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Abstract: This study aimed at evaluating the potential of machine learning (ML) for estimating forest
biomass from polarimetric Synthetic Aperture Radar (SAR) data. Retrieval algorithms based on two
different machine-learning methods, namely Artificial Neural Networks (ANNs) and Supported
Vector Regressions (SVRs), were implemented and validated using the airborne polarimetric SAR
data derived from the AfriSAR, BioSAR, and TropiSAR campaigns. These datasets, composed
of polarimetric airborne SAR data at P-band and corresponding biomass values from in situ and
LiDAR measurements, were made available by the European Space Agency (ESA) in the framework
of the Biomass Retrieval Algorithm Inter-Comparison Exercise (BRIX). The sensitivity of the SAR
measurements at all polarizations to the target biomass was evaluated on the entire set of data from
all the campaigns, and separately on the dataset of each campaign. Based on the results of the
sensitivity analysis, the retrieval was attempted by implementing general algorithms, using the entire
dataset, and specific algorithms, using data of each campaign. Algorithm inputs are the SAR data
and the corresponding local incidence angles, and output is the estimated biomass. To allow the
comparison, both ANN and SVR were trained using the same subset of data, composed of 50% of the
available dataset, and validated on the remaining part of the dataset. The validation of the algorithms
demonstrated that both machine-learning methods were able to estimate the forest biomass with
comparable accuracies. In detail, the validation of the general ANN algorithm resulted in a correlation
coefficient R = 0.88, RMSE = 60 t/ha, and negligible BIAS, while the specific ANN for data obtained R
from 0.78 to 0.94 and RMSE between 15 and 50 t/ha, depending on the dataset. Similarly, the general
SVR was able to estimate the target parameter with R = 0.84, RMSE = 69 t/ha, and BIAS negligible,
while the specific algorithms obtained 0.22 ≤ R ≤ 0.92 and 19 ≤ RMSE ≤ 70 (t/ha). The study also
pointed out that the computational cost is similar for both methods. In this respect, the training is
the only time-demanding part, while applying the trained algorithm to the validation set or to any
other dataset occurs in near real time. As a final step of the study, the ANN and SVR algorithms were
applied to the available SAR images for obtaining biomass maps from the available SAR images.

Keywords: P-band SAR; forest biomass; artificial neural networks; supported vector regressions

1. Introduction

Forests act as one of the main terrestrial carbon sinks [1]. Monitoring forest changes and estimating
forest biomass are therefore mandatory for several applications, including studies on global changes,
natural disaster prevention, and management of forest resources. The possibility to observe forests from
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satellite and/or aircraft instruments is thus very attractive. In this respect, Synthetic Aperture Radar
(SAR) has proven to be a suitable instrument for forest investigations. The SAR capability of estimating
several forest parameters, such as forest density, tree height, and forest biomass, was demonstrated
in several studies (e.g., [2–11]). The SAR capability of observing forest parameters depends on the
operating frequency, that is, at microwaves, the sensitivity of low frequencies (i.e., P- or L- band) to
forest biomass was largely proven [12–14]. The sensitivity increases with the wavelength, that is, at L
band, the relationship between the backscattering coefficient (σ◦) and biomass is logarithmic, and a
saturation is shown for biomass values higher than 100–150 t/ha [15,16]. Some research has also pointed
out a decrease of the signal for biomasses above this threshold [17]. At P-band, previous experiments
and model simulations pointed out that saturation occurs for biomass values higher than at least
300–350 t/ha (e.g., [15]). Research has also demonstrated that, depending on the penetration capability,
P-band is better related to the trunk and stem biomass, whereas L-band is better related to the crown
biomass [18,19]. At present, only few SAR data at P-band are available, mainly from airborne campaigns,
and therefore the potential of this band has not yet been fully exploited. A significant improvement in
the remote sensing of forests is therefore expected with the upcoming BIOMASS satellite mission of
the European Space Agency (ESA), carrying onboard an SAR operating at P-band [20].

