnt version 3.3.3k [59,60] to build CSMs for each scenario for the T. c. carolina
distribution range. Presence-only records were randomly subsampled and separated withholding 30%
of the records for test data and using 70% as training data, with ten replicates.

(a) Occurrence. Species occurrence data for T. c. carolina were obtained from the Global Biodiversity
Information Facility (GBIF) [61] and a current radio telemetry study [62]. We downloaded 2579 records
(decimal degree) from GBIF across this species range in the United States that were gathered as
presence-only records from 1970 to 2019. We used a subset of presence records from the current
radio telemetry study in Oak Openings Region. These records were condensed by applying a 75 m
apart rule to reduce spatial autocorrelation. The methods for tracking individuals were carried out in
accordance to approved guidelines and permitted by Ohio Department of Natural Resources (20-016),
Bowling Green State University’s Institutional Animal Care and Use Committee (1001429-9), and with
permission from Metroparks Toledo.

(b) Bioclimatic layers. Bioclimatic variables represent extremes of limiting environmental factors.
Nineteen bioclimatic layers were downloaded from CHELSA (climatologies at high resolution for the
Earth’s land surface areas) [63,64] for three conditions: LGM (22,000 years ago), current (1979–2013),
and future 2050. The future scenarios were taken from the Coupled Model Intercomparison Project
Phase 5 Model Community Climate System Model version 4 for four scenarios (Representative
Concentration Pathway (RCP) 2.6, RCP 4.5, RCP 6.0, and RCP 8.5). All layers were downloaded in 30
arc-second resolution and clipped to Eastern United States region using the Environmental Systems
Research Institute (ESRI) ArcCatalog version 10.2.2 [65]. Climatic layers for the current model were
examined using band collection statistics tool in ESRI ArcGIS version 10.2.2 [66] to identify highly
correlated variables, i.e., r > 0.80 (Table S1). We selected variables to minimize correlations; the final
set included bioclimatic (BIO) 8 (mean temperature of wettest quarter); BIO9 (mean temperature of
driest quarter); BIO10 (mean temperature of warmest quarter); BIO16 (precipitation of wettest quarter);
BIO17 (precipitation of driest quarter); and BIO18 (precipitation of warmest quarter) layers (Table 1).
Each quarter has a temporal resolution of three months of the year.
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Table 1. The correlation matrix for six selected bioclimatic variables which includes average temperature
(◦C) and precipitation (mm) for wettest, driest, and warmest quarters. Abbreviations are: Temperature
(T), Wettest (Wet), Driest (Dry), Warmest (Warm), Quarter (Q), and Precipitation (P).

Layer T of Wet T of Dry T of Warm P of Wet P of Dry P of Warm

T of Wet 1.00 −0.06 0.22 0.12 −0.22 0.46
T of Dry −0.06 1.00 0.78 0.67 0.65 0.29

T of Warm 0.22 0.78 1.00 0.62 0.38 0.33
P of Wet 0.12 0.67 0.62 1.00 0.44 0.78
P of Dry −0.22 0.65 0.38 0.44 1.00 0.18

P of Warm 0.46 0.29 0.33 0.78 0.18 1.00

2.2. CSMs Regional Evaluation

We examined the influence of each environmental predictor variable using percent contribution
and permutation importance for each climate scenario model. Percent contribution values depend on
the pathway taken by the MaxEnt code for the optimal solution and these values may vary depending
on the algorithm taken, while permutation importance depends on the final model and is derived
from the contribution of each variable from random permutation among the training points [67].
The response curves for the average model were examined to explore how the environmental variable
affected the MaxEnt model prediction and the jack-knife results for the average model were used to
identify the significance of individual environmental variables.

We evaluated our CSMs by building alternative climatic distribution maps for comparison. These
models were created from a bioclimatic profile (i.e., the range of values at each occurrence point) of
current conditions (Table 2). We reclassified the climatic variables as suitable (range from minimum to
maximum) and unsuitable (values below the minimum and above the maximum) for LGM, current
and future scenarios. Using raster calculator, we added each reclassified binary variable together and
created a hotspot distribution map. Low overlap ranged from 0–2 layers, medium overlap ranged from
3–4 layers, and high overlap ranged from 5–6 layers. These maps represent suitable climate conditions
based on current thermal usage by T. c. carolina.

Table 2. The bioclimatic profile which includes minimum, maximum, and mean of the selected
bioclimatic factors for T. c. carolina occurrence data.

