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Abstract: The choice of an appropriate metric is mandatory to perform deformation analysis 
between two point clouds (PC)—the distance has to be trustworthy and, simultaneously, robust 
against measurement noise, which may be correlated and heteroscedastic. The Hausdorff distance 
(HD) or its averaged derivation (AHD) are widely used to compute local distances between two PC 
and are implemented in nearly all commercial software. Unfortunately, they are affected by 
measurement noise, particularly when correlations are present. In this contribution, we focus on 
terrestrial laser scanner (TLS) observations and assess the impact of neglecting correlations on the 
distance computation when a mathematical approximation is performed. The results of the 
simulations are extended to real observations from a bridge under load. Highly accurate laser 
tracker (LT) measurements were available for this experiment: they allow the comparison of the HD 
and AHD between two raw PC or between their mathematical approximations regarding reference 
values. Based on these results, we determine which distance is better suited in the case of 
heteroscedastic and correlated TLS observations for local deformation analysis. Finally, we set up a 
novel bootstrap testing procedure for this distance when the PC are approximated with B-spline 
surfaces. 

Keywords: correlations; terrestrial laser scanning; deformation; B-splines; surface modelling; 
bootstrapping; Matérn covariance function; Hausdorff distance; averaged Hausdorff distance 

 

1. Introduction 

Computing the distance between two objects is an important task in domains such as shape 
registration [1], shape approximation and simplification [2] or pattern recognition [3]. In the field of 
engineering geodesy, the distance between objects recorded at different times allows the estimation 
of deformation magnitudes [4] and their associated risks (see, e.g., Reference [5] for bridges, 
Reference [6] for dams and Reference [7] for risk management).  

The raw point clouds (PC) from a static or kinematic terrestrial laser scanner (TLS) can be 
analyzed in commercial software. Provided that a registration of the PC is performed (e.g., Reference 
[8]), maps of deformation magnitudes are formed by building the difference between the PC recorded 
at two different epochs and allows visualization of the corresponding strength of deformation. The 
metric to compute the distance between PC is usually based on cloud to cloud (C2C), cloud to mesh 
(C2M) or mesh to mesh (M2M) strategies. The Multiscale Model to Model Cloud Comparison (M3C2), 
implemented in CloudCompare, is a possibility for assessing signed distances by smoothing the PC 
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in a predefined zone [9]. The reader can refer to Reference [10] for a description of the different 
methods used in commercial software. All results remain dependent on the quality of the raw TLS 
observations. Exemplarily: 

• the presence of noise will significantly affect the detection of the closest point in the second epoch 
with the C2C algorithm. Different variances are due to the scanning geometry [11] or properties 
of the objects scanned [12,13]; 

• correlations between range measurements influence the deformation magnitude computed by 
reducing the number of observations available [14–16]. They may impact the M3C2 algorithm, 
depending on the radii chosen for the computation [17]. 

One way to avoid the related under- or overdetermination of the distance is to approximate the 
PC with a parametric model [18,19]. This strategy is similar to noise filtering of the raw observations 
and involves two steps: 

1. choice of the mathematical approximation of the PC. In the field of geodesy, the regression B-
spline approximation, as introduced by Reference [20], allows great flexibility to model raw TLS 
observations: no predetermined geometric primitives, such as circles, planes or cylinders, restrict 
the fitting [21]. Other strategies exist, such as penalized splines [22] or patches splines [23]. They 
seem less suitable for applications with noisy and scattered observations from TLS PC: please 
refer to Reference [24] for a short review of the different methods); 

2. choice of the distance [25]. The distance chosen has to fulfil certain conditions, such as being 
robust against noise and outliers to ensure its trustworthiness, particularly when the objects are 
close to each other [26]. Furthermore, it should correspond to the problem under consideration, 
that is, shape recognition or image comparisons may require another definition than object 
matching applications [27]. When a complex object is modelled, maps that allow for a 
visualization of pointwise deformation magnitudes to detect changes are more relevant than a 
global measure of distance [28]. Distances based on the maximum norm of parametric 
representations may not estimate the real distance correctly [29] and cannot be applied to 
piecewise algebraic spline curves [30]. An alternative is the widely used Hausdorff distance 
(HD) to estimate either the distance between two raw PC or their B-spline approximations [31]. 
Unfortunately, the traditional HD only provides a global measure of the distance and is known 
to be sensitive to outliers. Alternatives were proposed, including the Hausdorff quantile [32], for 
close objects [33], for the specific case of B-spline curves [34], spatially coherent matching [35] or 
the averaged Hausdorff distance (AHD; [27]).  

Parametric approximations of PC and mathematical definitions of distances are often associated 
with an increase of complexity. Fortunately, the additional effort involved to perform a deformation 
analysis with mathematical approximations of TLS PC rather than with the raw observations is 
worthwhile. In this contribution, we aim to convince a practitioner from it by answering the following 
three scientific questions: 

(1) Is a mathematical approximation of the noisy TLS PC beneficial for a trustworthy distance 
computation? 

(2) How does correlated noise affect the distance between mathematical surfaces? Which metric is 
better suited in the case of correlated observations? 

(3) Which specific statistical test has to be applied when testing for deformation based on a distance 
between mathematical approximations of TLS PC? 

We will build our answers for (1) and (2) on both simulations and real data analyses and focus 
on local approximation. In a first step, we will simulate the PC of TLS raw observations in polar co-
ordinates. They are known to be both heteroscedastic ([12,36]) and correlated ([15,37]). Thus, we will 
extend the stochastic model of TLS measurements using a separable covariance function to simulate 
correlated range observations ([38,39]). We will use Monte Carlo (MC) simulations to generate 
random vectors for the correlated noise by means of a Cholesky factorization. This allows us to 
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analyze the impact of correlations on the HD-based distances in a general case, as well as to determine 
which mathematical distance is the most trustworthy in the case of correlations.  

In a second step, we will confirm the simulation results using small surfaces of real data from a 
bridge under load. We will draw a parallel between the correlations and density reduction of the PC 
via gridding and show how gridding positively affects the distances computed with a mathematical 
approximation of the raw TLS observations. Reference deformation magnitudes are available from a 
pointwise laser tracker (LT) for the sake of comparison.  

The estimation of the deformation magnitude itself is meaningless without assessing its 
significance, that is, answering the question (3): “can the null-hypothesis that no deformation occurs 
be rejected or not?”. In this contribution, we propose a novel and specific test strategy based on the 
HD or AHD between mathematical approximations. Because the distribution of the test statistics is 
not tractable, we will combine MC simulations with a bootstrapping approach to validate a rigorous 
test procedure for testing deformation. 

The remainder of the contribution is as follows: in Section 2, we introduce the mathematical 
approximation of curves and surfaces using B-splines basis functions, focusing on the regression B-
splines. The HD and AHD will be presented. In Section 3, the theoretical derivations will be applied 
and validated by means of simulations of PC with different correlated noises for a null-deformation 
case. Section 4 is dedicated to a real case study of surface fitting using TLS observations from a bridge 
under load. A comparison between the deformation magnitudes obtained by gridding the raw PC 
and the values provided by the LT will highlight the potential of the AHD, provided that a local 
approximation is performed with a reduction in point density. The specific bootstrap testing 
procedure for the AHD is described in Appendix 2. 