Waiting for BIOMASS, research mainly focused on L-band and on the few data available at P-band
from airborne campaigns. The L-band SAR backscatter variability in tropical forests was assessed using
ALOS-2/PALSAR-2 data collected on the entire tropical forest region from 2016 to 2018 [21]. The authors
in [22] investigated the relationship between polarimetric SAR backscatter at L- and P-bands and
forest biomass using data acquired within the BioSAR1 ESA campaign in southern Sweden, and they
attempted the retrieval with regression methods. At L-band, the biomass was estimated with a root
mean square error (RMSE) between 31% and 46%, whereas P-band exhibited better retrievals, with
RMSE between 18% and 27%.

The retrieval of forest biomass in northeast Costa Rica was addressed by the authors in [23],
using P- and L- band SAR data acquired by the AIRSAR NASA/JPL airborne SAR system in March
2004. By using algorithms based on polarized radar backscatter, they estimated forest biomass with
RMSE = 22.6 t/ha for biomass < 300 t/ha at P-band and RMSE = 23.8 t/ha for biomass < 150 t/ha
at L-band.

Tomographic applications have also been considered, thanks to their capability of separating the
contributions of several layers of vegetation and soil surface. The potential of TomoSAR data at L-band
to monitor temporal variations of forest structure was addressed by using simulated and experimental
datasets in one study [24]. In another study [25], the application of tomography to SAOCOM L-band
SAR data allowed the retrieval of biomass using a single polarization (HH) with a 26–30% RMSE and a
small effect from the observation geometry and local topography.

The potential of machine-learning (ML) methods for addressing forest biomass retrieval is
evaluated in this study. Depending on its ability to solve nonlinear problems, ML has been previously
employed for the retrieval of surface parameters from remote sensing data, providing more accurate
results than other methods (e.g., [26–28]).

In this framework, both Artificial Neural Networks (ANNs) and Supported Vector Regressions
(SVRs) demonstrated their potential in addressing the retrieval of surface parameters, showing their
peculiar capability of combining inputs from different sources for addressing the retrieval.

ANNs have been already applied to several remote sensing problems (e.g., [29–31]), demonstrating
a good trade-off between retrieval accuracy and computational cost. Past studies have pointed out
that the availability of an extensive reference dataset for training the ANN is the main constraint for
obtaining satisfactory retrievals (e.g., [32]). However, only a few examples of ANN applications to the
retrieval of forest biomass are available in the literature, and in a couple of these [33,34], ANN were
applied to retrieve the forest biomass in Mediterranean areas by combining L- and C- band SAR data.

SVR is another method of machine learning that has gained an increasing interest in the remote
sensing of geophysical variables [35,36], thanks to the flexibility and robustness to noise in the training
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data. SVR was successfully applied to the retrieval of surface parameters by the authors in [37], where
this method was also compared to ANN.

In this study, two algorithms for the retrieval of forest biomass, based on ANN and SVR,
respectively, were implemented and validated using P- band polarimetric airborne SAR data acquired
by the ESA during the BioSAR, AfriSAR, and TropiSAR campaigns [38–43]. Inputs of both algorithms
are the polarimetric SAR backscattering, and output is the biomass. Considering the dependence of
SAR measurements on the acquisition geometry [44–47], both algorithms have the local incidence
angle (LIA) as additional input.

The paper is organized as follows. Section 2 gives an overview of the test areas and the datasets
considered in this study. The ANN- and SVR-based retrieval algorithms are presented in Section 3.
The sensitivity of SAR measurements to forest biomass is described in Section 4. The algorithm
validation is presented in Section 5, the obtained results are discussed in Section 6 and conclusions and
future work are presented in Section 7.

