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Abstract: Exploring the relationship between nighttime light and land use is of great significance
to understanding human nighttime activities and studying socioeconomic phenomena. Models
have been studied to explain the relationships, but the existing studies seldom consider the spatial
autocorrelation of night light data, which leads to large regression residuals and an inaccurate
regression correlation between night light and land use. In this paper, two non-negative spatial
autoregressive models are proposed for the spatial lag model and spatial error model, respectively,
which use a spatial adjacency matrix to calculate the spatial autocorrelation effect of light in adjacent
pixels on the central pixel. The application scenarios of the two models were analyzed, and the
contribution of various land use types to nighttime light in different study areas are further discussed.
Experiments in Berlin, Massachusetts and Shenzhen showed that the proposed methods have better
correlations with the reference data compared with the non-negative least-squares method, better
reflecting the luminous situation of different land use types at night. Furthermore, the proposed
model and the obtained relationship between nighttime light and land use types can be utilized for
other applications of nighttime light images in the population, GDP and carbon emissions for better
exploring the relationship between nighttime remote sensing brightness and socioeconomic activities.

Keywords: nighttime light image; land use type; spatial autocorrelation; spatial autoregressive model;
component of nighttime light; non-negative space error model; non-negative space lag model

1. Introduction

Nighttime light recorded by satellites represents what human beings use at night for production and
living, which is an effective means to study the spatial distribution of human nocturnal activities [1,2].
It has been confirmed that there is a strong linear correlation between night light brightness values
and various economic indicators in a region [2–4]. So, night light data have been widely used to
simulate the spatial distribution of the population, GDP, carbon emissions and other fields [4–6].
However, studies have also shown that the correlation between night light and economic indicators
varies from region to region [7–9]. For example, the nighttime light intensity (NLI) of an American
town with a population of 10,000 is three times that of a German town of the same size [10]. Studying
the regional differences and influencing factors in the correlation between night light and economic
activities can help researchers correct the errors in estimating GDP and economic activities by using
night light, improving the accuracy of GDP estimation, and reflecting the spatial distribution of GDP
accurately [11,12]. In addition, only by understanding the causes and distribution pattern of night light
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can we more accurately explain and analyze the distribution rules of human nighttime activities [13,14],
study socioeconomic problems [15,16] and prevent and control light pollution [17,18] with night
light data.

From a physical point of view, land use is an important method to explain the distribution of
light at night [19,20]. Different types of land uses have different circadian rhythms of human activities,
and the brightness of light emitted at night is different [21]. Relationship between land use and night
lights has drawn the attention of experts in the fields of atmospheric science, remote sensing, ecological
protection and economics [22–25]. In the field of astronomy and atmospheric science, traditional
night light detection methods use instruments for ground measurement, which requires intensive
manpower [26,27]. In recent years, aerial photography for nighttime lighting sources has been used.
Helga used nighttime aerial images with a resolution of 1 m to study the main sources of nighttime
light in Berlin [28]. However, the method of using nighttime aerial images and ground measured
data to study the cause of night light is expensive, and it is difficult to apply in areas without ground
measurement as well as in comparative studies of the relationship between night light and land use
type in different regions. Therefore, an efficient and widely applicable method to compare the relation
between night light and land use types in different regions is desired.

The method of using satellite images to study night light simultaneously records the distribution
of light brightness in a large range and reflects the time sequence of the changing light in a specific
region, which is convenient and cheap [29]. However, the resolution of satellite images of night light is
relatively low, and the accuracy of existing land use data is much better than that of night light data,
so there are multiple mixed distributions of land use in the same pixel. In order to correlate the two
datasets with different resolutions, it is necessary to decompose the contributions of various land use
types to night light by appropriate models. A regression model can investigate the relationship between
different independent variables and dependent variables, but the assumptions of different models
are distinct. Conventional regression models cannot reflect the actual luminescence contributions
of the land use types because of the existence of a negative regression coefficient. Therefore, it is
necessary to introduce non-negative constraints to the regression model, which have been widely used
in model optimization for reducing combinations and improving sparsity and model efficiency [30–32].
Li proposed a non-negative least-squares method for modeling low-resolution nighttime light data
with high-resolution land use data [33]. Although this method obtained a more accurate nighttime
light index of different land use types, it did not take the influence of the surrounding pixels into
account when using the land use area to model the brightness of a pixel. The light emitted from the
objects in the interior of a pixel may affect the brightness of the surrounding pixels through light
refraction and reflection [34–36]. Ma furtherly found that the land use type affected the correlation
between the night light data and human activity data on the pixel scale, and this was analyzed with
the method of spatial autocorrelation [37]. It proved that the spatial autocorrelation effect of night light
data needs to be considered when studying the relationship between night light data and other data.
Therefore, when using nighttime remote sensing images to explore the NLIs of various land use types,
the spatial autocorrelation effect between pixels should be eliminated [38,39], in addition to solving the
land use type mixing problem.

The main goal of this research was to analyze the nighttime light component, specifically the
correlation between night light and land use by non-negative spatial autoregressive models. In this
model, the spatial autocorrelation effect of night light images is solved by taking the brightness of
adjacent pixels into account. The two models, the non-negative spatial Lag model (NSLM) and
the non-negative spatial error model (NSEM), are developed and compared with the traditional
non-negative least-squares model. The results show that our method has a higher R2 and lower Akaike
information criterion (AIC) value with the reference data overall. It was found that NSEM is suitable
for small neighborhoods of high-resolution data, and NSLM has a better effect on large neighborhoods
of low-resolution data. Through this method, we can obtain a more accurate NLI value, which is of
great significance for solving the following problems: (1) to better distinguish the relationship between
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different land use types and night light data, and reflect the source of nighttime light more accurately
and (2) to find land use types closely related to human nighttime activities and expand the application
field of nighttime light data in the study of human activities, such as light pollution, traffic, GDP
components, and so forth.