2. Mathematical Background 

2.1. Approximation of Observations with B-Splines Basis Functions 

2.1.1. B-spline Curves 

We start with the fundamental problem of having m observed points that we wish to 
approximate by a smooth curve thanks to an efficient and numerically stable method ([20,40]). In this 
contribution, we will make use of the B-splines basis: it offers a powerful local control thanks to the 
control points (CP). We defined the corresponding curve ( )C x as: 

( ) ( ),
1

n

i d i
i

C x B x p
=

= , (1) 

where ip  is the ith CP from a total of n . , , ,i d i dB B= t  the B-spline function of degree d  

depending on the non-decreasing sequence of real numbers ( ) 1
1
n d

i it
+ +
==t , called knots. x  is an 
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, with the convention that anything divided by zero is zero. 
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2.1.2. Approximation of Scattered Points with B-Spline Curves 

The Least-Square Problem 

Observations in real applications are the results of noisy measurements. We solve the 
approximation problem in least-square (LS) sense with the following minimization problem [20]:  

( )( )
,

2

1
min

d t

m

i i iC S i
w y C x

∈ =

−
, 

(2) 

with ( )C x  being an element of ,d tS , the linear space of all linear combinations of B-splines defined 

by { }, 1, ,,...,d t d n dS span B B= . min means minimum, [ ] 1, m
i i i
x y

=
=y  is the observation vector 

with 1 ... mx x< <  and iw  the ith corresponding weight. In a more general matrix form, (2) is 

equivalent to finding the vector of length n  of CP [ ]1,..., np p=p  that solves the linear weighted 

LS problem:  
2min

np Σ∈
Ap - b

 , (3) 

with   being the usual Euclidean distance. The elements of the matrix ,m n∈A   are 

( ), ,i j j d ia B x= . i ib y=  are the components of m∈b  . Σ  is the variance-covariance matrix 

(VCM) of the error term =v Ap-b .  

The solution of (3) gives the estimated CP vector 0p̂  by means of 

( )0ˆ =
-1T -1 T -1p A Σ A A Σ b

, (4) 

with T  for transpose. We have ( )0ˆE =p p , ( )E   being the expectation operator. Since the true 

Σ  is unknown, the feasible LS estimator ( )ˆ ˆˆ =
-1T -1 T -1p A Σ A A Σ b  is used in practice, where Σ̂  is 

an estimation of Σ . 

The Parametrization of the Point Cloud 

Parametric B-spline curves take values in 2 and are defined by letting the CP be points in 
2  instead of real numbers. Intuitively, the parameter provides a measure of the time to travel 

along the curve and can be adapted to the data. Different methods can be used (e.g., uniform, cord 
length or centripetal parametrization; [41]). They all have shortcomings, which should not be 
underestimated for complicated geometries [42]. An exhaustive description of the parametrization is 
beyond the scope of the present paper.  

The Number of CP 

The CP build a control polygon: this is a rough scheme of the curve itself. Moving one CP 
influences the curve locally and not globally. The number of CP to estimate is linked to the length of 
the knot vector and can be iteratively adjusted. An optimal CP number should avoid the fitting of 
measurement noise. Information criteria (IC; [43]) are an alternative to heuristic methods and provide 
a useful tool to assess this optimal number. Two criteria are widely used—the Akaike information 
criterion (AIC), which minimizes the Kullback-Leibler divergence of the assumed model from the 
true, data-generating model or the Bayesian information criterion (BIC). The latter is based on the 
inherent assumption that the true model exists [44]. They are defined in their common versions as:  
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( )[ ]
( )[ ] ( )

ˆ2 2

ˆ2 log

AIC l n

BIC l m n

= −

= −

+
+

p

p , 
(5) 

where ( )ˆl p is the log-likelihood of the estimated parameters. Using this formulation, a minimum is 
searched.  

2.2. B-Spline Surfaces 

We construct parametric B-spline surfaces as tensor product surfaces depending on the B-spline 
functions. The approximation method for curves described in the previous section can be generalized 

to 3 , provided that a suitable parametrization ( ),u v  for the discrete data has been chosen. The 

parametric B-spline surface ( ),u vS  is expressed as  

( ) ( ) ( ) ( ) ( ), , , , ,1 1
iju v u v

n r

i d j d
i j

S B u B v
= =

= t t
p

, 
(6) 

( ) ( )( ) ( ) ( )( )1 1

1 1
,

n d r du u v v
i ji j
t t

+ + + +

= =
= =t t  are the knot vectors associated with the B-spline functions 

assumed to be of the same degree d , for the sake of simplicity. ijp  is the CP vector in 3  and ,n r  

are the number of CP to estimate in the u  and v  direction, respectively. We define z  as the value 
of the surface ( ),u vS  at ( ),x y . Without a lack of generality, we will skip the subscript  from 

now. 
The LS approximation method can be used for fitting surfaces to scattered and noisy data in 3

. Due to the definition of the surface by means of a tensor product, the minimization problem is 
directly related to the univariate one and is only a generalization of the methodology described in 
Section 2.1.  

We will restrict ourselves to cubic B-splines, that is, d = 3. They are considered to be optimal for 
approximating smooth objects without sharp edges and corners. The observations are often gridded 
in advance to avoid the problem of solving a large system of equations. In this contribution, both 
gridded real observations, non-gridded real data and simulated observations from a TLS will be used. 

2.3. Deformation Analysis 

We apply the previous theoretical development to TLS observations starting with two raw PC 
of the same object recorded at different epochs. The polar observations are transformed into Cartesian 
and approximated with B-spline surfaces following the methodology presented in 2.2. For the 
purpose of deformation analysis, we compute the distance—also called the “deformation 

magnitude”—between these two approximated surfaces  and 2S . In this section, we briefly 
discuss different methods of distance computation. 

2.3.1. Suboptimal Intuitive Approaches 

We introduce two intuitive approaches to compute the distance between surfaces:  

• The first one makes use a gridded PC and is defined as the difference between the z  co-

ordinates of  and 2S , 
1 2
, ,grid i j i jD z z= −

, where 


 is the Euclidian norm. 
1
,i jz  and 

2
,i jz  are the values of 1S  and 2S  at grid points ( )1 1,i ix y

 and ( )2 2,i ix y
, respectively. We 

note that 1S  and 2S  may have been computed with different optimal numbers of CP, that is, 

( ),u v

1S

1S
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we may have 
1 2 1 2,n n m m≠ ≠ . Due to the gridding, gridD  should only be used when the 

deformation can be assumed to be unidirectional (i.e., in the z-direction).  
• A second idea is to define the distance at the parameter level between the estimated vectors of 

CP 
1p̂  and 

2p̂  for  and , respectively, as 
1 2ˆ ˆCPD = −p p

. Clearly, CPD  is 

meaningless when 
1 2 1 2,n n m m≠ ≠ , since the size of the two control polygons differs. 

2.3.2. The Hausdorff Distance 

In order to overcome the drawbacks of the two intuitive aforementioned approaches, we 
propose to quantify the deformation magnitude between two parametric B-spline surfaces by 

computing their HD (see, e.g., References [29–31]). First, we define the distance ( )1
2,D po S  

between a point 
1 1 1

1
po po popo x y z =  

T
 belonging to 1S  and 2S  as 

( )
2 2

1 1 2
2, min

po S
D po S po po

∈
= − , where

2 2 2

2
po po popo x y z =  

T
 is any point of 2S . From this 

definition, the HD between 1S  and 2S  is obtained by taking the maximum: 

( ) ( )
1 1

2
1 2 2, max ,

po S
D S S D po S

∈
=

. (7) 

It is convenient to introduce the symmetrical HD as ( ) ( ) ( )( )1 2 1 2 2 1, max , , ,sD S S D S S D S S= . 