2. Experimental Sites and SAR Data

The entire dataset made available by the ESA in the framework of the Biomass Retrieval Algorithm
Inter-Comparison Exercise (BRIX) [48] was considered for implementing, training, and validating
both the ANN and SVR algorithms. BRIX is an initiative promoted by the ESA that is intended
to intercompare different approaches for retrieving forest biomass from P- band fully polarimetric
SAR sensors. The BRIX dataset was composed of the P-band polarimetric SAR data acquired during
the airborne experiments carried out in preparation for BIOMASS. The calibrated and geocoded
backscattering data from each campaign were delivered by the ESA through the “Testbed”, as described
in the BRIX documentation [48]. We referred to the support documentation of each campaign for the
description of the SAR data processing and of the in situ biomass measurements [38–43]. The main
dataset was derived from the joint NASA and ESA AfriSAR experiment, which was conducted in
Gabon. The experiment was composed of two campaigns—the first was carried out in 2015 with
the ONERA (Office National d’Études et de Recherches Aérospatiales) SETHI SAR system and the
second one in 2016 with the NASA (National Aeronautics and Space Administration) Land Vegetation
and Ice Sensor (LVIS) LiDAR, the NASA L-band UAVSAR, and the DLR (German Aerospace Center)
F-SAR [38]. The area covered by the flights was composed of four test sites. The main site was located
in Lopé National Park (0.5◦ S, 11.5◦ E), a UNESCO World Heritage site protected since 2007, in which
high closed-canopy forests are merged with open savannas. SAR campaigns were carried out in three
more sites, including the protected area of Mondah, close to Libreville (0.6◦ N, 9.6◦ E), the Mabounié
mining site (0.7◦ S, 10.7◦ E), and the Rabi site (1.9◦ S, 10◦ E). In Mondah, integer patches of forest are
mixed with others significantly disturbed by human activities. Mabounié is forested for the most part
but with traces of ongoing building, while Rabi is an onshore oil-drilling site in which some areas were
preserved. Ancillary LiDAR measurements were collected for generating biomass maps at 50 m to
be used for validation. Direct biomass measurements were also carried out on a total of 12 plots of
50 × 50 m (33 subplots of 25 × 25 m) for calibration and validation purposes.

The other datasets were derived from the three BioSAR campaigns [39–41] and from the TropiSAR
campaign [42,43]. The data included biomass values up to 500 t/ha, being representative of forest types
that included boreal and equatorial forests. The datasets also included very low biomass values, clearly
referring to non-forested areas. These data were kept in the training to make the algorithms capable of
identifying the low vegetated areas as well. All the test areas had flat or gently undulated topography.
For instance, the La Lopé area included a 600 m tall hill rising over a 200 m ground: thus, the effect of
local slopes on the measured σ0 was accounted for by including the LIA in the algorithm inputs.

By combining all the available data, a dataset was obtained composed of about 4500 sets of
backscattering coefficients (σ◦) at four polarizations (HH, HV, VH, and VV), as well as corresponding
LIA and biomass values from LiDAR or in situ measurements.
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The ANN and SVR algorithms were trained by dividing the entire BRIX dataset into two parts, or
the subsets of each campaign in the case of specific algorithms. The training set was composed of 50%
of the entire dataset, while the other 50% was used for validating the algorithms. The flowchart in
Figure 1 shows how the training and validation sets were obtained. The interleaved sampling was also
evaluated for dividing the dataset; however, negligible differences were obtained in the training and
validation results. It should be mentioned that the sampling cannot be considered purely random in
the case of the general algorithm, since the training and validation sets are obtained by combining
together the specific sets randomly sampled, so the general training and validation sets include the
50% of data from each campaign.
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3. Retrieval Methods

3.1. ANN

ANN can be regarded as a statistical method based on the minimum variance, which is able to
approximate the existing relationship between the given input(s) and output(s) [49,50].

The core of the algorithm is based on the Feedforward Multi-layer Perceptron Artificial Neural
Networks (MLP-ANNs) available in the MATLAB® Neural Networks toolbox. In MLP-ANN, each
neuron is connected to all the other neurons of the previous and following layers. The connections are
weighted and biased by coefficients that are iteratively adjusted during the training, thus modifying
the strength of every connection. In each neuron, the inputs are weighted, biased, and added each
other to produce an output value, called activation, which is then passed through the so-called transfer
function and moved to the neurons of the following layer. In this study, transfer functions of linear,
hyperbolic tangent sigmoid (tansig), and log-sigmoid (logsig) types were considered.

The weights and biases were adjusted by the Back Propagation (BP) learning rule, namely BP is a
gradient descendent algorithm aimed at minimizing the Mean Square Error (MSE) between the ANN
output and the desired value.