2. Methods

In this study, non-negative spatial autoregressive models and corresponding solving methods
are developed to quantify the land use contribution to nighttime light using coarse-resolution night
imagery and fine-resolution land use data. The experimental framework is shown in Figure 1, including
resolution conversion, land use type proportion statistics, spatial neighborhood setting, NLI calculation
by different models and results comparison and analysis.
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China. Since the three areas are the mostly developed regions in these countries, there were abundant 
remote sensing images and statistical data available online for supporting this study. The selected 
data covered large time spans and diverse spatial resolutions. In addition, the three areas are located 
in different countries with distinct levels of economic and urban development stages. These features 
can help to verify the robustness and adaptability of the models in different application scenarios. 
The nighttime light images and the administrative boundaries of the three study areas are illustrated 
in Figure 2. 

With a population of 3.7 million, Berlin is the largest city in, and the capital of Germany [40]. 
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Figure 1. Experimental framework for comparing R2 with reference data and residual errors between
the proposed non-negative spatial autoregressive models and nonnegative least square (NLS) model.

2.1. Study Area and Data Sources

The study areas were Berlin in Germany, Massachusetts in the United States, and Shenzhen in
China. Since the three areas are the mostly developed regions in these countries, there were abundant
remote sensing images and statistical data available online for supporting this study. The selected data
covered large time spans and diverse spatial resolutions. In addition, the three areas are located in
different countries with distinct levels of economic and urban development stages. These features
can help to verify the robustness and adaptability of the models in different application scenarios.
The nighttime light images and the administrative boundaries of the three study areas are illustrated
in Figure 2.

With a population of 3.7 million, Berlin is the largest city in, and the capital of Germany [40].
Berlin is also a city with a high level of economic development and a good ecological environment.
About one-third of the area is composed by forests, parks, gardens, rivers, canals and lakes. With
an area of 27,340 km2 and population of 6.9 million in 2018, Massachusetts is the third most densely
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populated state in the U.S. [41]. As one of the original 13 states, Massachusetts has a long history
of development. Over 80% of Massachusetts’ population lives in the Greater Boston metropolitan
area that has great influential upon U.S. history, academia and industry. Shenzhen is the first special
economic zone in China and the major city in the Pearl River Delta megalopolis. With a population of
12.5 million in 2017, Shenzhen ranked as the third largest city in China [42]. As a newly developed city
after the reform and opening up, Shenzhen has become one of the most economically dynamic cities in
China, and even the world.
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Figure 2. Three selected study areas: Berlin, Massachusetts and Shenzhen.

The experimental data of the three study areas are shown in Table 1. The data used for building
the regression model were land use data and coarse resolution nighttime light images. Reference data
were fine-resolution nighttime light images for model accuracy verification.

Table 1. Experimental data of the three research areas.

Data Sources Berlin Massachusetts Shenzhen

Analysis
data

Land use Data

Acquisition
time 2010 2005 2015

Resolution 5 m 0.5 m 1 m

Number of
types 52 33 26

Coarse resolution
nighttime light

image

Source
Annual composite

product of
NPP/VIIRS

DMSP/OLS images
Annual composite

product of
NPP/VIIRS

Acquisition
time 2012 2005 2015

Resolution 500 m 1 km 500 m
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Table 1. Cont.

Data Sources Berlin Massachusetts Shenzhen

Reference data

Source Aerial
photography

Photograph from
the International

Space Station

Product from
LuoJia1-01

Acquisition
time 2011 2010 2018

Resolution 1 m 30 m 170 m

2.2. Data Preprocessing

2.2.1. Resolution Conversion

The raw night light images used in this paper were the average annual images of Defense
Meteorological Satellite Program’s Operational Linescan System (DMSP/OLS) and Visible Infrared
Imaging Radiometer Suite (VIIRS) sensor on the Suomi National Polar-orbiting Partnership (NPP)
Satellite. Radiometric correction has been conducted, and the background noise of the images has been
removed by data providers [33,43,44]. Since this study does not involve time series analysis, the joint
correction of NLI values between yearly images is not needed. So, the projected transformation and
resolution conversion were performed directly with the downloaded images.

All images of the same study areas were projected into the same geographic coordinate
system. Images of Berlin, Shenzhen and Massachusetts were projected into World Geodetic System
1984(WGS84)/Universal Transverse Mercator (UTM) zone 33N, zone 49N and the State Plane (Mass
Mainland) coordinate system, respectively. As the nighttime light images and land use data had
different resolutions, fine-resolution land use data were converted to a coarse resolution that of the
nighttime light images for further analysis.

2.2.2. Spatial Neighborhood Setting

For the spatial autoregressive model, setting the spatial weight matrix W has a great influence on
the regression results [45]. In this paper, k nearest neighbors was used to choose the adjacent pixels,
and the inverse distance method was used to determine the weight of each neighboring pixel [46].