Variable Minimum Maximum Mean

Mean Temperature of wettest quarter (◦C) 1.2 27.2 20.3
Mean Temperature of driest quarter (◦C) −4.0 27.7 8.28

Mean temperature of warmest quarter (◦C) 17.4 27.7 24.4
Precipitation of wettest quarter (mm/quarter) 221 731 351
Precipitation of driest quarter (mm/quarter) 121 448 227

Precipitation of warmest quarter (mm/quarter) 201 569 324

2.3. Occurrence Model (Local Scale)

To place the regional climate results in a local context, we explored a case study within Oak
Openings Region in northwestern Ohio. We developed five separate occurrence models for T. c. carolina
in northwestern Ohio by combining (a) species occurrence data with (b) bioclimatic data, and (c) local
environmental data using MaxEnt. Presence-only records were randomly subsampled and separated
withholding 30% of the records for test data and using 70% as training data, with ten replicates. We
created five comparison distribution models for Current and Future scenarios. Each model included
all six bioclimatic variables, percentage of forest, percentage of early successional, and normalized
difference vegetation index (NDVI). Only the six bioclimatic variables varied across models as each set
were based on current and the four future emission scenarios.
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(a) Occurrence. Species occurrence data for T. c. carolina were obtained from the same subset
of presence records from a current radio telemetry study [62]. We used 47 records (decimal degree)
within Oak Openings Region that were gathered as presence-only records from 2016 to 2019. These
records were at least 75 m apart to reduce spatial autocorrelation. As stated earlier, the methods for
tracking individuals were approved and permitted.

(b) Bioclimatic layers. We used the same six selected bioclimatic variables from our regional scale
models for current and future conditions. All layers were clipped to Oak Openings Region using ESRI
ArcGIS version 10.2.2 [66].

(c) Local environment data. We created two additional environmental variables, i.e., land cover,
and NDVI. We ran a supervised land cover classification using training data. We acquired one image
from 19 June 2016 Landsat 8 for Path 20, Row 31, and we clipped the scene to only contain our entire
study area [68]. Training sites were delineated in ENVI 5.5 [69] across the study site for four classes,
i.e., forests, early successional, human-modified, and water. We used a cropland mask [70] and then
ran the supervised land cover classification. We merged the cropland layer with the classification map
and created a final 5-class land cover map for Oak Openings Region. We converted the categorical
land cover map to continuous data in FRAGSTATS version 4.2.1 [71]. To identify the percentage of
landscape for forest and early successional land cover, we ran a moving window analysis with a 120 m
buffer. A NDVI was created using the 19 June, 2016, Landsat 8 image for our study area in ArcGIS
version 10.2.2 [66].

We examined model accuracy using the area under receiver-operating-characteristic curve (AUC)
values and converted each average model into a binary suitable and unsuitable distribution map
using the logistic threshold for the maximum test sensitivity plus specificity (MSS). Additionally,
we examined the influence of each environmental predictor variable using percent contribution and
permutation importance for each climate scenario model.

2.4. Connectivity Model (Local Scale)

Using a connectivity model, we examined whether individuals would be capable of dispersal
along with changing climatic conditions. We used fine-scale movement data from an ongoing tracking
study [62] to create three dispersal distance scenarios (minimum: 10 m/d; average: 35 m/d; and
maximum: 200 m/d) to determine if T. c. carolina would be able to feasibly migrate within their life time
(conservative estimate of 40 years). At this northern portion of the distribution range, we assumed that
individuals would be able to travel for 252 days or 36 weeks per year as their active period occurs from
mid-March to mid-November, with no movement during overwintering. Individuals in the southern
portion of the distribution range would have a longer activity period and we expect they would be
able to travel greater distances. Additionally, we would expect variation in movement with changing
temperatures; however, we present a conservative estimate with the three dispersal scenarios.

Climate conditions are not the only barriers that T. c. carolina face when attempting to disperse,
other physical barriers such as roads and streams reduce landscape connectivity. To estimate whether
individuals could disperse to predicted novel areas of suitable climate, we built dispersal cost layers
for (a) occupancy models, and five physical factors including (b) roads and streams, (c) elevation, and
(d) land cover. We combined each cost layer together for four scenarios: Occupancy Model 1 and five
physical factors; Occupancy Model 2 and five physical factors; Occupancy Model 3 and five physical
factors; and five physical factors only, then we calculated the least cost path for each scenario for
comparison. We created cost raster layers in ESRI ArcGIS 10.2.2 [66] for each occupancy model and
each of the five physical layers [6]. To determine actual cost of travel for each physical layer, we used
our field data to inform our decision.