In the implemented algorithm, ANN inputs were the SAR backscattering coefficients (dB) at all
polarizations (HH, HV, VH, VV) and the corresponding local incidence angle (LIA), and output was
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the forest biomass (t/ha). It is worthy to mention that, according to the reciprocity property of passive
targets for monostatic observations, no difference was found in using one or the other cross-polarized
channel, and therefore the two cross-polarized channels were provided to the algorithms as mean
average. Several combinations of inputs were evaluated, by implementing specific algorithms for each
dataset (AfriSAR Onera, AfriSAR DLR, BioSAR, and TropiSAR), and a general algorithm which was
trained and validated on the entire dataset.

The training set was further divided into 60%, 20%, and 20% by using random sampling [32].
The ANN training was carried out on the first subset, using BP for adjusting the ANN parameters.
The other two subsets were used for a posteriori tests at each training iteration. The “early stopping”
rule was applied for preventing overfitting, that is, training stops as soon as the errors on the three
subsets are diverging.

The best dimensioning of ANN, in terms of number of neurons and hidden layers, is obtained
by iteratively increasing the number of neurons and hidden layers from one hidden layer, with a
number of neurons equal to the number of inputs, and up to two hidden layers, with a number of
neurons each equal to three times the number of inputs. The training of each configuration is repeated
100 times for each transfer function, by resetting each time the initial ANN weights. At the end of the
iterations, the results are compared and the ANN giving the highest correlation estimated vs. target is
chosen as optimal. Such systematic optimization helps in preventing both underfitting and overfitting;
underfitting occurs when the ANN architecture is too simplistic for the given problem, and overfitting
happens when the ANN architecture is overly complex and it also fits the noise in the training set,
causing large errors when applied to other datasets.

It should be noted that the training described here is carried out one time only; after training,
the ANN is saved and loaded again to be applied to the validation set and, in this case, to any new
datasets. Since the training is the only time-consuming step of the implementation, the algorithm can
be applied to new data in near real time.

Moreover, the training can be updated every time new training sets are available, for improving
the retrieval accuracy. This represents a unique feature of the ANN and, in general, of the data-driven
approaches based on machine learning, in comparison to the conventional retrievals that are based on
the inversion of electromagnetic forward models.

The validation, to which the results presented in Section 5 refer, was obtained by applying the
saved ANN to the validation set, which was not involved in the training, to keep training and validation
as independent as possible.

3.2. SVR

The second machine-learning approach to the retrieval was based on the Supported Vector
Regression (SVR) techniques. Similarly to ANN, past research has proven the SVR capabilities for
remote sensing applications (e.g., [36,51]). SVRs were demonstrated capable of handling complex and
nonlinear problems and of managing different kinds of inputs. While neural networks can handle
nonlinear problems having only a large training dataset, SVRs can achieve high accuracies, even if few
training data are available [51]. Actually, SVRs overcome this limitation because they are based on a
geometrical concept [52]. The method uses a so-called kernel function, for mapping the m-dimensional
input space of the original problem into a higher dimensional space, in which the function underlying
the data can be linearly approximated.

While neural networks try to populate the feature space with as many data as possible considering
all the available combinations of inputs and outputs for mapping the functions, SVRs aim at identifying
the boundaries of the tolerance tube around the input data to map the function without the need of
larger datasets [53].

The problem of retrieving the biomass from the P-band backscattering at different polarizations
was set as follows:

y = f (x1, x2, . . . .xm) + e (1)
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where f is the desired function, y is the biomass, x1, x2,... xm is the backscattering coefficient at different
polarizations, and e is the white noise. The y estimation is obtained by determining the mapping
function f′ as close as possible to the true mapping f for the given problem [37]. Given a set of N
reference samples {xi, yi |i=1, . . . N}, the ε-insensitive SVR attempts to identify a smooth function f′

approximating f while keeping at most ε deviation from the targets yi [54]. f′ is obtained by mapping
the input domain at m-dimensions into a higher dimension feature space, in which the function flatness
is increased. In the new space, f′ can be linearly approximated, according to the following equation:

f ′(x) = w·Φ(x) + b (2)

where w represents the weights of the linear function, Φ is the mapping function that transforms the
samples into the higher dimensional space, and b is the bias.