The computation of a one-sided distance leads potentially to an underestimated value [45]. [30] show 
that the HD is related to the computation of binormal lines for parametric surfaces. These lines are 
defined as a normal line at both 1,0po  at parameter ( )0 0,u v  and 2,0po . Thus, after having 

detected the so-called antipodal points 1,0po  and 2,0po , the minimum of the distance can be easily 
computed. This distance is, therefore, independent of the number of CP used to approximate each 
data set.  

We will denote by ( )1 ,
HD HDj jS x y  the value 1

jHD
z  at the point HDj  where the HD occurs in 

1S  and similarly by ( )2 ,
HD HDi iS x y  at point HDi  of the occurring HD in 2S . Note that  may 

differ from HDj . 

2.3.3. The Averaged Hausdorff Distance 

The maximum distance involved in (7) to compute the HD can be distorted by the noise of the 
observations and will not accurately reflect the global deformation between two objects. Rather than 
an HD, we propose to estimate the AHD, that is, an averaged value of the HD [24]. The AHD is based 

on the mean value of the distances defined as ( ) ( )
1 1

1
mean 1 2 2, mean ,

po S
D S S D po S

∈
= . With 

( ) ( )
2 2

2
mean 2 1 1, mean ,

po S
D S S D po S

∈
= , we have 

( ) ( ) ( )( )1 2 mean 1 2 mean 2 1_ , max , , ,s aveD S S D S S D S S= . (8) 

Our choice is justified by the fact that the AHD is known to be less sensitive to observation noise 
[27]. 

Note 

1S 2S

HDi
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Nearly all predefined distances in standard software for raw PC processing are based on the HD 
or the AHD, either with or without simplistically local mathematical approximations based on planes 
[46]. B-splines surface approximation allow a more general and detailed description of the PC than 
the local strategies used in conventional software. 

3. Simulations 

In this section, we will analyze the HD and AHD between two simulated noisy PC and their 
approximations. We wish to answer the first two questions raised in the introduction in a controlled 
framework. To that aim, we will investigate if a mathematical approximation is beneficial for a 
trustworthy distance computation and how the correlated noise affects the distance computation.  

Our simulations are based on the generation of two “no deformation” sets of raw correlated and 
uncorrelated reference observations in polar co-ordinates. We describe the specific correlation model 
used to generate correlated TLS observations in Appendix 1.  

3.1. Generating Noisy Surfaces 

We generate sample points from a given mathematical reference surface simuS . This latter is 
assumed to correspond to the probability density function of a two-dimensional normal distribution 

with a mean of [5 5]Tμ = , T  states for transpose and VCM of 
0.2 0
0 0.2s

 =   
Σ . The choice of the 

reference surface is justified to avoid oscillations of the approximation due to sharp edges or 
variations [47]. The x- and y-co-ordinates are considered to be uniformly sampled with a resolution 
of 0.5 in the interval [ ]1 10 . The corresponding surface is shown in Figure 1 left. 

We generate two realizations of the same surface simuS  having the same stochastic properties. 
The methodology can be summarized as follows: 

 
We add noise to the predefined grid surface points of simuS  to obtain a pointwise sorted 

gridded surface 1simuS : 1 ,1
T

simu simu noiseS S= + G W . ,1
T

noise=1N G W  is called a realization of the 

noise, where TG is the lower triangular matrix of the Cholesky factorization of the noise VCM noiseΣ
, with noise

T=Σ G G  [47]. We generate the vector ,1noiseW  of the same size as 1simuS  with the 

Matlab’s random number generator through ( )0,1randn , which is the realization of a normal 

distributed vector with a mean of 0 and a variance of 1. The surface 2simuS  is built similarly using a 

second white noise vector ,2noiseW . We call 2 ,2
T

noise=N G W  the second realization of the noise. 
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Figure 1. Left: the reference surface corresponds to a Gaussian probability density function. Right: 
time in increasing order starting at the beginning of each row is associated with each point. The time 
needed by the terrestrial laser scanner (TLS) to come back to its initial X-position is neglected in a first 
approximation. 

3.2. Generating the Reference Noise VCM noiseΣ  

The set-up of noiseΣ  is mandatory to generate the noisy surfaces. We simulate three kinds of 
VCM with an increased degree of complexity:  

(i) Simple VCM: 2
noise ρσ=Σ I . The Identity matrix I  is scaled by a factor 2

ρσ  defined in 

the next section. 

(ii) Complex VCM degree 1: noise MAC=Σ Σ , assuming heteroscedasticity of the raw polar 
observations and mathematical correlations (MAC) due to the transformation to 
Cartesian coordinates in the B-spline approximation. 

(iii) Complex VCM degree 2: noise TC=Σ Σ , assuming, in addition to (ii), also temporally 
correlated polar observations. 

These matrices are further described for a better understanding in the next sections. 

3.2.1. Case (ii)  

We follow [38] build the diagonal VCM ,noise polarΣ of the polar observations 

,

,

2

2
noise polar

noise

HA

VA

ρ

σ
σ

 
 =  
  

Σ
Σ

I 0 0
0 I 0
0 0

. We call ρ  the range and VA and HA the vertical and 

horizontal angles, respectively. We assume a constant standard deviation (STD) of 

2.5HA VAσ σ= =  mgon for both normally distributed angles. Two STDs ρσ  for the range are 

chosen to build ,
2

noise ρ ρσ=Σ I  following the manufacturer’s specifications of a Zoller+Fröhlich 

Imager 5006H TLS:  
(1) ,1 0.7ρσ =  mm, which corresponds to an object observed at a close distance (<10 m) and  

(2) ,2 7 ρσ =
 
mm, for an object scanned at a distance greater than 25 m or under unfavorable 

scanning conditions.  
Starting from ,noise polarΣ , we, furthermore, make use of the error propagation law to compute the 

VCM of the transformed Cartesian observations, that is, noise MAC=Σ Σ . This step is justified by the 
need to use Cartesian observations to compute the B-spline surface (Section 2). The same two range 
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variances are used to scale the Identity matrix of case (i) for the sake of comparison between models. 
In these simulations and in the following case study, we will assume the range variance 2

ρσ  to be 

known; rough estimations of the range variance are available in real cases using the intensity model 
or manufacturer’s specifications.  

3.2.2. Case (iii)  

As many effects (atmospheric, surface or sensor-based) can potentially act on correlating the 
range measurements, the assumption of heteroscedasticity only made in case (ii) is fairly unrealistic. 
Assessing the correlation structure of the TLS range with a general model is a complex task. An 
empirically-based method was proposed in Reference [37]: the residuals of a LS adjustment of a 
scanned plane were fitted by an exponential function. This function is known to have a substantial 
limitation in most geostatistical studies due to the small degree of smoothness of the covariance 
function [39]. Additionally, methods using an empirical fitting of the autocovariance function have 
severe drawbacks in the case of fractional noise. In this contribution, we follow [16], who model the 
correlation structure of Global Navigation Satellite System observations with a general Matérn 
covariance function [49]. An analogy drawn between TLS and Global Navigation Satellite System 
observations makes the application of this flexible function to describe the structure of TLS range 
correlation plausible [17]. The two parameters—smoothness and range—involved in the Matérn 
model are presented in Appendix 1.  