(a) Occupancy models. We utilized the three occupancy models that were built in Section 2.3.
We created a separate cost layer for each occupancy model in ESRI ArcGIS 10.2.2 [66]. Each average
continuous probability map was converted to a binary suitable and unsuitable map using the MSS
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threshold. We then assigned a cost of 1 to values above and a cost of 2 for values below the
MSS threshold.

(b) Road and streams. We acquired road and stream shapefiles from U.S. Census Bureau [72] and
clipped the layers to our study area. We then calculated the Euclidean distance for road and stream
layers to create a distance from continuous layer. We created an environmental profile layer using the
presence-absence occurrence points, like our bioclimatic profile (Table 2), and used the minimum to
maximum range values to assign a cost of 1, and a cost of 2 to any values above or below that range.

(c) Elevation. We obtained a digital elevation image courtesy of U.S. Geological Survey Earth
Explorer server [73] and we derived slope from this digital elevation model. We created an
environmental profile layer and used the minimum to maximum range values to assign a cost
of 1, and a cost of 2 to any values above or below that range.

(d) Land cover. We utilized an existing land cover map specifically created for the study area [74].
We estimated how much each land cover would cost based on T. c. carolina habitat use. Upland prairie,
upland savanna, sand barrens, upland deciduous forest, and upland coniferous forest were assigned
the smallest travel cost of 1, followed by wet prairie, swamp forest, floodplain forest, and wet shrubland
a cost of 2, then turf/pasture, Eurasian meadow, and cropland a cost of 3, then residential/mixed, and
dense urban a cost of 4, and, finally, perennial pond the highest cost of 5.

Our cost raster layers were simplified for practicality with such large-scale data. Fine-scale models
could include greater detail for each cost raster if warranted. Each raster was reclassified into a binary
cost raster, except land cover which had 5 cost values, and then we calculated the sum for all the
values per pixel to create a final comprehensive dispersal cost raster for the least cost path analysis.
We used the cost path tool in ArcGIS version 10.2.2 [66] to derive the path of least resistance from
the starting point to the destination point. It uses a cost surface raster, i.e., difficulty of travel, a cost
distance analysis, i.e., inputs a source or starting point and calculates the accumulative cost to travel
to each cell from the source, and a backlink raster, i.e., the direction from each cell to its lowest cost
neighbor. The least cost pathway is calculated by backtracking from the destination point using the
directions created by the backlink raster and the total cost accumulated from the distance raster to
create a pathway to the source. Here, we estimated the best single pathway for each scenario from
the starting point in Oak Openings Preserve to the destination point in Wildwood Metroparks, a
straight-line distance of 20.6 km. We calculated the length of the least cost paths in km to determine
how far T. c. carolina would need to travel at a minimum.

3. Results

3.1. CSMs (Regional Scale)

At a large scale, climate changes are likely to have relatively modest impacts on suitable habitat in
the future compared to changes in the past. For each scenario the average model (i.e., average of 10
replicates) performed better than random with AUC values greater than 0.8 (ranging from 0.808 to
0.823) (Table 3). Using the MSS threshold value obtained for each scenario, suitable habitat ranged
from 24.5%–30.3% across scenarios (Table 3). Habitat suitability continuous probability maps varied
among each time period (Figure 1). All models except 2050 RCP 2.6 were largely affected by the
environmental variable: mean temperature of the driest quarter based on the percent contribution
(Table 4). In contrast, 2050 RCP 2.6 distributions were largely affected by mean temperature of the
warmest quarter using the percent contribution (Table 4). We found that suitable habitat decreased
over time, 5.8% from LGM to current conditions (Table 3). We found predicted increases in suitable
habitat from current to future predictions: 2050 RCP 2.6 (4.6%), 2050 RCP 6.0 (4.4%), 2050 RCP 4.5
(4.7%) and 2050 RCP 8.5 (3.7%) (Table 3).
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Figure 1. Climatic habitat suitability continuous probability maps for T. c. carolina for four different time
periods: (a) Last Glacial Maximum (LGM); (b) Current; (c) 2050 Representative Concentration Pathway
(RCP) 2.6; (d) 2050 RCP 4.5; (e) 2050 RCP 6.0; (f) 2050 RCP 8.5. Color changes indicate probability of
suitability, with blue indicating low to no probability and red indicating high probability.
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Table 3. The maximum test sensitivity plus specificity threshold (MSS) and model area under the
curve (AUC) values with standard deviation for the Last Glacial Maximum (LGM), Current conditions,
and four future Representative Concentration Pathway (RCP) scenarios. Including the percentage of
suitable and unsuitable habitat based on the MSS threshold.