In order to specify the threshold of spatial neighbors, the influence range of spatial autocorrelation
effects needs to be identified. The semi-variation coefficients are commonly used indicator to determine
the most suitable k value. According to Chen’s study, the influence range of spatial autocorrelation
characteristics is about 2–11 pixels for different land use types [47]. In this paper, we selected two k
values (i.e., k = 8 and k = 24) to construct the spatial weight matrices and compare regression results
for exploring the influence range and optimal threshold of spatial autocorrelation of night light data.
The specified eight and 24 nearest neighbors are shown in Figure 3, which correspond to thresholds of
1.5 and three pixels, respectively. The weights for the pixels in the adjacent region to the central pixel
are the reciprocal of their distances, while the weights for other pixels are set to 0.
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2.2.3. Land Use Types Proportion Statistic

The nighttime light value of a pixel can be expressed as the sum of the brightness values of all
land use types, which is calculated by multiplying the NLI of such a land use types with the proportion
of it in the central pixel [33]. So, we counted the proportions of different land use types in each grid.
Because of the autocorrelation of land use in geographical space, there were only a few land types that
existing in the same pixel, which led to uneven proportions of land use types. This phenomenon incurs
a sparse matrix solving problem in regression, which is solved by the modified models proposed in
Sections 2.3.2 and 2.3.3.

2.3. Spatial Autoregressive Model Construction

Because of the sensor resolution and landscape variability, remote sensing data exhibited a spectral
dependency between neighboring pixels, i.e., spatial autocorrelation, in multispectral remote sensing
images, and in nighttime light remote sensing data [48–52], which was also proved for our three study
areas in Table A1 of the Appendix A. Campbell used Landsat multi-spectral scanner images to study the
positive autocorrelation between neighboring pixels [53]. Dana indicated that the radiance of one pixel
can further affect the radiance of pixels 4–6 away [54]. The presence spatial autocorrelation violates the
hypothesis that the data are independent, so traditional methods such as OLS and NOLS may yield
unsatisfactory results and lead to errors in analyzing the cause of night light. Therefore, the accuracy
of the relation between nighttime light and land use types could be improved by considering the
spatial autocorrelation.

The main concern of this paper is the correlation between night light and land use. Studying the
origin of the spatial autocorrelation of night light images can help us understand the spatial pattern of
night light, which in turn expanding the application scope of night light images. Night light data are
characterized in the single band by a low resolution and significant brightness overflow in general.
Three potential reasons for the spatial autocorrelation phenomenon, which need to be eliminated, can
be drawn as follows [53,54]: (1) the refraction and reflection of light (Figure 3a); (2) the influence of
climate and atmospheric conditions; (3) positive correlation caused by the imaging system. The first
explanation reflects that the night light brightness is affected by the ambient brightness. This part of
autocorrelation comes from the dependent variable of luminous brightness itself, so it can be measured
by the spatial lag model (SLM). The second and third explanations indicate that, besides being affected
by the dependent variable, there are some factors missing in linear regression that are not related to the
independent variable, and the spatial error model (SEM) can be used to solve this problem. Therefore,
we analyzed application scenarios and the influenced the spatial ranges of the two models through
further experiments in this paper.

2.3.1. Traditional Spatial Autoregressive Model

Because of the strong spatial autocorrelation within nighttime light images, the classical regression
models are no longer applicable [55]. Spatial autoregressive models are an effective method with which
to solve this problem, which include the first-order spatial auto-regressive model, spatial lag model
and spatial error mode. Among these models, the spatial lag model and the spatial error model are the
most widely used. The general form of the autoregressive models is as Equation (1).{

y = ρW1y + Xβ+ µ
µ = λW2µ+ ε

(1)

where y is the dependent variable; X is an n-by-k independent variable matrix; β is a k-by-1 parameter
vector associated with the independent variable X. W1 and W2 are the n-by-n order weight matrixes,
reflecting the spatial trend of the dependent variable and the spatial trend of residuals respectively; ρ is
the spatial lag variable Wy coefficient; λ is the spatial correlation intensity between regression resistors.
µ is a n-by-1 error vector and ε is a normally distributed random error vector [56].
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Different spatial autoregressive models can be obtained by applying different model parameter
restrictions. When ρ , 0 and λ = 0, it is a SLM; when ρ = 0 and λ , 0, it is a SEM. The SLM model
considers dependent variables on a spatial object are related not only to independent variables on the
same object, but also to dependent variables of adjacent objects. The SEM model assumes that spatial
correlation is generated by missing variables. It reflects the error propagation process through the
spatial covariance of different regions [50].

These models can measure the spatial autocorrelation caused by dependent variables and error,
but have troubles in parameter interpretation and model solving. According to the physical meaning,
the value of the land use brightness coefficient should be non-negative. However, the coefficients of
the independent variables will contain both positive and negative values if following the conventional
model’s procedure. It incurs difficulty to interpret the correlation between particular land use types and
NLI. Meanwhile, the proportion of land use types in a single pixel is uneven due to the agglomeration
of different land use types. It leads to a sparse coefficient matrix of the proportions, and impedes the
solving of traditional spatial autoregressive model, in turn posing a great challenge to the analysis
of the relation between land use and nighttime light. Therefore, we proposed an improved solving
method by making the coefficients non-negative, which may better explain the correlations. Meanwhile,
instead of using the original matrix inversion method, we adopted dynamic programming to solve the
local optimal autoregressive coefficient using the multistage optimization decision method provided
by MATLAB software. It enhances the robustness in solving even when the coefficient matrix is sparse.
The improved calculation procedure is as illustrated in Figure 4.
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2.3.2. Improved Non-Negative Spatial Lag Model (NSLM)

The spatial lag model can measure the spatial autocorrelation caused by the dependent variable.
The regression equation is as Equation (2).

y = ρWy + Xβ+ ε (2)
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where y denotes the nighttime light value of the pixel, and the proportion of different land use types in
this pixel i are denoted by {xi1, xi2, . . . , xim}. n denotes the number of the pixels on nighttime light
images, and m denotes the number of land use types. β j denotes the NLI of the land use type j. ρ is
the coefficient of spatial lag variable Wy, which is also called the spatial lag factor. W is the spatial
weight matrix, which represents the influences between all pixel pairs in the image. ε is a normally
distributed random error vector, which can be denoted as ε ∼ N

(
0, σ2In

)
.