Our Assumptions 

• We model the correlation of the range as being temporal, that is, time-dependent. Range 
measurements are a measure of time [50]: any spatial effects stemming from the reflected surface 
can be included in the variance factor. This latter could exemplarily follow the physically 
plausible intensity model, as proposed in Reference [12].  

• The covariance function proposed is said to be separable, that is, it separates the temporal from 
the spatial effects [51]. We will here assume a temporal spacing of 1 s between the simulated 
observations.  

Building the VCM 

We build the fully populated VCM ,noise ρΣ  by associating the time label ti  at which the 

measurement was made to each range observation (see Figure 1 right). In a first approach, we neglect 
the time taken by the sensor to go back to the second column and consider the first point of the second 
column to be equally spaced regarding the observations of the first column. Including this short time 
offset acts to decrease the correlations, that is, makes the results obtained closer to case (ii). 

Finally, we build the fully populated pointwise sorted VCM of the range measurements from 
the vector of correlations. This VCM has a Toeplitz structure and is scaled so that the variance of the 
range ρ  corresponds to the two cases described previously (see (ii)). Similar to case (ii), the VCM of 
the raw TLS observations is transformed by accounting for mathematical correlations. This leads to 

a fully populated VCM of the Cartesian co-ordinates . 
We simulate two kinds of correlation structures with different Matérn parameter values: low 

correlation range [ ] [ ], 1, 2α ν =  and [ ] [ ], 0.01, 2α ν =  for which the correlations prevail for larger 
lags. We intentionally consider mean-squared differentiability of the Matérn covariance function at 
the origin (near 0ti = ) by taking 1ν >  [39]. Taking 1ν <  imposes is a strong limitation, since the 
correlation length decreases sharply at the origin leading to sparse VCM and inverses. This effect 
decreases the impact of fully populated matrices in the LS adjustment and statistical tests [52]. The 
study of the temporal correlation structure of TLS range measurements is beyond the scope of this 
paper and will be done in a next contribution. 

noise TC=Σ Σ
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3.3. Approximated VCM in the LS Adjustment 

The assumption that the true VCM of the raw observations is known is fairly unrealistic in real 
application. Thus, we propose to additionally assess the impact of an approximated VCM on the 
distance computation derived from the regression B-splines approximation. We gradually mis-
specified the true VCM, as presented in Table 1. This Table has to be read as follows: for case (ii) the 

true VCM is MAC=Σ Σ  and is simplified using the scaled identity matrix 
2ˆ
ρσ=Σ I

. For case (iii) we 

simulate two steps of simplification: firstly, we neglect the temporal correlations (
ˆ

MAC=Σ Σ ) and, 

secondly, the mathematical correlations (
2ˆ
ρσ=Σ I

). 

Table 1. Approximation of the variance-covariance matrix (VCM) in the least-square (LS) adjustment 

to estimate the B-spline surfaces for the three cases under consideration. 2
ρσ  can take the values 

2
,1ρσ  or 2

,2ρσ
.
 

Case (i). Case (ii) Case (iii) 
True VCM 

2
ρσ=Σ I   

Simplification 1 
2ˆ
ρσ=Σ I  

Simplification 1 
2ˆ
ρσ=Σ I  

 
True VCM 

MAC=Σ Σ  

Simplification 2 
ˆ

MAC=Σ Σ  

  
True VCM 

TC=Σ Σ  

3.4. Determining the Optimal Number of CP Using Information Criteria 

We simulate a total of four PC for cases (i) and (ii) and four PC for case (iii) with two different 
correlation structures and range variances. We compute 100 runs of each simulation with an MC 
approach. One run here corresponds to the generation of two epochs simultaneously.  

The mathematical modelization of the simulated PC is performed using the regression B-spline 
surface approximation developed in Section 2. The parametrization is made with the chord length 
method, which gives satisfactory results for regular and rectangular-shaped PC. The knot vector is 
determined using the method of Piegl and Tiller [41]. The optimal number of CP in the two directions 
is iteratively determined for each of the eight cases with the BIC and AIC approaches (see Section 
2.1.2.). Since the AIC gave the same results as BIC, the results are not shown for the sake of brevity.  

The results given by the BIC are presented in Table 2 and are identical for each MC run. 
Correlated and Gaussian noise vectors lead to a different optimal number of CP. 
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Table 2. The optimal number of control point (CP) in both directions (n/m) is determined with 
Bayesian information criterion (BIC) for case (i), (ii) and (iii) corresponding to different noise 
structures. Unit of STD is [m]. Case (i): simple case, heteroscedasticity. Case (ii): complexity degree 1: 
heteroscedasticity + MAC. Case (iii): complexity degree 2: heteroscedasticity + MAC+ temporally 
correlated (low and high). 

 

Case (i) 2
noise ρσ=Σ I  

,1 0.0007ρσ =  

,2 0.007ρσ =  

Case (ii) noise MAC=Σ Σ  

,1 0.0007ρσ =  

,2 0.007ρσ =  

BIC (n/m) 9/10 11/10 

 

Case (iii) noise TC=Σ Σ  

[ ]

,1

,2

0.0007

0.007

[ , ] 1, 2

ρ

ρ

σ

σ

α ν

=

=

=

 

Case iii) noise TC=Σ Σ  

[ ]

,1

,2

0.0007

0.007

[ , ] 0.01, 2

ρ

ρ

σ

σ

α ν

=

=

=

 

BIC (n/m) 11/10 11/10 

3.5. Results 

The means over all MC runs of ( )1 2,s simu simuD S S  and ( )1 2,sD S S  are calculated, as well as 

( )_ 1 2,s ave simu simuD S S  and ( )_ 1 2,s aveD S S . These values correspond to the distance between the 

approximated surfaces or the distance between the raw PC. Additionally, the STDs of the series 
obtained from the 100 MC runs are given. The stochastic models used to approximate the surfaces 
are varied according to Table 1.  

In Table 3, we intentionally choose to present only the results from the extreme case (iii), 
corresponding to a high correlation level and a high range variance. This is justified for the sake of 
the brevity and clarity of this contribution. The other results are deduced from this particular one and 
are summarized in a text form in the following paragraphs. 

Table 3. Results of the Monte Carlo (MC) simulations for the case (iii) under gradual misspecification 
of the stochastic model. The Hausdorff distance (HD), its averaged derivation (AHD) and the 

difference ratio defined as 100 ref

ref

HD HD

HD

−
 where ,refHD HD  are the HD obtained under the 

reference VCM noiseΣ  and the different approximating VCM Σ̂ , respectively. Units of STD and 

distances are [m]. 