Scenario MSS AUC Values Suitable Habitat (%) Unsuitable Habitat (%)

LGM 0.3196 0.823 ± 0.004 30.3% 69.7%
Current 0.3598 0.819 ± 0.005 24.5% 75.5%
RCP 2.6 0.3109 0.815 ± 0.004 29.1% 70.9%
RCP 4.5 0.3584 0.811 ± 0.006 28.9% 71.1%
RCP 6.0 0.3260 0.808 ± 0.005 29.2% 70.8%
RCP 8.5 0.3261 0.810 ± 0.002 28.2% 71.8%

Table 4. For each climate scenario model is presented the percent contribution (% C) and permutation
importance (PI) for each environmental predictor variable with the highest contribution in bold. All
temperature variables are in (◦C) and all precipitation variables are in (mm). Abbreviations are:
Temperature (T), Wettest (Wet), Driest (Dry), Warmest (Warm), Quarter (Q), and Precipitation (P).

LGM Current RCP 2.6 RCP 4.5 RCP 6.0 RCP 8.5
Variable % C PI % C PI % C PI % C PI % C PI % C PI

Mean T of Wet Q 3.0 4.0 15.2 6.9 23.4 23.7 14.4 11.4 19.2 7.8 21.7 12.4
Mean T of Dry Q 45.1 23.7 31.3 30.1 20.3 24.2 33.7 28.8 25.5 27.7 30.2 35.0

Mean T of Warm Q 35.6 41.6 30.4 25.2 27.8 23.7 27.4 23.3 28.9 23.7 25.3 21.5
P of Wet Q 1.8 6.4 2.2 9.4 2.1 10.4 1.7 6.9 1.9 6.7 2.2 6.4
P of Dry Q 12.5 17.2 19.9 25.6 23.3 27.5 18.5 25.8 23.8 32.6 14.9 21.5

P of Warm Q 2.0 6.4 1.0 2.8 3.1 4.1 4.4 3.9 0.6 1.5 5.7 3.3

We examined the most influential variable using response curves (Figure S1) and our test data
jack-knife results for all our models. We found that for LGM, precipitation of driest quarter had the
highest gain when used in isolation and mean temperature of warmest quarter decreased the gain
the most when omitted. Additionally, for all other models, we found that mean temperature of driest
quarter had the highest gain when used in isolation and precipitation of driest quarter decreased the
gain the most when omitted.

Over time, 45%–54% of the habitat remained unchanged in suitability across each scenario. Total
change varied from 19% to 29% for T. c. carolina under the different climate scenarios (Figure 2, Table 5).
The greatest habitat gain occurred between current conditions and 2050 RCP 4.5 with an increase of
39% in suitable habitat; while the greatest loss of suitable habitat occurred between LGM and current,
with a decrease of 42%. All four future scenarios ranged from 10% to 17% loss of suitable climatic
habitat and ranged from 36% to 39% gain of suitable climatic habitat. Overall, suitable habitat was lost
from LGM to current, while future scenarios gained suitable habitat.

Table 5. Predicted changes in the climatically suitable habitat area of T. c. carolina under varying
climate scenarios within their distribution range. Abbreviations: Last Glacial Maximum (LGM) and
Representative Concentration Pathway (RCP).

Change Scenario Unchanged Gain Loss Total change (= Gain − Loss) 1

LGM -> Current 45% 13% 42% −29%
Current -> 2050 RCP 2.6 54% 37% 10% 27%
Current -> 2050 RCP 4.5 45% 39% 16% 23%
Current -> 2050 RCP 6.0 50% 38% 12% 26%
Current -> 2050 RCP 8.5 47% 36% 17% 19%

1 A positive value indicates expansion of suitable habitat.
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Figure 2. Predicted current (unsuitable and suitable) combined with future loss (in blue) and gain (in
red) habitat for T. c. carolina. Future predictions are based on four emission scenarios for 2050 with
changes from current to (a) 2050 Representative Concentration Pathway (RCP) 2.6; (b) 2050 RCP 4.5;
(c) 2050 RCP 6.0; (d) 2050 RCP 8.5.