In order to solve the three variables, i.e., β, ρ and σ, a new vector θ = (β, ρ, σ) is constructed.
Maximum likelihood estimation is used to solve the variables according to the traditional spatial lag
model. The logarithmic likelihood function of vector θ is shown in Equation (3).

lnL(θ) =
n
2

ln(2π) −
n
2

lnσ2 + ln
∣∣∣In − ρWn

∣∣∣− 1
2σ2

(y− ρWny−Xβ)2 (3)

Since the value of spatial lag factor ρ is usually between 0 and 1, to reduce the number of
unknowns, we use the enumeration method and take 101 ρ values between 0 and 1 by using 0.01 as
the interval. For each given value of ρ, dynamic programming is used to solve the non-negative value
of β with constraints, and then ρ and β are used to solve the corresponding value of σ. The solution
methods of β and σ are shown in Equations (4) and (5).

β̂ = arg min
β

∑
‖ρWny + Xβ− y‖2 (β > 0) (4)

σ2 =
1
n
(ρWny + Xβ− y)2 (5)

According to the 101 vectors of θ, the logarithmic likelihood function of ρ is calculated using
Equation (6), and ρ and β that maximize the logarithmic likelihood function are obtained.

lnL(ρ) =
n
2

ln(2π) −
n
2

lnσ2 + ln
∣∣∣In − ρWn

∣∣∣ (6)

2.3.3. Improved Non-Negative Spatial Error Model (NSEM)

The spatial error model is more accurate when spatial correlation is generated by neglected
variables. It reflects the error propagation process through the spatial covariance of different regions.
The regression equation is as Equation (7).

y = Xβ+ µ, µ = λWµ+ ε (7)

where the weight matrix W reflects the spatial trend of residuals; λ is the spatial correlation intensity
between regression resistors; ε is the random error vector; and µ is a normally distributed random
error vector. X, y and β represent the same meaning as the NSLM.

As with the NSLM, the maximum likelihood estimation is used to solve the unknowns of the
model by introducing a new vector τ = (β,λ, σ). The logarithmic likelihood function of the vector is
shown in Equation (8).

lnL(τ) = −
n
2

ln(2π) −
n
2

lnσ2 + ln|In − λWn| −
1

2σ2
((In − λWn)(y−Xβ))2 (8)

The 101 values of the spatial lag factor λ are also selected between 0 and 1 by using 0.01 as the
interval. For each given value of λ, dynamic programming solves the non-negative value of β with
constraints, and the value of σ is solved by using λ and β. The solution methods of β and σ are shown
in Equations (9) and (10). Then, according to the obtained vectors of τ, the logarithmic likelihood
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function of λ is calculated using Equation (11), and λ and β that maximize the logarithmic likelihood
function are obtained.

β̂ = arg min
β

∑
‖Xβ− y− λWµ‖

2
(β > 0) (9)

σ2 =
1
n
(Xβ− y)2 (10)

lnL(ρ) = −
n
2
(ln(2π) + 1) −

n
2

lnσ2 + ln|In − λWn| (11)

3. Results

3.1. Comparative Analysis of Nighttime Light Intensity

In order to verify the accuracy of our models, the estimated NLIs of each land use type from
coarse-resolution nighttime light imagery by different models are compared with that of reference data
listed in Table 1. For the proposed two non-negative spatial autoregressive models, NSEM and NSLM,
the non-negative spatial linear regression model NSL without considering spatial autocorrelation was
selected as the baseline method. In this experiment and the analysis in Section 3.2, spatial weight
matrices constructed by the eight nearest neighbors were used as the case study.

Considering different reference data as described in Table 1, the calculations of NLIs in three study
areas were different. In Berlin, the reference data, nighttime aerial photographs with 1 m resolution,
has a higher resolution than the land use map. So, for each type of land use, the average value of NLI
fell into the land use type on the map was calculated as the reference NLI value. In Massachusetts and
Shenzhen, the reference data were photographs with 30 m resolution and 170m resolution, respectively,
whose resolutions were lower than that of land use maps. To ensure the accuracy of the reference
NLI data, land use proportion maps at a lower resolution were produced from the original land use
map. For each land use type, the pixels that entirely occupied the land use type were treated as pure
pixels, and the average nighttime light values of pure pixels were calculated as the reference NLI
value. The estimated NLIs and reference NLIs in three study areas are listed in Tables A1–A3 in the
Appendix A. The differences between the nighttime brightness coefficients of different land use types
in these tables indicated that land use type was an important factor affecting the NLI.

In order to compare the performance of the models, we adopted linear regression to analyze the
fitting of NLI values for all land use types. As sensors are different, the NLI values represent different
units of brightness among images. Therefore, the NLIs derived from different nighttime light images
may vary on the same land use map and cannot be compared directly. Considering that there were 52,
32 and 26 land use types in three study areas respectively, the R2 values were satisfactory, showing
that the estimated NLIs from NPP/VIIRS data reflected the actual NLIs of different land use types.
The higher goodness-of-fit indicated better estimation accuracy and better capability to reflect the
relationships between NLI and land use types in our case [33]. Figure 5 shows the scatter diagrams
and the linear regression results.
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Figure 5. Scatter diagrams and R2 values of estimated nighttime light intensity (NLI) data and 

reference data in three study areas for the three regression models. 