The cost function combining the training error and the model complexity is minimized to obtain
the optimal linear function in the transformed feature space [36]. The loss function f′ is ε-insensitive—
ε being the tolerance to errors, f′ ensures that losses smaller than ε are neglected [53]. An example of a
possible choice of the ε-insensitive loss function is shown in Figure 2. The second term of Equation
(2) is computed as the Euclidean norm of the weight vector w. The latter is inversely related to the
geometrical margins of the solution and therefore to the model complexity [36]. A regularization
parameter C is also introduced with the scope of adjusting the trade-off between the complexity
(flatness) of the function f ’ and the tolerance to the empirical errors. We referred to [37] for the detailed
mathematical formulation.
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Figure 2. Example of a possible choice of the ε-insensitive loss function characterizing the Supported
Vector Regression (SVR) learning approach (after [37]).

The training phase acts on reference samples composed by field data coupled with remote sensing
data, to train the SVR algorithm and tune the kernel parameters C and ε. This process is called model
selection [53]. During the training phase, the SVR algorithm uses a subset of the training dataset,
called the test dataset, to tune its performances step by step. After this phase, the algorithm is applied
to the validation set for evaluating the algorithm performances on independent data. At this point,
the learning phase is over and the regressor can be used (operational estimation phase). The trained
SVR is a good approximator of the mapping function between input data, which in this case are
represented by HH, VV, HV, and VH P-band backscattering, and the target variable represented by the
biomass. The separation among training, test, and validation follows the same approach proposed
for ANN.

Similar to ANN, specific SVR training regressors were computed from each of the missions
provided in the input dataset, while a general SVR training regressor was computed from the entire
dataset. The input/output configuration is the same of ANN—algorithm inputs are the backscattering
coefficients at all polarizations (HH, VV, HV, VH), while the output is the forest biomass.
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4. Data Analysis

A sensitivity analysis was carried out to understand the relationship between σ◦ and forest
biomass for all the experimental data available in BRIX.

The analysis of the BRIX dataset confirmed the sensitivity of σ◦ to the forest biomass; the direct
sensitivity of σ◦ at each polarization to forest biomass for the AfriSAR dataset is shown in Figure 3.
The plots show an increase of σ◦ when biomass increases up to 500 t/ha, although some saturation
is evident for biomass values higher than 300–350 t/ha, as already pointed out by previous research
(e.g., [15,16]).
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Figure 3. AfriSAR dataset: σ◦ at P-band vs. Biomass in (a) HH polarization, (b) HV polarization,
(c) VH polarization, (d) VV polarization.

The backscattering however does not saturate completely, and some increase with biomass can
also be observed beyond this threshold. All scatterplots exhibit vertical clustering of σ◦; this depends
on the σ◦ variability between the different SAR acquisitions in each test area that composed the
dataset. Moreover, the same values of in situ biomass correspond to different subareas and, therefore,
to different σ◦ values, depending on the spatial variability of forest structure and on the speckle [23].
This further increased the spread of data.

The results of the sensitivity analysis conducted on the entire BRIX dataset is shown in Figure 4,
where the backscattering at the four polarizations is represented as a function of the in situ biomass.

Different colors correspond to different campaigns (AfriSAR, BioSAR, TropiSAR), showing some
separation of the data coming from the different campaigns. In particular, at least two different
clusters can be identified, one including the AfriSAR and TropiSAR data and one including the BioSAR
data. These clusters can be explained by considering the differences in the instrumental setups and
calibrations of the different SAR instruments used in the campaigns [38–43].
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Table 1. Correlation coefficients (R) between ° at various polarizations and in situ biomass. 

Campaign RVV RVH RHV RHH 

AfriSAR DLR 0.74 0.76 0.76 0.64 

AfriSAR Onera 0.51 0.64 0.65 0.53 

BioSAR 1 0.07 0.21 0.21 0.35 

BioSAR 2 -0.04 0.04 0.03 0.05 

BioSAR 3 0.02 -0.01 0 0.02 

TropiSAR 0.5 0.69 0.68 0.27 

All 0.05 0.23 0.23 0.06 

Figure 4. All data: σ◦ in (a) HH, (b) HV, (c) VH, and (d) VV vs. Biomass.

The analysis of correlation coefficients (R) reflects this behavior, with higher correlation when
considering the AfriSAR dataset (R from 0.64 to 0.76) and low values when considering the entire
dataset (R from 0.16 to 0.34). The R values for each campaign are summarized in Table 1.