Our alternative CSMs supported our hypothesis that suitable habitat for this species would have
a northward expansion. This held true for changes from LGM to current model, while suitable habitat
both expanded northward and contracted in the south for future models (Figure S2). The predicted
suitable habitat losses across low to high categories ranged from 4.3% to 31.7% across all scenarios,
while predicted suitable habitat gains ranged from 0.0% to 31.4% (Table 6). The greatest habitat gain for
future change occurred for 2050 RCP 8.5 medium category with an increase of 31.4% in suitable habitat,
while the greatest loss of suitable habitat for future change occurred 2050 RCP 8.5 high category with a
decrease of 31.7% (Table 6).

Table 6. Predicted changes in the percent of climatically suitable habitat for T. c. carolina using hotspot
maps based on the number of environmental predictor layers that overlap with one another. We
classified low overlap (0–2 layers), medium overlap (3–4), and high overlap (5–6). Abbreviations: Last
Glacial Maximum (LGM) and Representative Concentration Pathway (RCP).

# of Layer Overlap LGM Current RCP 2.6 RCP 4.5 RCP 6.0 RCP 8.5

Low 0.0% 0.0% 0.5% 0.3% 0.2% 0.3%
Medium 49.4% 45.1% 54.9% 71.7% 72.3% 76.5%

High 50.6% 54.9% 44.6% 28.0% 27.5% 23.2%
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3.2. Occurrence Model (Local Scale)

At the local scale, changes in suitability were readily detectable as a result of climate changes.
We found that Model 1, 78% of the habitat was unsuitable and 22% was suitable (Table 7, Figure 3a).
The model was largely affected by percentage of forest, precipitation of driest quarter, and precipitation
of wettest quarter based on the percent contribution (Table 8). We found that the probability of presence
increased as percentage of forest and precipitation of driest quarter increased (Figure S3). We examined
our jack-knife results and found that percentage of forest had the highest gain when used in isolation
and precipitation of wettest quarter decreased the gain the most when omitted. In contrast, all future
models had less suitable habitat than Model 1, ranging from 14.4% to 18.1% (Table 7, Figure 3b–e),
and except for Model 2, all future models were largely affected by percentage of forest based on
percent contribution and as this variable increases so does probability of presence (Table 8). Model 2
was largely affected by mean temperature of warmest quarter, followed by percentage of forest, and
mean temperature of wettest quarter (Table 8). Additionally, our jack-knife results showed that mean
temperature of warmest quarter had the highest gain when used in isolation and precipitation of driest
quarter decreased the gain the most when omitted. Both Model 3, Model 4, and Model 5, respectively,
were secondly largely affected by mean temperature of driest quarter, mean temperature of warmest
quarter, and mean temperature of wettest quarter. Our jack-knife results varied across each future
scenario; Model 3 had the highest gain for mean temperature of driest quarter, while Model 4 and
Model 5 it was mean temperature of warmest quarter. Conversely, the variables that decreased the
gain the most when omitted for Model 3 and Model 4, were mean temperature of driest quarter, while
for Model 5 it was mean temperature of wettest quarter.

Table 7. The maximum test sensitivity plus specificity threshold (MSS) and model area under the
curve (AUC) values with standard deviation for Current conditions and four future Representative
Concentration Pathway (RCP) scenarios. Including the percentage of suitable and unsuitable habitat
based on the MSS threshold.

Model # Scenario MSS AUC Values Suitable Habitat (%) Unsuitable Habitat (%)

1 Current 0.3452 0.852 ± 0.076 22.0% 78.0%
2 RCP 2.6 0.4003 0.905 ± 0.039 14.8% 85.2%
3 RCP 4.5 0.4042 0.896 ± 0.0039 14.4% 85.6%
4 RCP 6.0 0.4277 0.883 ± 0.063 13.9% 86.1%
5 RCP 8.5 0.3194 0.860 ± 0.070 18.1% 81.9%

Table 8. Presented are the percent contribution (% C) and permutation importance (PI) for each
environmental predictor variable with the highest contribution in bold for each Model. All temperature
variables are in (◦C) and all precipitation variables are in (mm). Abbreviations are: Mean Temperature
(MT), Wettest (Wet), Driest (Dry), Warmest (Warm), Quarter (Q), Percentage (%) Precipitation (P), Early
successional (ES), and Land surface temperature (LST).