Figure 5. Scatter diagrams and R2 values of estimated nighttime light intensity (NLI) data and reference
data in three study areas for the three regression models.
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As illustrated in Figure 5, NSEM had the highest R2 value of regression among the three models,
while NLS had the lowest goodness of fit for all three study areas. We also found that the R2 values in
Shenzhen were lower than those of other two areas, as there is a three-year gap between the NPP/VIIRS
imagery and LuoJia-01 imagery. However, R2 values of NSLM and NSEM were still higher than NLS
in Shenzhen, which demonstrated that the estimated NLI by NSLM and NSEM models was closer
to reality. In general, NSLE and NSEM have a better performance for explaining the relationships
between NLI and land use types.

The fitting confidence of the regression models in the three experimental areas were further
evaluated via Akaike information criterion (AIC), which is widely used in factor analysis, regression
and latent class analysis [57]. AIC is capable of taking both descriptive accuracy and parsimony into
account [58]. AIC is defined as Equation (12).

AICi = −2 log Li + 2Vi (12)

where Li is the maximum likelihood for model i, which is determined by adjusting the free parameters
Vi to maximize the probability to generate the data observed by the candidate model. The AIC values
of NLS, NSL and NSE models are shown in Table 2.

Table 2. Akaike information criterion (AIC) values of the three regression models in the three study areas.

Study Area
AIC

NLS NSLM NSEM

Berlin 5462.47 4326.10 4358.73

Massachusetts 269,392.46 182,997.35 184,658.20

Shenzhen 62,316.81 56,429.73 56,482.67

From Table 2, we can see that AIC values of NSLM and NSEM were far less than that of NLS;
there was no significant difference between NSLM and NSEM. It indicated that NSLM and NSEM had
better performances by leveraging the accuracy and the complexity of the model, when compared with
NLS. Although our models had more free parameters (i.e., spatial lag variable ρ for NSLM), significant
improvement in accuracy can be achieved. The AIC values of NSLM are slightly lower than those of
NSEM, which may reflect that the spatial lag effect of NLI was more significant than the spatial error
effect in the study areas. In addition to calculating the R2 between the models and the reference data
and the AIC value of the models, we also tested the significance of the regression coefficients (i.e., NLI)
of each model. The land use types with large coefficients in the NSLM and NSEM models proposed
generally had large t statistics, indicating that they had significant impacts on the brightness value of
nighttime lights. Therefore, the proposed two models can measure the NLIs of different land use types
more accurately so as to better understand the relationship between night light and land use.

3.2. Spatial Correlation of Residual Error Analysis

Since Moran’s I analysis in Table A1 of the Appendix A showed a significant spatial autocorrelation
effect of the NLIs in the three study areas, the interpretation effect [59,60] on the spatial autocorrelation of
NLI values for the three regression models was further compared via regression residuals. The residual
within each pixel of different models was calculated by using the NLI of each global land use type and
the proportion of land use of each pixel. The residual maps obtained are shown in Figure 6.

As shown in Figure 6, the regression residuals of NLS were larger than that of spatial autoregressive
models, and the residuals were more concentrated in spatial distribution, showing a phenomenon of
high–high and low–low aggregation. In order to quantitatively measure the interpretation effect of the
three models on the global spatial autocorrelation effect, Moran’s I values and accumulation of the
residuals of each model were calculated, as shown in Table 3 and Figure 7.
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From Table 3, we can also find that Moran’s I values of the regression residuals by NLS were
the highest in the three study areas, while those of NSLM and NSEM were much lower. Hence,
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NSLM and NSEM are more effective than NLS at eliminating the spatial autocorrelation effect of NLI.
This result can also be found from the residual accumulation in Figure 7. In all three study areas,
the accumulations of the absolute residuals of each pixel for NLS were much larger than those for
NSLM and NSEM. This also indicated that NSLM and NSEM had a more accurate fitting effect on the
relationship between land use and NLI.

4. Discussion

4.1. Nighttime Light Contribution of Urban Land Use Classes

From the NLIs of different land use types, we found that the major sources of nighttime light in
the three areas varied, as illustrated in Table A5 in the Appendix A. In Massachusetts, residential and
commercial areas were the largest sources. Urban public facilities like the city squares and cultural
areas were the lightest in Berlin. In Shenzhen, transportation and industrial areas were the main
sources of nighttime light. The darkest parts of three study areas were also different. Old buildings and
detached houses were darkest at night in Berlin, while in Massachusetts and Shenzhen, land covered
with plants gave out the least light.

Different study areas have different types of brighter or darker land use, which may be due
to the following reasons: (1) Different nations are at distinct stages of socioeconomic development.
In developed countries, e.g., the United States and Germany, human activities at night mainly link
with residential and commercial activities. So, residential land and commercial land use and urban
public facilities have higher brightness in the night. On the other hand, China’s economy is in
a stage of rapid development, and many metropolitan areas are vigorously carrying out urban sprawl,
so infrastructure construction, transportation and industrial production are still very active in the
night [61,62]. (2) Different countries have different policies on night lighting. Germany has stricter night
lighting laws on nighttime light pollution and energy conservation than the United States, so night
lighting is mainly concentrated in urban public facilities [10,63]. (3) The times of data collection were
different. With development of the economic and technological progress, the role of different land use
types in urban developments is gradually changing, and the amount of nighttime activities performed
on them is changing accordingly.