Case iii) noise TC=Σ Σ  

[ ]
,1 0.007

[ , ] 0.01, 2
ρσ

α ν

=

=
 

HD (%)/STD AHD (%)/STD 

ˆ
TC=Σ Σ  reference VCM 

 

0.0084 
3.6 × 103 

0.0029 
1.3 × 103 

ˆ
MAC=Σ Σ  only MAC 

0.0175 (107%) 
6.2 × 103 

0.0090 (207%) 
4.8 × 103 

2ˆ
ρσ=Σ I  no correlation 0.0148 (76%) 

6.1 × 103 
0.0090 (207%) 

4.9 × 103 

PC no approximation 
0.0153 (82%) 

5.7 × 103 
0.0092 (135%) 

4.8 × 103 
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3.5.1. Impact of the Simplified Stochastic Model on HD and AHD: Mathematical Approximations 

We expect the HD and AHD between the mathematical approximations to be as close as possible 
to 0, since the simulated PC corresponds to a “non-deformation” case. Any discrepancy can be 
assigned to the LS solution itself when noisy observations with the wrong VCM are approximated. 
Additionally, the chosen distance may be inappropriate. The results of Table 3, as well as the one of 
the other simulations -described in text form-, are interpreted in this light. 

Use of a Correct VCM 

When we use the correct VCM to approximate the PC with the regression B-spline surface (Table 
3, second line), the distances (HD or AHD) are close to 0. For case (iii) and 0.007ρσ =

 
m, it reaches 

0.0029 m for the AHD but a higher value of 0.0084 m for the HD. We find additionally 0.0011 versus 
0.0012 m for 0.0007ρσ =

 
m (STD 3 × 104 m) for AHD and HD, respectively. For case (ii) which 

corresponds to 0.007ρσ =
 
m and a reference noise MAC=Σ Σ , the AHD reaches 0.0046 m and the 

HD 0.0232 m (STD 3 × 104 and 4 × 103 m respectively). This is a stronger difference compared to case 
(iii). For case (i) − 0.007ρσ = m, noise =Σ I -, the AHD reaches 0.1097 m and the HD 0.3534 m (STD 

3 × 103 for both). Thus, we clearly see that the AHD gives values that are closer to 0 than the HD for 
all cases under consideration. 

Use of An Approximated VCM 

As described in Section 3.3, we use approximated VCMs in the LS and distance computation 
(Table 3, third and fourth line). In the latter case, we can distinguish that: 

• under correlated noise, the approximated VCM used in the LS computation affects the 
determination of both the HD and the AHD strongly: the difference ratio reaches for the case iii) 
more than 75% for the HD and 200% for the AHD. This result was found to hold true for all cases 
under consideration, that is, independently of the correlation structure and the variance factor. 
Thus, a correct stochastic model is unavoidable for a trustworthy distance. Exemplarily for case 

(iii) with [ ][ , ] 0.01,2α ν =  and ,1 0.007ρσ = m, the ratio of the difference between the 

approximated and the reference distance to the reference for ˆ
MAC=Σ Σ  or 2ˆ

ρσ=Σ I  reaches 

200% for the AHD (Table 3). Decreasing the correlation length decreases the ratio: for case iii) 

and [ ][ , ] 1,2α ν = , this latter is found only 7% smaller than the reference value when the VCM 

is mis-specified ( ˆ
MAC=Σ Σ  or 2ˆ

ρσ=Σ I ). This result is found to be independent of the ρσ  

chosen. For ,2 0.0007ρσ = m, the same ratio is 10% smaller: a small range variance impacts the 

distance computed with a mis-specified VCM less strongly. 
• When the observations are only MC, simplifying the stochastic model by neglecting the 

mathematical correlations, that is, taking 
2ˆ
ρσ=Σ I

, did not affect the HD or the AHD 
significantly for ,2 0.0007ρσ =

 
m. By increasing the range STD to ,1 0.007ρσ =

 
m, the ratio for 

the AHD was increased by 15%. This result highlights the importance of accounting for 
mathematical correlations under unfavorable scanning conditions, that is, high range variance.  

Independently of the case under consideration and the approximated VCM used, the AHD was 
always about four times smaller than the HD and, thus, closer to the expected 0 value. The AHD was 
less influenced by a wrong stochastic model than the HD, except for case iii) and ,2 0.0007ρσ =

 
m. 

We attribute this finding to the averaging effect of the AHD. 
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3.5.2. Impact of the Simplified Stochastic Model on the HD and AHD: PC 

When the distances are computed based on the raw observations, we still expect the AHD and 
the HD to be as close as possible to 0. Discrepancies are due to the noise introduced to generate the 
simulated PC and depend on the distance chosen.  

The HD and AHD based on simulated PC have both higher values and STD compared with the 
values obtained with a mathematical modelization (see Section 3.5.1.). This result is particularly 
significant when the PC noise is correlated. Indeed, a difference of up to 135% for the AHD could be 
obtained for case iii) and ,1 0.007ρσ =

 
m (“PC,” last line in Table 3). For case iii) and ,2 0.0007ρσ =

m, we find a difference of 85% for the AHD and more than 400% for the HD. For case (ii), differences 
of 80% and 30% for the AHD and HD, respectively, are reached for both ,1ρσ  and ,2ρσ . For case (i), 

we notice a difference of 22% versus 75% for the AHD and the HD, respectively. This finding 
highlights the filtering effect of surface approximations on the underlying PC noise. It is, thus, 
particularly advantageous to approximate the PC mathematically for distance computation in the 
case of correlations.  

We note more generally that correlations also had a positive effect on the distance computation 
with raw observations. In case (iii), a decrease of both its value and STD regarding case (ii) or (i) was 
identified. Exemplarily, we find for ,2 0.0007ρσ =

 
m: 

case (i): AHD of 0.3534 m (STD 4 × 103 m)  
case (ii): AHD of 0.0012 m (STD 5 × 105 m)  

case (iii) and [ ][ , ] 0.01,2α ν = : AHD of 0.0011 m (STD 2.5 × 105 m).  
When the raw observations are used, correlations act implicitly as a reduction of the available 

information, that is, similar to a point density reduction [9]. In real applications, they are related to 
the gridding of the raw observations, which reduces the number of observations of the PC. This 
implication is further developed in Section 4 with real observations from a bridge under load.  

3.5.3. Statistical Testing for Deformation 

In Appendix 2, we propose a rigorous statistical test for the significance of the distance between 
mathematical approximations of TLS observations. We applied this derivation to the simulated PC. 

The 0H  that no deformation occurs was fortunately strongly supported for all cases under 
consideration. The test values varied between 0.3 and 1, whereas the smallest ones were obtained for 

the correlated cases (iii) under the assumption that 
2ˆ
ρσ=Σ I

. This highlights once more the 
importance of an adequate stochastic model, particularly in the presence of correlations, although the 
absolute pv  values should only be overinterpreted [52].  

3.6. Conclusions of the Simulations 

Using the results of the simulations, we provide a first answer to the following questions: 
• How does correlated noise affect the distance? Which distance is better suited in the 

case of noisy observations? 
Based on the results of the simulations and when the raw observations are used (PC), correlated 

noise affects the distance computation positively. It has a similar effect as a reduction of the 
observations available. When a mathematical approximation of the PC is performed, the best 
stochastic model should be used in the LS adjustment to assess a trustworthy distance. The impact 
becomes less pronounced by decreasing range variance and correlation length. The AHD is better 
suited than the HD for computing the distance between raw or approximated PC. 

• Why should we use a mathematical approximation of the noisy PC? 
A mathematical approximation of the PC using, for example, B-spline surfaces is beneficial to 

assess a distance as close as possible to the reference value. Moreover, it allows the derivation of a 
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rigorous statistical testing procedure based on the distance chosen, as developed in Appendix 2 and 
validated within a simulation framework. 