Model 1 Model 2 Model 3 Model 4 Model 5

Variables % C PI % C PI % C PI % C PI % C PI

MT of Wet Q 5.3 17.3 12.1 7.7 5.6 3.1 10.8 3.7 22.4 32.2
MT of Dry Q 1.1 2.1 4.9 4.5 24.1 46.7 12.9 23.8 21.4 14.9

MT of Warm Q 1.0 0.0 46.6 64.7 10.6 95 0.3 0.5 17.9 36.3
P of Wet Q 11.5 55.3 0.4 0.6 2.7 0.3 3.8 12.4 0.0 0.0
P of Dry Q 18.2 0.0 11.0 10.3 6.1 15.8 3.8 12.4 3.1 4.6

P of Warm Q 5.1 11.8 0.4 1.5 1.2 0.8 0.0 0.0 4.2 5.4
% of forest 45.7 9.0 18.2 5.5 41.3 17.8 37.1 11.2 27.7 4.0

% of ES 6.3 4.5 2.4 2.0 5.3 4.3 4.1 3.1 1.8 0.3
NDVI 5.7 0.0 3.9 3.2 3.1 1.8 6.4 6.2 1.4 2.4
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Figure 3. Climatic habitat suitability maps for T. c. carolina for five models, which include six bioclimatic
variables, percentage of forest, percentage of early successional, and normalized difference vegetation
index (NDVI): (a) Model 1: Current; (b) Model 2: 2050 Representative Concentration Pathway (RCP)
2.6; (c) Model 3: 2050 RCP 4.5; (d) Model 4: 2050 RCP 6.0; and (e) Model 5: 2050 RCP 8.5 for Oak
Openings Region in northwestern Ohio.

3.3. Connectivity Model (Local Scale)

While suitable habitat may be available both now and in the future, the question is whether
it is likely to be accessible. We estimated that T. c. carolina would be able to disperse 101 km, 353
km, and 2016 km, respectively, per dispersal distance scenario (i.e., minimum, average, maximum)
within their lifetime. These dispersal distances were based on feasible movement distances and do
not consider physical barriers that would hinder movement. However, we examined constraints on
movements in our local study area. We found that the least cost pathway from two protected areas
varied across the five scenarios. All models had similar required distances to travel, ranging from
22.95 km to 23.84 km. Both Model 1 and Model 5 had similar pathways, while Model’s 2 through
4 were more similar (Figure 4). We found that near the upper portion of the pathways, all models
converge for the same least cost path. Individuals would have to cross 44 to 49 roads and avoid the
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Toledo Express Airport that lies in the center between the two parks to get from point A to point B.
Even with the minimum dispersal distance, individuals can feasibly migrate despite a multitude of
environmental barriers.

Figure 4. The least cost paths that individuals can take from Oak Openings Preserve to Wildwood
Metroparks for five scenarios. Model 1: Current, Model 2: 2050 Representative Concentration Pathway
(RCP) 2.6, Model 3: 2050 RCP 4.5, Model 4: 2050 RCP 6.0, and Model 5: 2050 RCP 8.5. Least cost paths
(colored lines) are overlaid on the cost layer with high travel cost (in red) and low travel cost (in blue)
for current conditions.

4. Discussion

MaxEnt modeling is a common method for modeling future changes in habitat suitability. Our
prediction that this species would have expanding climatic habitat northward was supported with both
our MaxEnt and alternative distribution models. Other studies have shown northern expansion for
several taxa, such as Ambrosia artemisiifolia [75], Lepidoterans [76], Dolichophis caspius [6], and several
mesopredators: Lontra canadensis, Mephitis, Canis latrans [77]. For our study, these changes are based on
temperature and precipitation, which are important to reptilian movements. Overall, with warming
climate, reptiles will face similar problems such as overheating and will require greater fine-scale
heterogeneity which includes more shaded areas provided by more vegetation [78]. Forest canopy
cover can provide critical structural complexity in its underlying microclimates [79] and facilitate
fine-scale thermoregulation; however, local movements are limited by other physical barriers such as
streams, roads, and human-modified landscapes. Therefore, habitat fragmentation may lead to the
isolation of dispersing individuals within habitats that become suboptimal in terms of temperature
and precipitation [80]. Utilizing land surface temperature maps can help identify critical areas of
thermal limits for different species and land managers can manage the habitat to increase or decrease
temperatures (e.g., manage amount of canopy cover). As with many problems that species face, there
will be winners and losers as in Popescu et al. (2013) [81], which found that reptiles show mixed
responses to climate change across species. Our study suggests that T. c. carolina may benefit from
climate change at a landscape scale with increased suitable habitat in the future, assuming that habitat
is detectable and accessible, which will be dependent on local scale characteristics.