To intuitively illustrate the relationship between night lights on reference data and land use type,
the top ten lightest and darkest land use types in Berlin through NLI calculated by NSLM (the land use
types selected by NSEM and NSLM were same in the three areas) are shown in Figure 8, and the other
two study areas are shown in Figures A1 and A2 in the Appendix A.

From Figure 8 we can see that the land use type with large NLI was usually distributed in the
bright area in the night light image, while the land use type with the smallest NLI was distributed in
the dark area on the edge of the city. Therefore, our method can reflect the correlation between night
light and land use, so as to better understand the component of night light. However, there are also
some bright parts in the image that are not covered by specified land use types in Figure 8, which may
be due to following reasons: (1) There is a difference between the acquisition time of land use and
night light, and the areas with higher brightness may be new construction land. (2) NLI calculated by
the proposed model reflects the global relationship between land use types and nighttime light. Even
though some small areas had strong brightness values in the night light image, the average NLI for
this land use type in the whole study area was low, so it was not identified as the top ten lightest. We
may divide the study area into small patches to explore the relationships between NLI and land use
type in different urban functional zones in future research.
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4.2. Main Cause and Distance Threshold of Spatial Autocorrelation

The threshold of spatial autocorrelation effects and the setting of spatial weight matrixes have
a great influence on the solution of the coefficient [45,47]. In order to analyze the application scenarios
of NSLM and NSEM, different distance thresholds for calculating the spatial weight matrix were
studied according to spatial neighborhood settings in Section 2.2.2. Since the image resolutions of
Massachusetts, Berlin and Shenzhen were 1 km, 500 m and 500 m respectively, the distance thresholds
of 1.5 pixels (k = 8) and three pixels (k = 24) of the three areas were different. R2 values of linear fitting
NLI values of various land use types were used to analyze the accuracies of the two models, and the
results are shown in Table 4.

Table 4. R2 of linear fitting NLI values of two models under different distance thresholds.

Study Area

Distance threshold

0.75 km 1.5 km 3 km

NSLM NSEM NSLM NSEM NSLM NSEM

Berlin 0.75 0.75 0.68 0.69 0.25 0.22

Massachusetts / 0.79 0.81 0.63 0.56

Shenzhen 0.53 0.58 0.4 0.42 0.35 0.31

As illustrated in Table 4, with the increasing of the distance threshold, the fitting accuracy of
the two models decreased significantly. This result shows that the eight first-order adjacent pixels
had the greatest influence on the central pixel. A large threshold may degrade the fitting and even
generated worse results than the traditional NLS model. This phenomenon indicated that the spatial
autocorrelation effect of the night light image had a certain distance threshold, and an overlarge
threshold will introduce noise and weaken the weight of the current pixel. Therefore, when studying
the correlation between NLI and land use, the distance threshold needs to be carefully considered.
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In addition, we also found that when the distance threshold was less than 1.5 km, the fitting
accuracy of NSEM was higher than that of NSLM; when the distance threshold was greater than 1.5 km,
NSLM had better performance. The difference in the model performance within and beyond the 1.5 km
bandwidth may be due to the difference in the dominant role of spatial autocorrelation characteristics.
The spatial autocorrelation in the spatial lag model is mainly derived from the dependent variable,
while the spatial autocorrelation in the spatial error model is mainly derived from the error, or the
independent variable not considered [64,65]. The sensor radiation characteristics or meteorological
conditions may be the main contributors to spatial autocorrelation within the distance threshold of
1.5 km, while when the distance threshold is greater than 1.5 km, the dependent variable related to
light refraction and reflection may be the dominant factor. The findings from the above experiments
may provide guidelines for selecting regression models. When the resolution of night light data is
high, the spatial error model may get a better fitting effect. When the resolution of night light data is
low, priority should be given to the spatial lag model.

4.3. Potential Use Case

The data sources, acquisition time and classification accuracy values of the three study areas were
different, so NLIs of the same land use types obtained cannot be compared. In order to study the
differences between NLIs of the same land use types in different regions and their influencing factors,
we used Finer Resolution Observation and Monitoring of Global Land Cover (FROM-GLC) 2015 data
(http://data.ess.tsinghua.edu.cn/fromglc2015_v1.html) from Tsinghua University and the NPP/VIIRS
nighttime light images to solve the NLI of each land use type in different cities in China by using
NSEM with threshold of the eight nearest neighbors.

FROM-GLC maps are the first 30 m resolution global land cover maps produced using Landsat
Thematic Mapper (TM) and Enhanced Thematic Mapper Plus (ETM+) data. We used NSEM to calculate
the NLIs of seven first-level classifications of land uses in five provincial capital cities in China. These
cities are located in different regions of China with different levels of economic development, which can
help us find the relation between NLIs of land use types and economic development. The estimated
NLIs are listed in Table 5.

Table 5. Estimated NLIs of the five provincial capital cities in China.