4. Case Study 

The previous simulations, for which the noise structure was known and controlled, have 
highlighted the impact of correlations on the HD and AHD. In this section, we propose to apply these 
derivations to a real case study.  

We will analyze the HD and AHD computed with and without mathematical modelization of a 
real PC. We will compare the values with a reference one obtained with a more precise sensor: a 
pointwise LT. The rigorous statistical test procedure for deformation will be further applied.  

4.1. A Bridge Under Load 

We use real data from a bridge under load to assess the advantages of a mathematical 
modelization regarding processing the raw observations to estimate and test magnitudes of 
deformation.  

The data set corresponds to a historic masonry arch bridge over the river Aller near Verden in 
Germany. Deformations were artificially generated by increasing load weights on specific parts of 
the bridge to simulate the impact induced, for example, by car traffic [53]. In the scope of the load 
testing the standard load of 1.0 MN (100 t) was defined and further loadings up to five-times the 
standard load were realized. Thus, a maximum load of approximately 6.0 MN was defined, produced 
by four hydraulic cylinders mounted on the arch. The TLS profiles were captured using a Zoller + 
Fröhlich Imager 5006H at a sampling rate of 500,000 points per second. In a pre-processing step, 
objects such as prisms were removed from the PC to achieve a clean dataset: this filtering with respect 
to objects on the arch surface eliminated interfering objects, that is, other sensor installations like 
prisms for the laser tracker and strain gauges. The first evaluation step of the 3D point clouds in post-
processing was the referencing of the 3D point clouds in the coordinate system of the structure. The 
corresponding results are shown in Reference [53], Table 1. The mean standard deviation of the 3D 
points was 0.2 and maximum of 0.4 mm, which shows the quality of the referencing and guarantees 
at the same time a stable laser scanner position during the load test. In this contribution, we 
intentionally focus on the deformation between the reference PC without load (called E00 for epoch 
0) and the PC corresponding to the maximum deformation occurring at the 5th epoch (E55). Further 
details about the experiment can be found in Reference [5], with a comparison for all load steps of 
the LT deformation magnitudes and the M3C2 distance.  

Figure 2 is a photograph of the bridge, with a localization of the two LT points under 
consideration. The TLS was positioned approximately in the middle of the bridge so that the parts 
under load could be optimally scanned at a short distance, that is, from 5 m in the up-direction. 
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Figure 2. Bottom and top: Representation of the bridge under load with the localization of the two 
patches L13 and L8 under consideration. The load was positioned approximately in the middle of the 
bridge under which the TLS was positioned (images adapted from Reference [5]). 

We aim to compare the HD and AHD with the deformation magnitude obtained with a highly 
accurate LT. As this latter measures a pointwise distance, we selected two small surfaces (quadratic 
patches) of 25 × 25 cm from the whole PC in the direct neighborhood of the two LT points L8 and L13. 
The zone around L8 was scanned with a less favorable geometry than the patch around L13 regarding 
point density, incidence angle, footprint size and range (see Figure 2).  

These two points were chosen intentionally due to: 
• their comparable and small deformation magnitudes of approximately 4 mm 

between step E00 and 55 around the reference LT point and  
• the two different scanning geometries.  

Please note that we do not intend to make a systematic investigation of the impact of the 
geometry on the quantities of interest here and hence, no further indication will be given. Our goal 
in this contribution is to compare the HD and AHD with the LT values and validate a procedure for 
testing deformation. Further investigations are left to the next and other specific contributions.  

4.2. Mathematical Modelling 

A parameterization was carried out using a uniform method, which is justified by their relatively 
smooth and uncomplicated geometries, in order to mathematically approximate the small patches 
with B-spline surfaces. We chose an equidistant knot vector for the same reason. A B-spline 
approximation is preferred instead of a Gauss-Helmert Model [54], since the surfaces are not exactly 
planar and cannot be exactly approximated with an inclined plane.  

Three strategies were adopted for the surface fitting to simplify the computation and reduce the 
point densities of the PC:  

• In a pre-processing step, the extracted PC were gridded, that is, the X- and Y-axis were each 
divided into ten steps. For each of the 100 cells, the means of the X, Y, Z values were computed 
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to reduce the number of observations. The value of 10 was chosen as the highest one leading to 
the occurrence of at least one point in each cell. 

• The PC extracted were gridded similarly to (i) but the X- and Y-axis were divided into 5, which 
corresponds to 25 cells. 

• The whole PC were used without gridding, that is, no reduction of the PC point density was 
performed. 

The BIC was used to compute the optimal number of CP. For (i) and (ii), the estimation of 4 CP 
in both directions was found to be optimal for the patches, whereas for (iii), 6 CP were estimated in 
both directions for L8 and L13, respectively. 

The different mathematical surfaces obtained with and without gridding are shown in Figure 3. 
Figure 3 right highlights how the gridding of the PC (case (i)) affects the fitting by smoothing or 
filtering the PC. Figure 3 left shows more details of the surface as all available scanned points are 
used (case (iii)). 

 
Figure 3. L13: Effect of the point cloud reduction by gridding the raw observations. Left: B-splines 
fitting without gridding. Right: Surface approximation with gridding, case (i). 

Note on the Stochastic Model: 

When a gridding of the PC is performed, the temporal correlations are lost: an averaging of the 
values within one cell is performed and the time matching becomes meaningless. We, therefore, make 
use of the simplified stochastic model corresponding to case (ii) and account only for 
heteroscedasticity and mathematical correlations in the LS adjustment. The intensity model is used 
to compute the range variance [38]. As expected from the scanning geometry and because the TLS 
was situated under the middle of the bridge (Figure 2), we obtained a large mean intensity of 
1,557,500 Inc for L13, leading to 13 0.5L

ρσ ≈
 
mm, whereas for L8, the mean of the intensity reached 

358,900 Inc corresponding to 8 1L
ρσ ≈

 
mm.  

For case (iii) (B-spline approximation without gridding), we chose intentionally to neglect 
correlations to compute the mathematical approximation of the PC. This is justified by the 
computational burden associated with fully populated VCM and relatively low impact on the 
distance for the range variance under consideration (less than the submm level, see 3.6.3).  

4.3. Computation of the HD and AHD 

The HD or AHD computed with the three gridding strategies are not expected to give similar 
values.  

Due to the smaller reduction of the PC point density, HD and AHD from the B-spline 
approximation (i) will be closer to the values obtained with the PC (case (iii)). Because the HD is a 
local distance measure, a stronger influence on unexpected local details is anticipated, particularly 
when few points are condensed in a grid cell. In the simulation section, we stated that correlations 
were acting to reduce the number of observations available and affected the distance computation 
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with raw observations positively. This effect is similar to a gridding of the PC and allows us to 
conjecture that an optimal gridding exists leading to the reference value of the distance. The reference 
value corresponds here to the pointwise LT distance. 

The mathematical approximations of the PC will lead to a distance closer to the reference one 
when optimal gridding of the raw PC is performed. 

The corresponding results are presented in Table 4 and confirm these expectations. Both HD and 
AHD values are compared with the LT values (last column) for the four cases under consideration. 