Table 1. Correlation coefficients (R) between σ◦ at various polarizations and in situ biomass.

Campaign RVV RVH RHV RHH

AfriSAR DLR 0.74 0.76 0.76 0.64

AfriSAR Onera 0.51 0.64 0.65 0.53

BioSAR 1 0.07 0.21 0.21 0.35

BioSAR 2 −0.04 0.04 0.03 0.05

BioSAR 3 0.02 −0.01 0 0.02

TropiSAR 0.5 0.69 0.68 0.27

All 0.05 0.23 0.23 0.06

Table 1 points out that the three BioSAR datasets have the worst correlation to in situ biomass.
This can be attributed to the boreal forest type, which is characterized by more sparse trees and
lower biomasses. Therefore, soil and undergrowing vegetation are expected to contribute to the total
backscattering. The correlation computed by grouping the three sets slightly increases (0.17 ≤ R ≤ 0.24)
but is still very low. Depending on the lower biomass range, σ◦ saturation was not observed in the
BioSAR datasets.
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The dependence of the relationship σ◦–biomass on the site characteristics suggested that, along
with a general algorithm able to apply to all datasets, specific algorithms for each dataset improve the
retrieval performances.

5. Results

5.1. ANN

The ANN algorithm validation is summarized in the plots of Figure 5. Each scatterplot shows the
predicted vs. in situ biomass values for the validation set of each campaign, obtained by applying the
specific ANN to each given validation set, plus the result obtained by applying the general ANN to the
whole validation set.
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The correlation coefficient between estimated and target biomass ranged from R = 0.69 to R = 0.98,
while the RMSE was between 14 t/ha and 58 t/ha (Figure 5a–f). The result obtained by the specific ANN
for the two AfriSAR missions was 0.92≤R≤ 0.94 with 42≤RMSE≤ 57 t/ha. Some underestimation of the
highest biomass values can be identified in the scatterplot, possibly attributed to the saturation exhibited
by the SAR signal for biomasses higher than 350 t/ha (Figure 5a,b). The ANN for TropiSAR dataset
obtained better results (R = 0.98 and RMSE = 17 t/ha—Figure 5f); in that case, the underestimation
of higher values was not evident. Among the specific ANN for BioSAR missions, the first and the
second obtained similar results in terms of both R and RMSE (Figure 5c,d), whereas worse results were
obtained for the third one (Figure 5e).

Finally, the validation result for the general ANN is reported in Figure 5g). Looking at the σ◦

correlation to the forest biomass listed in Figure 4, this result is quite surprising, since the correlation
between biomass estimated by the ANN and reference values was R = 0.93, while the σ◦ at various
polarizations and target biomass on the entire dataset was R ≤ 0.23. The p-value was < 0.05 for the
general and all the specific algorithms.

5.2. SVR

The learning process of the proposed algorithm was performed for any of the six missions and a
further analysis was performed for the learning process by using the complete dataset. Then a trained
SVR regressor was obtained for each dataset.

The performances of each SVR regressor were computed using the validation dataset and using
as metrics the correlation and the RMSE between true biomass and estimated biomass (Figure 6a–g),
where the green line represents the regression line.

From the scatterplots, we can see that the correlation coefficient between estimated and target
biomass ranges from R = 0.65 to R = 0.93, while the RMSE is between 15 t/ha and 65 t/ha.

Despite a lower sensitivity of the backscattering coefficient with high biomass values, the SVR
regression appears to predict quite well the higher biomasses. On the other hand, the higher sensitivity
of the backscattering coefficient with low biomass values does not correspond to the lower ability of
the SVR regressor to forecast low values of biomass.



Remote Sens. 2020, 12, 804 11 of 17

Remote Sens. 2020, 12, 804 11 of 17 

 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 
(f) 

Figure 6. Cont.



Remote Sens. 2020, 12, 804 12 of 17

Remote Sens. 2020, 12, 804 12 of 17 

 

 
(g) 

Figure 6. True vs. estimated biomass using SVR: (a) AfriSAR DLR, (b) AfriSAR Onera, (c) BioSAR 

1, (d) BioSAR 2, (e) BioSAR 3, (f) TropiSAR, and (g) All (general algorithm). 