Land Use Type Shenzhen Shanghai Wuhan Taiyuan Harbin

Cropland 20.08 8.40 2.60 2.07 0.17

Forest 8.05 6.53 1.18 0.17 0.07

Grass 19.96 11.05 8.14 0.79 0.51

Shrub 9.95 10.79 0.86 0.14 0.06

Wetland 28.75 8.60 3.57 2.20 0.08

Water 17.41 2.99 2.78 4.85 0.56

Impervious
surface 31.34 29.16 24.16 21.43 9.37

Bare land 41.45 16.55 20.63 5.67 1.83

As shown in Table 5, there were significant differences in the NLI for each land use type between
different cities. All land use types in Shenzhen and Shanghai had higher brightness values, while those
in Taiyuan and Harbin were lower. By observing NLIs of the same land use types in different cities,
we found that forests and shrubs had relatively small NLIs in each city, while impervious surfaces
and bare land had large NLIs. Shenzhen was the only city for which bare land had the largest NLIs;
meanwhile impervious surfaces were the lightest land use type in other cities. Moreover, bare land
and impervious surfaces had relatively close NLIs in Shenzhen, Shanghai and Wuhan; the brightness

http://data.ess.tsinghua.edu.cn/fromglc2015_v1.html
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of impervious surfaces was significantly higher than those values of other land use types in Taiyuan
and Harbin.

This phenomenon may reflect the different development speeds and stages of different cities,
and Nighttime photographs from the International Space Station shown in Figure 9 can help explain
it. Shenzhen is in the midst of rapid urban expansion. The bare lands in the suburbs of the city
are construction sites and, therefore, have a higher brightness than the built impermeable surfaces.
However, Taiyuan and Harbin have had relatively slow or even stagnant urban expansion in recent
years [66–68]. Most of the bare lands were stagnant construction land or cultivated land, so the
brightness was far lower than for the impervious surfaces.
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To verify our observation and compare the stage of urban construction, official statistics of the
experimental cities [69–72] were also collected. Harbin was not included in the comparison due to the
administrative division adjustment in 2015. The investment completed in the current year and the cost
of new construction in 2015 were chosen to study the urban construction situation, which are shown in
Table 6. As we can see from the table, new construction projects in Shenzhen and Shanghai accounted
for a large proportion in the total investment, about 76% and 64% respectively. This indicated that
the urban constructions in Shenzhen and Shanghai were dominated by new construction projects,
and plenty of bare lands were under construction in 2015. This is consistent with the modeling and
analysis of night light data. Although the proposition of new construction investment in Wuhan is
relatively small, the total amount is much higher than those values of other cities. Therefore, the urban
sprawl speed is relatively fast in Wuhan, and the bare land may have a higher luminous brightness.
In contrast, the new construction projects in Taiyuan accounted for a relatively low proportion in the
total investment, and the total cost of new construction is also small compared with Shenzhen, which
has a similar area, indicating that urban sprawl does not play a prominent role in Taiyuan.

Table 6. Index of urban construction in the four experimental cities.

City Shenzhen Shanghai Wuhan Taiyuan

Area (Square Kilometer) 1997 6341 8596 1500

Investment Completed in Current Year
(100 million Yuan) 3298.31 2880.45 7680.89 2025.60

Cost of New Construction (100 million Yuan) 2521.82 1837.92 3306.86 1016.50

Proposition of New Construction in all investment 76% 64% 43% 50%

The above analysis demonstrates that the NLIs calculated by our models can reflect the relation
between land use types and night light more accurately than an NLS model with an appropriate
distance threshold, and it is helpful to identify urban construction situations. It can better reveal the
difference in the contribution of land use to night light so as to discover the differences in economic
development stages and night light policies (Section 4.1) between different regions. Moreover, our
models could facilitate other potential applications, such as light pollution prevention, traffic volume
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estimation and GDP composition. For example, when the land use types are of high classification
accuracy, the contributions of different buildings types to nighttime brightness can be identified,
and they could assist in establishing environmental policies for preventing light pollution in urban
residential areas and ecological protection areas. When transportation land types are known in detail,
the traffic volume of different transportation modes can be estimated according to NLI. In conclusion,
the proposed regression models could be extended in different application scenarios to interpret the
influences of human activities on nighttime light.

5. Conclusions

This study proposed two non-negative spatial autoregressive models to study the correlation
of night light with land use types, which used a space adjacency matrixes to consider the spatial
autocorrelation effect of nighttime light remote sensing data. Analysis of influential factors in the
spatial autocorrelation effect provides a reference for model selection and adjacency matrix parameter
setting. Compared with the traditional NLS model, the results of our models are closer to the verified
data in the three study areas with the distance threshold of 1.5 pixels. The regression residual and
its spatial autocorrelation issue are better eliminated. Meanwhile, the empirical experiments verified
that the main source of night light varied in countries and regions due to different levels of economic
development. In economically developed countries and regions, commercial land, public facilities
and residential land have high brightness; in regions with rapid economic development, traffic,
construction and industrial land are the main sources of nighttime light. Therefore, the proposed
models can quantify the relation between nighttime light data and land use more accurately, and in
turn benefit applications of nighttime light data in light pollution control, traffic volume estimation
and urbanization stage analysis.

The paper also has the following shortcomings. (1) The NLIs of surface features were solved as
homogeneous global variables in each study area. The value of each pixel in the same land use type
may have great variance. So, the proposed method lacks a fine-grained analysis of the difference of
NLIs within the same land use types. (2) Results of our models are greatly influenced by experimental
data. Experimental dataset of land use have different classification standards, and the acquisition time
varies greatly, so the results cannot be used for the comparison between these areas exactly. In order to
obtain a generic conclusion on causes of nighttime lighting, further experiments are needed with the
support of accurate and detailed experimental data.
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Appendix A

Table A1. Moran’s I of the coarse nighttime light images in the study areas.

City Berlin Massachusetts Shenzhen

Moran’s I 0.766 0.971 0.833
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Table A2. NLIs of reference data (RD) and analysis data from different models in Massachusetts.