Our results for LGM, current and future regional models supported mean temperature of driest
quarter as the most influential bioclimatic variable driving the model, except for RCP 2.6 scenario
where mean temperature of warmest quarter was the most influential. This likely occurred because
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precipitation patterns may change more drastically at higher temperatures, i.e., RCP 2.6 to RCP 8.5
scenarios. Many climate models for North America have shown an increase in precipitation over
time [82]. This may occur from warmer winter and spring temperatures that lead to more snowmelt and
rain-on-snow events that create severe flooding [83]. We found that greatest change occurred between
LGM and current conditions; however, the temporal difference between these two scenarios is much
greater than between current and future scenarios. Therefore, we caution making too many conclusions
about the change from past to present. Global climate changes are occurring at an unprecedented rate
and many of these changes are alterations in temperature and precipitation. Surprisingly, we saw little
changes among the four future scenarios. Although our results suggest that T. c. carolina will have the
greatest response to these changes within the driest and warmest quarters of the year, as we predicted
based on physiological constraints. We found small percent contributions from precipitation of the
wettest and warmest quarters (< 5.7%) across all models. This suggests high vulnerability during the
driest and warmest temperatures of the year and declines may be expedited if these quarters become
longer or temporally shift. Surprisingly at the local scale, we found an opposite trend for the current
model where precipitation of wettest and driest quarters mattered the most and mean temperature
was less important. This suggests that currently, temperature is vital for regional suitability, while
precipitation matters locally. However, when we examined future models, mean temperature was most
important, but varied which quarter mattered the most. At the local scale, T. c. carolina utilize a wide
range of habitats for thermoregulation; however, when their body temperatures are too high, they seek
cover in flooded or wet areas [84], spending days in these areas especially during high temperatures
and droughts [85]. Therefore, precipitation and where water is located during the driest quarter
would result in greater movement displacement. Physiologically, this makes sense because water
stress exacerbates temperature regulation issues, therefore shaded and floodplain areas will become
disproportionately more important during the driest season for these vulnerable species. Other studies
have utilized different sets of these bioclimatic predictor variables and found that other variables were
most important. For example, the most influential variable for D. caspius was mean temperature of
coldest quarter [6]; for Pseudopus apodus it was temperature seasonality and annual precipitation [86].
For several coral snake species, they were most affected by annual mean temperature, precipitation
of wettest month, and precipitation of warmest quarter [87]. Since each study used a different set of
bioclimatic factors, it is difficult to effectively compare variable importance. However, each species
will be affected differently based on their ecological requirements, physiology, and location of their
range. This underscores the need to translate regional climate change effects to the local scale context.

Under current conditions, our MaxEnt model predicted that T. c. carolina has a concentrated
distribution within the middle of the eastern United States which is consistent with known range
distributions. We expected that all future scenarios at a regional scale would result in the gain of
suitable habitat and our results supported our hypothesis. We found that the proportion of suitable
or unsuitable habitat showed moderate changes, i.e., 19% to 27%, it is critical to note, though, that
where these changes occur will have large impacts on this species. Most of the changes, both gains and
losses, occur on the distribution edge and relatively few changes within the center of the distribution.
Although identifying these large-scale changes can help pinpoint critical priority areas for conservation
efforts, we need finer-scale data to provide recommendations for on the ground management. In the
future, suitable habitat may become inaccessible and isolated, therefore these models should distinguish
between suitable and accessible locations [88]. Identifying these areas, requires downscaling from
regional to local scale maps. Therefore, we compared local scale models across current and future
scenarios. We found that suitable habitat decreases over time and is limited (i.e., ~15%). For our case
study, percentage of forest was the driving factor for all models except Model 2 which suggests that
the availability of shade will drive individual responses. Depending on which emission scenario is
used will vary which quarter (i.e., wettest, driest, or warmest) will drive turtle responses. Once again
highlighting the need for local scale climatic datasets, especially when modeling future suitable habitat.
However, in all cases, suitable habitat is limited and fragmented, which makes dispersal challenging.
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Warming climate may make forest habitat more suitable; however, it will also make open areas less
suitable and costly to cross. This suggests that canopy cover is important for dispersal, although NDVI
is a good model for canopy cover, it cannot substitute for measuring canopy cover at a fine scale.
Our results, though, support the need to incorporate land cover or other remote sensed data with
climate factors, as percentage of habitat and NDVI contribute to habitat suitability. We recognize that
projecting changes into the future is challenging and deriving models with more models requires a lot
of assumptions. Therefore, a mixture of different techniques that address both changes in spatial and
temporal scale are needed to tackle this challenge. From a climatic perspective, T. c. carolina may not
need to move, especially at the northern part of the distribution, therefore other biological processes
(i.e., increased disturbance, fragmentation, competition, predation) will drive local scale movements.