The SVR regressor obtained for AfriSAR DLR dataset shows R = 0.88 and RMSE = 65 t/ha. For 

biomass values greater than 200, the SVR regressor shows rather good performances with RMSE = 47 

t/ha, whereas for values lower than 200 it shows an overestimation in the estimated biomass (Figure 

6 a). The result obtained for AfriSAR Onera shows R = 0.9 and RMSE = 55 t/ha with some bias that 

however does not hamper the accuracy (Figure 6 b). 

The results obtained for the BioSAR 1 and 2 datasets are quite good, as demonstrated by R=0.92 

and 0.93 and RMSE = 24 t/ha and 15 t/ha, respectively (Figure 6 c-d). As for the ANN algorithm, the 

accuracy was lower in the case of the BioSAR 3 dataset (RMSE = 53 t/ha and R = 0.65). Moreover, a 

consistent underestimation of the target biomass can be observed (Figure 6 e). For the TropiSAR 

dataset, SVR obtained R = 0.87 and RMSE = 48 t/ha, with some overestimation of the biomasses in the 

range 200–300 t/ha (Figure 6 f). 

The general SVR regressor for the complete dataset obtained R = 0.86 and RMSE = 64 t/ha (Figure 

6g). Similar to ANN, the condition p-value < 0.05 was verified in all cases. 

5.3. Biomass maps 

After validation, the ANN and SVR algorithms were applied to the available SAR images for 

generating biomass maps of the entire area covered by the SAR acquisition. Figure 7 shows, as 

examples, three biomass maps, namely two generated by ANN and one by SVR using the AfriSAR 

DLR dataset. The maps are generated pixel by pixel from the input SAR data. Along with each map, 

the corresponding validation scatterplot using the in situ data available is shown. The areas other 

than savannah are covered by very dense forest and therefore the majority of points in the scatterplot 

is concentrated around very low and very high values. The correlation coefficient is 0.88 ≤ R ≤ 0.95 

and both machine-learning approaches behave similarly, by slightly underestimating the highest 

values of biomass. The qualitative inspection of the maps shows that non-forested areas, mainly 

composed of meadows and grassland, are identified and the local patterns of biomass are correctly 

reproduced. 

Figure 6. True vs. estimated biomass using SVR: (a) AfriSAR DLR, (b) AfriSAR Onera, (c) BioSAR 1,
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The SVR regressor obtained for AfriSAR DLR dataset shows R = 0.88 and RMSE = 65 t/ha.
For biomass values greater than 200, the SVR regressor shows rather good performances with
RMSE = 47 t/ha, whereas for values lower than 200 it shows an overestimation in the estimated biomass
(Figure 6a). The result obtained for AfriSAR Onera shows R = 0.9 and RMSE = 55 t/ha with some bias
that however does not hamper the accuracy (Figure 6b).

The results obtained for the BioSAR 1 and 2 datasets are quite good, as demonstrated by R = 0.92
and 0.93 and RMSE = 24 t/ha and 15 t/ha, respectively (Figure 6c,d). As for the ANN algorithm, the
accuracy was lower in the case of the BioSAR 3 dataset (RMSE = 53 t/ha and R = 0.65). Moreover,
a consistent underestimation of the target biomass can be observed (Figure 6e). For the TropiSAR
dataset, SVR obtained R = 0.87 and RMSE = 48 t/ha, with some overestimation of the biomasses in the
range 200–300 t/ha (Figure 6f).

The general SVR regressor for the complete dataset obtained R = 0.86 and RMSE = 64 t/ha
(Figure 6g). Similar to ANN, the condition p-value < 0.05 was verified in all cases.

5.3. Biomass Maps

After validation, the ANN and SVR algorithms were applied to the available SAR images
for generating biomass maps of the entire area covered by the SAR acquisition. Figure 7 shows,
as examples, three biomass maps, namely two generated by ANN and one by SVR using the AfriSAR
DLR dataset. The maps are generated pixel by pixel from the input SAR data. Along with each map,
the corresponding validation scatterplot using the in situ data available is shown. The areas other than
savannah are covered by very dense forest and therefore the majority of points in the scatterplot is
concentrated around very low and very high values. The correlation coefficient is 0.88 ≤ R ≤ 0.95 and
both machine-learning approaches behave similarly, by slightly underestimating the highest values of
biomass. The qualitative inspection of the maps shows that non-forested areas, mainly composed of
meadows and grassland, are identified and the local patterns of biomass are correctly reproduced.
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6. Discussion