Table 4. The HD and AHD for the two points L8 and L13 under consideration. Case (i) and (ii) 
correspond to a B-spline approximation with a reduction of the PC via gridding. Case (iii) B-spline 
fitting without gridding using the whole PC. For all approximations we took ˆ

MAC=Σ Σ . PC means 

that no mathematical approximation was performed. The values are compared with the Euclidian 
distance obtained from the LT observations between the two epochs as well as the usual M3C2 
distance. 

L13 0.5ρσ =  
mm AHD 

[mm]  
HD 
[mm]  

LT 
[mm] 

M3C2 
[mm] 

Gridded observations     
B-Splines (i): 74 points/cell 
B-Splines (ii): 300 
points/cell 

 4.90  
 4.80  

 5.62  
 5.53    

No gridding     
B-splines (iii) no gridding 
PC or raw obs. 

 5.21 
 5.58 

6.70  
7.24 

Ref:  
4.96 

 4.70 

L8 0.5ρσ =  
mm AHD 

[mm]  
HD 
[mm]  

LT 
[mm] 

M3C2 
[mm] 

Gridded observations     
B-Splines (i): 16 points/cell 
B-Splines (ii): 66 points/cell 

4.29  
4.06 

9.71  
 5.39   

No gridding     
B-splines (iii) no gridding 
PC or raw obs. 

4.51  
 5.09 

 11.00 
 9.82 

Ref:  
4.07 

 3.20 

Gridded Observations: Case (i) and (ii) 

In the case of gridded observations (Table 4, first line), the LT deformation magnitudes are closer 
to the AHD than to the HD. The HD (Table 4, third column) is higher than the AHD (Table 4, second 
column) in all cases.  

A reduction of the PC to 16 values pro cell (L8 case (i)), Table 4, first line) leads logically to an 
AHD closer to the value obtained without mathematical approximation (PC). It is nearly 0.2 mm over 
the value given by the LT (4.29 mm versus 4.07 mm). We link this effect to the lower noise reduction 
regarding (ii).  

A high point averaging corresponding to 300 PC points in a cell (L13 case (ii)) is associated with 
a low AHD. This latter is smaller by 0.23 mm compared with case (i) (Table 4, third line). However, 
the difference is below the noise variance of the range and should not be overinterpreted. Similarly, 
we found an underestimated value of 3.8 mm for point L8 by averaging to 600 points per cell (not 
presented in Table 4). Thus, the loss of information due to a strong PC density reduction affects the 
AHD negatively when compared with the LT deformation magnitude.  

No Gridding, Case (iii) 

When the whole PC is used for surface fitting rather than a gridded version, the AHD are higher 
by up to 0.5 mm for L8 and 0.3 mm for L13 compared with the optimal values obtained with an 
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approximated gridded PC (Table 4, second column). These values are below the noise variance of the 
range but show the effect of the PC smoothing on distance computation (e.g., Figure 3).  

From Table 4 (third column), the HD for case (i) and (iii) are higher than for case (ii). This gives 
an additional argument in favor of the AHD, that is, the averaging decreases the impact of potential 
local artefacts when compared with LT pointwise deformation magnitude.  

In Table 4, last column, we added the results found with the usual method M3C2 [10]. The results 
show an underestimation of the distance with 3.20 mm versus the LT value of 4.07 mm for L8 and 
4.70 mm versus 4.96 for L13. 

4.4. Testing for Deformation 

Even if the deformation magnitude is obvious regarding the estimated noise STD for both L8 
and L13, we aimed to validate the testing methodology presented in Appendix 2. We, thus, make use 

of the bootstrapping approach to derive the p-values of the a priori test statistics  and AHDT  

under the stochastic model ˆ
MACΣ  with the estimated ρσ . Following the simulations, we use 

99BSK =  samples to test for the significance of deformation. The bootstrap sample generated under 

0H  “no deformation” is defined as the average of the two surfaces E00 and E55 for the two points 

under consideration. No evidence for 0H  “no deformation” could be identified, as the p-values 

reached for the AHD were approximately 0 and were far below the critical value testα  of 0.05. We 
can conclude that the deformation magnitude based on the AHD is statistically significant.  

4.5. Discussion 

In this case study, we found a number of points, around 60–70 optimal in each cell (L8 case (i)) 
and L13 case (ii)), to ensure an AHD close to the deformation magnitude obtained with the LT. This 
finding is far-reaching when comparing mathematical approximations of the TLS PC and LT values 
is intended:  

• an optimal grid setting for a good correspondence between the deformation magnitudes 
computed from two different sensors exists: a higher point density may lead to different point 
correspondences in the two epochs, particularly in the case of a small deformation. The optimal 
size of the cell depends on the point density inside one cell and could be assigned by means of 
calibration based on sensors comparison (LT and TLS). 

• We further pointed out that the AHD is less influenced by a suboptimal fitting, that is, 
inappropriate parametrization, knot vector or number of CP and is more trustworthy for local 
deformation analysis than the HD. This finding confirms the results from the previous simulations: 
the AHD is more appropriate than a maximum value (the HD) for the sake of comparison with 
LT values. This is due to the averaging of the AHD when a local deformation analysis is 
performed. A statistical test of significance of deformation should be based on this distance. 

We noticed that the point density reduction affects the distance computed with B-spline 
approximations positively, up to a given stage where not enough information is available for a correct 
fitting. This confirms our conjecture that optimal gridding of the raw PC exists for which the AHD 
corresponds to the reference value, that is, an implicit account for correlations: 

Using standard setting, we found an underestimation of the deformation with the M3C2 
method. This finding is coherent with our results about the point density inside one cell. 
Consequently, we would strongly recommend performing local fitting when magnitudes have to be 
precisely estimated. Consistency regarding the point density and distance computation is mandatory 
for the sake of comparison between deformation magnitudes obtained with different sensors.  

HDT
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5. Conclusions 

The potential of TLS-based deformation analysis is high due to the fast and simple data 
acquisition, the high point density and the possibility of scanning whole areas of interest. B-spline 
surfaces can approximate the PC mathematically for rigorous statistical testing of deformation and 
to filter the noise of TLS observations.  

A numerical evaluation of the magnitude of deformation can be obtained by computing a 
distance between the PC or their approximated counterparts. In this contribution, we focused on the 
HD and the AHD. The latter was shown to be a powerful alternative to the HD in the case of 
correlated observations.  

Three questions were answered:  

• A mathematical approximation of the noisy TLS PC is beneficial for a trustworthy distance 
computation: B-spline surface approximation from scattered PC acts as filtering the correlated 
and heteroscedastic noise from TLS observations. The AHD computed was closer to the 
reference one for both simulated and real data analysis when a B-spline surface fitting was 
performed. Additionally, a pre-gridding of the raw PC for a real scenario affected the distance 
computation positively by further reducing the observations available. 

• Rigorous statistical test for deformation can only be performed based on parametric surfaces. 
That is one of the most significant advantages of mathematical approximation. Because the 
distribution of the test statistics for deformation based on the AHD is not tractable: we proposed 
and validated a novel bootstrap approach for the test decision. 

• Correlated noise affects the distance computation between PC for both raw and approximated 
observations. In the case of an approximation of the PC with regression B-spline surfaces, an 
optimal stochastic model in the LS adjustment is mandatory to reach the optimal value of the 
distance: both mathematical and temporal correlations should be accounted for.  