We examined this problem using both our CSMs and finer-scale environmental data in Oak
Openings Region to evaluate whether individuals could feasibly disperse despite climatic changes.
Based on field data an individual could feasibly disperse to a new area within its lifetime to accommodate
a changing landscape. However, this assumes that there are relatively few to no barriers and constant
movement each day towards potentially new suitable habitat, as well as an ability to detect these
new habitats. For example, in Oak Openings Region, we found that individuals would need to travel
a total of 22.95 to 23.84 km to get from one protected area to another (an additional 2 to 3 km from
the straight-line distance) using only physical factors on the landscape. It would take individuals
approximately 5.5 months to 9.5 years based on our minimum to maximum dispersal scenarios and
seasonal activity period to travel this distance. Incorporating climate suitability produced a northern
route and different scenarios did not vary much. We did find that the end portion of all models were
the same and we suggest that local managers focus on protecting this route for potential dispersal.
Although this distance ranges from 23% to 24% of the minimum dispersal distance scenario, it is
unlikely that most of the individuals will take the least costly pathway, always following a straight-line
path. Individuals would have to carefully traverse a multitude of suboptimal habitat including roads,
rivers, crops, and developed areas. Additionally, individuals would have to traverse a variety of
thermal gradients that may become too intolerable in the future. Individuals would be able to travel
the required distance; however, when considering other structural features, many individuals would
likely perish trying to disperse such large distances. T. c. carolina can persist in developed areas and can
traverse croplands and flooded areas; however, they are susceptible to road mortality. Deaths on roads
often change the population demographic and cause skewed adult sex ratios [89]. Additionally, this
species is more susceptible to road mortality than other turtle species because they tend to close their
shell when threatened and remain closed for longer periods of time [90]. Increased road traffic will
increase the probability of mortality and assuming no further habitat changes, will lead to a threshold
effect that causes widespread local extinction [91]. Although we found that there will be more suitable
habitat in the future, it may not do any good with continued habitat fragmentation. We found that this
species will face many difficult barriers and potentially have increased mortality when dispersing to
future suitable habitat even with expanding suitable habitat, it may not be accessible.

Although T. c. carolina may not be as heavily impacted by climatic changes in terms of suitable
area at the landscape-scale, it is important to provide a model for local scale context. T. c. carolina will
remain under threat from a variety of sources, e.g., habitat destruction, invasive species, environmental
pollution, disease, unsustainable use [5]. Therefore, models should incorporate other biologically
relevant variables (e.g., roads, land cover, elevation, streams/lakes, etc.) to represent the synergistic
effects of multiple threats. Such a multifaceted approach is critical because the response of local
populations will be dependent on regional weather patterns and local structural characteristics. In
addition, climate change interacts with the landscape by altering the configuration and composition of
land cover. For an example, lakes are sensitive indicators of climate alterations such as fluctuating
water levels [92] and timing changes in ice formation and thawing [93]. As with many other studies,
land-use patterns are often a larger driving factor that influences populations more so than climate
alone [94,95]. Our climatic habitat models illustrate that climatic change may be beneficial for this
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species; however, there are local scale challenges when other factors are examined that will affect how
the species responds to these changes.

5. Conclusions

There is a critical need to protect and manage a flagship reptilian species such as T. c. carolina. We
developed CSMs for this vulnerable species and evaluated the climatic variables that are influential
in determining the geographic distribution and we predicted changes in potentially suitable habitat
between different time periods. Our results predict moderate suitable habitat expansion. Additionally,
we have identified areas that are susceptible to loss or gains in habitat within T. c. carolina distribution
that can be monitored or managed. One of the most important aspects of our approach is to consider
climate change impacts across a range of temporal and spatial scales from regional climate models
to local occupancy models. Understanding the local context of large- scale changes is necessary to
effectively manage for potential impacts on native flora and fauna and can highlight critical priorities.
In addition to identifying where suitable habitat is and will be, we suggest that land managers should
work towards increasing connectivity among suitable areas to facilitate dispersal. However, to examine
these local scales, we need finer scale climatic data in combination with a variety of remotely sensed
and locally collected data to inform our models. Finally, we suggest that future studies incorporate
other dynamic ecological factors that influence distribution shifts.
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