The comparison of the results obtained by ANN and SVR (Figures 5 and 6) did not indicate
significant differences in the retrieval performances between the two methods. Both ANN and SVR
exhibited similar accuracies, being able to estimate the target biomass with a slight underestimation of
the values higher than 350 t/ha. Such underestimation can be attributed to the saturation of SAR data
for biomass values higher than this threshold (see Figures 3 and 4), as already pointed out by past
research [15]. It should be noted that both algorithms require only SAR data as input, without the need
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of any ancillary information. The results of the general algorithms could be affected by the different
instrumental setups that generated the clusters of data in Figure 4. Better retrievals could therefore be
expected if data are collected by the same instrument, thus overcoming any intercalibration issue.

The computational cost of both ANN and SVR was also similar. The training was the only
time-consuming step—for both algorithms, training each configuration using the BRIX dataset took
a few minutes on a recent machine with an INTEL I7 6 Core processor, while applying the trained
algorithm to the validation set occurred in near real time.

The validation results were in line with other studies (e.g., [22,23,25]), although differences in
the test areas and datasets make the direct comparison difficult. For instance, the RMSE obtained
by both ANN and SVR in the validation using BIOSAR1 data is in the same range reported in [22].
Similar conclusions can be drawn from the comparison between the ANN and SVR results obtained
on equatorial forests (AfriSAR and TropiSAR datasets) and the results at P-band presented in [23].
It should be remarked that, in this case, both algorithms were also able to retrieve biomass beyond
the 300 t/ha threshold indicated in [23], although with a slight underestimation of the higher values.
Both algorithms can manage nonlinear relationships and, therefore, they are able to exploit the residual
sensitivity of backscattering to biomass higher than 300 t/ha shown in Figure 3.

Concerning the disadvantages of these methods, the algorithm exportability to other areas should
be verified before claiming a general validity. Indeed, depending on the experiment-driven training,
the obtained results could be site-dependent and they could change significantly if applying the
algorithms to other test areas. Previous studies indeed reported that retrieval errors of ML methods
could be large if the test data are not properly represented in the training (e.g., [32]). However, updating
the training with new data to enable the algorithms working on other areas is quite straightforward
and it can be achieved without modifying the algorithm structure. Another possibility that will be
investigated in the pursuance of this study is to train the algorithms by merging the experimental
datasets with data simulated by electromagnetic models, such as the Water Cloud Model [54,55], for a
wider range of forest conditions. Such a strategy should allow overcoming the site dependency of
experiment-driven training, by obtaining more general algorithms, which can also retrieve the forest
biomass with satisfactory accuracy in areas other than the ones considered in the training.

7. Conclusions and Future Work

In this study, two algorithms based on machine learning, namely ANN and SVR, were implemented,
trained, and validated to estimate forest biomass from P- band airborne SAR data.

Both ANN and SVR exhibited similar retrieval performances, displaying a general capability
of retrieving the target biomass with a slight underestimation of the values higher than 350 t/ha.
Such underestimation can be attributed to some saturation exhibited by the SAR signal for the highest
biomass values.

The characteristics of the available dataset suggested implementing general algorithms trained
and tested on the entire dataset and specific algorithms for each test area.

The validation of the general algorithms resulted in R > 0.85 for both SVR and ANN, with
RMSE ' 60–70 t/ha and bias negligible, while the validation of the specific algorithms resulted in R
from 0.65 to 0.98 and RMSE between 11 and 65 t/ha, depending on the dataset and on the algorithm.

This investigation demonstrated the capability of machine-learning techniques for the remote
sensing of forest biomass by using SAR. In this respect, ANN and SVR can be substantially considered
equivalent in both retrieval accuracy and computational cost, since the investigation did not point out
any aspect in which one of the two methods outperformed the other.

In the pursuance of this study, we plan to merge the experimental dataset with data simulated by
electromagnetic forward models for training the algorithms. This strategy should overcome the limits
of experiment-driven training, by filling the gaps in the training set and enabling the application to
other areas.
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