In a real application, the impact of the noise on the distance can be decreased by optimal 
gridding of the raw observations, similar to the account of correlations. Consequently, a calibration 
using a highly accurate sensor could be performed in advance. The size of the cell depends on the 
point density within the surface under consideration. Further analysis will be performed to fix the 
optimal grid size by means of calibration. We will also validate the proposed correlation model by 
analyzing the residuals of the B-spline surface approximation. 
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Appendix 1: the Matérn Model  

In this contribution, we use the Matérn covariance function [48] to compute TCΣ . The main 
parameters of this model—which can be extended to account for anisotropy and nonstationarity 
[51]—are briefly presented here.  

In its simplest and spatial form, the Matérn covariance function maternC  is defined by 

( ) ( ) ( )maternC r r K rν
νφ α α= , where 0r >  is the Euclidean distance between two points in space 

and ν  is the smoothness parameter related to the mean-squared differentiability of the field at the 

origin. Kν  denotes the modified Bessel function of the second kind with order ν  and α is a range 

parameter that controls how quickly  decreases as r  increases. The function is usually maternC
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normalized to 1 with the scaling parameter φ  and can be easily scaled to any other variance, for 
example, using the intensity model of Reference [12] as proposed in this contribution. In this 
contribution, the r  is replaced by the time ti  to obtain a temporal covariance function. 

Figure A1 left displays  scaled to 1 (i.e., the correlation function) for different choices of 
the shape parameter . The parameter clearly specifies the rate of decay of the covariance function 
at the origin and is, thus, related to the high-frequency content in the spectral domain. When Toeplitz 
VCM are built with this covariance function, their inverse will become more fully populated as ν  
increases and, consecutively, the impact of accounting for correlations in the LS adjustment will be 
stronger [16]. The following cases are well-known for a 1D field and should be mentioned:  

• 1
2ν =  corresponds to the exponential covariance function, that is, a strong decay at the origin 

• 1ν =  to the Markov process of first order 

• ν = ∞  is the squared exponential covariance function, which corresponds to a physically less 
plausible infinitely differentiable random field at the origin. The case 4ν =  of Figure 4 left 

highlights the meaning of this assumption, that is, a low decaying maternC  at the origin, leading 
potentially to some numerical problems when corresponding VCM have to be inverted. 

Figure A1 right shows the different correlation functions obtained by varying the range 
parameter α . As can be seen,  is linked with the speed at which the covariance function decays 
to 0. Please note that other parametrizations of the Matérn function are possible [39]. The parameters, 
including the variance, can be estimated with the maximum likelihood or cross-validation methods, 
eventually by fixing one parameter to reduce the computational burden [55]. 

 
Figure A1. Matérn correlation function. Left: variation of the smoothness parameter ν  with 

0.05α = . Right: variation of the range parameter α  by keeping ν  fixed to 2. 

Appendix 2: Bootstrap Statistical Test for Deformation 

A parametric surface modelization allows the significance of the deformation magnitude to be 
statistically and rigorously assessed.  

Test Statistics and the Null Hypothesis 

In order to test the significance of the HD and AHD, we define the null and the alternative 
hypothesis of the test by: { }0 : 0sH E D =  vs. { }1 : 0sH E D ≠  and { }0 _: 0s aveH E D =  vs. 

{ }1 _: 0s aveH E D ≠ , that is, the null hypothesis states that no deformation happened. { }E  is the 

expectation operator. As we aim to measure the deviations from 0H  as a distance measure, we 
follow [43] and choose the HD test statistic 

maternC
ν

α
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This a priori test statistic is similar to the congruency statistic used, for example, to test 
deformation in geodetic networks [4]. It is directly derived from Reference [47]. In this latter 
contribution, gridded surface points were used to compute the test statistic. The proposed test 
statistic (9) is more general, as the points of the two surfaces under consideration are the ones where 
the HD occurs. As has been mentioned previously, the HD distance defined by (7) is based on the 

closest distance between two points at different epochs, so that the point HDi  may differ from HDj
.  

We define ΔΔΣ  as the VCM of the estimated surface differences. Using the error propagation 

law and neglecting cross-correlations, we have ( ) ( )1 1

1 2HD HDi j

− −T -1 T -1
ΔΔ 1 2Σ = A Σ A + A Σ A , where 1A  

and 2A  correspond to the design matrices defined in (3) for epoch 1 and 2, respectively. 
HDi

Σ  and 

HDj
Σ  are the submatrices of ( )1

1

1 1S noise

−
= T -1

1 ,ΣΣ A A  and ( )2

1

2 2S noise

−
= T -1

2 ,ΣΣ A A  at the HD points 

on the two surfaces, whereas 1 2,noise noise, ,Σ Σ  are the VCM specified in Section 3.  

AHDT  is defined similarly as the mean of the weighted sum of the square of the surface difference 
vector for each set of corresponding (i.e., closest) points on the two surfaces.  

Bootstrap Approach 

Our test statistics are based on the computation of the HD and AHD. They are nonlinear 
functions of the estimated surface points: exact test distributions are unavailable. To overcome this 
drawback, we use a parametric bootstrap method in the sense of Reference [56] to make a test decision 

at a prescribed significance level testα .  
In this appendix, we provide a short description of the four steps of the bootstrapping method, 

which utilizes an MC simulation of the empirical p-value, according to Reference [57].  

• Testing step: the bootstrapping approach starts by computing  and  or their a 
posteriori counterparts for the two estimated surfaces. Because these quantities are to be 
compared to a critical value that is not available, a large number of observation vectors are 

generated under 0H . A so-called bootstrap sample is defined, which is here taken as the mean 

of the surface differences, that is, ( )2 1
0 2H

S SS −= . We consider, therefore, that the mean 

surface as not being deformed, that is, generated under 0H .  

• Generating step: the generating step begins with the computation of 1N  and 2N  following 

the methodology of Section 3.1. Added to 0HS , we generate, thus, two noised surfaces, which 
we approximate with regression B-splines surfaces. Finally, the HD and AHD between the two 

approximations are computed. For one iteration BSk , we call the corresponding test statistics 
BSk

HDT  and BSk
AHDT . Please note that we make use of a parametric approach, that is, the random 

numbers are generated independently, so that no replacement is made by using the residuals of 
the LS approximation.  

HDT AHDT
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• Evaluation steps: BSK  iterations are carried out. Following [58], the loss of power of the test is 

proportional to the inverse of . We fixed 99BSK =  to keep the computation manageable. 

The p-value is estimated by ( )
1

1ˆ
BS

BS

BS

K
k

HD HD HD
kBS

pv I T T
K =

= > , according to Reference [57], to 

determine how extreme the test values  and AHDT  are in comparison to the BSK  of BSk
HDT  

and BSk
AHDT  generated under . I  is an indicator function, which takes the value 1 when 

BSk
HD HDT T>  and 0, vice versa. 

• Decision test: A large ˆ HDpv  indicates a large support of 0H  by the observations.  is 

rejected if ˆ HD testpv α< , where testα  is the specified significance level, usually taken as 0.05. 

We obtain ˆ AHDpv  by using AHDT  instead of HDT . The methodology of the bootstrapping 
approach is summarized in Figure B1. 

BSK

HDT

0H

0H
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Figure B1 Flowchart explaining the bootstrap simulation. 
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