Land Use Type
NLI

RD NLS NSLM NSEM

cropland 11.36 0.00 0.00 0.00

pasture 11.99 0.00 0.00 0.00

forest 12.85 0.89 2.13 1.70

Non-forested wetland 14.07 9.37 11.48 7.82

mining 15.94 33.52 34.48 29.13

open land 17.75 0.00 0.00 0.00

participation recreation 34.13 86.80 108.24 100.59

spectator recreation 38.74 364.30 175.72 164.25

water-based recreation 20.58 180.08 0.00 0.00

multifamily residential 50.16 548.43 343.14 317.27

high-density residential 30.53 208.97 121.39 108.70

medium-density residential 23.44 142.87 84.93 76.24

low-density residential 14.14 95.47 53.28 48.34

saltwater wetland 17.54 18.02 8.75 6.99

commercial 54.78 518.58 288.65 278.79

industrial 41.73 344.00 212.82 198.07

transitional 25.43 0.00 23.87 14.60

transportation 40.99 186.06 177.23 162.82

waste disposal 30.32 45.11 21.42 6.23

water 18.3 8.44 16.13 13.37

cranberry bog 7.86 0.00 0.00 0.00

powerline/utility 17.91 150.29 113.26 102.56

saltwater sandy beach 18.11 41.15 0.00 0.00

golf course 18.97 173.68 79.84 71.98

marina 45.61 543.06 384.66 270.96

urban public/institutional 42.36 320.99 253.91 237.75

cemetery 29.34 160.30 150.27 129.58

orchard 12.58 70.35 42.39 39.27

nursery 14.06 33.15 30.33 27.00

forested wetland 11.91 59.17 40.67 36.56

very low density residential 12.43 0.00 0.00 0.00

junkyard 19.51 65.68 139.70 116.83

brushland/successional 16.92 0.00 0.00 0.00

regression R2 1 0.78 0.79 0.81
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Table A3. NLIs of reference data and analysis data from different models in Berlin.

Land Use Type
NLI

RD NLS NSLM NSEM

Dense block-edge development 126.6 0 0.00 0.00

Closed block-edge development 134.4 25.2 9.08 19.25

Closed and half-open block-edge 121.6 0 0.00 0.00

Mixed development 124.9 23.5 8.67 15.46

Block-edge development with large courts 115.2 3 0.00 0.00

Row building with architecture row green space 116.2 9.8 0.00 0.00

Heterogeneous, inner-city mixed development 145.1 5.5 53.28 77.22

Vacated block-edge development 131.8 26.4 8.47 29.31

Storey residential building 131.8 25.5 26.53 45.33

Large residential areas and free-standing high-rise buildings 126.5 10.8 0.00 0.00

Row building with landscaped green settlement 116.1 10.3 0.00 2.35

Concentration in detached house areas 116.7 3.6 0.00 0.00

Rural mixed development 107 0 0.00 0.00

Vilas and urban villas with park-like garden 118.7 3 0.00 0.00

Row and duplex houses with yard 113.6 0.8 0.00 0.00

Freestanding single-family house with yard 115.2 1.7 0.00 0.00

Weekend houses and allotment garden-like areas 108.2 5.1 4.96 10.58

Core area 337.4 92.5 122.69 202.97

Small business and industry, large-scale retail area, high
building density 194.5 19.1 18.24 26.76

Mixed area without character of residential area, high
building density 173.7 79.3 46.45 81.89

Small business and industry, large-scale retail area, low
building density 148.9 22.8 15.89 25.85

Mixed area without character of residential area, low
building density 135.6 5 1.06 0.80

Utilities area 168 26.2 23.87 39.63

Railway station and railway system without railroad
embankment 155.7 13.8 9.62 20.35

Railroad embankment 132.1 22 5.48 7.59

Parking lot 194.9 48.3 70.34 115.71

Other traffic area 178.6 17.1 17.24 27.92

Airport 257.4 39.4 17.97 30.72

Administration 184.9 57.9 40.42 81.35

Culture 219.4 57 74.57 132.27

Law enforcement 140.1 13.6 12.59 21.66

School, old buildings 119.2 0 0.00 0.00

School, new buildings 117.4 19.6 3.83 12.20

University and research 139.9 20.8 1.71 4.90

Child day care center 115.9 25 18.17 37.81
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Table A3. Cont.

Land Use Type
NLI

RD NLS NSLM NSEM

Other youth facilities 111.1 1.2 0.00 0.00

Campground 100.7 0 0.00 0.00

Other and heterogeneous public facilities and special areas 152.7 17.2 10.40 19.33

Church 253.2 75.7 80.32 118.69

Hospital 129 25.2 4.60 14.70

City square/promenade 284.1 128.9 142.24 208.46

Covered sports facilities 146.8 21 21.79 28.24

Uncovered sports facilities 124.1 15.8 3.06 8.09

Tree nursery/horticulture 106.2 5.9 0.00 2.78

Allotment garden area 108 11.5 2.71 7.76

Park, green area 111.2 17.1 1.69 7.50

Cemetery 105.6 15.2 4.33 10.56

Vacant area 105.6 7.2 0.00 0.00

Agriculture 178.6 17.1 17.24 27.92

Forest 101.9 3.5 0.73 2.04

Water 104.7 5.2 0.94 1.92

Street 164.9 31.9 20.71 35.45

regression R2 1 0.71 0.75 0.75

Table A4. NLIs of reference data and analysis data from different models in Shenzhen.

Land Use Type
NLI

RD NLS NSLM NSEM

Forest 4.16 0.79 2.24 0.00

Street 37.39 47.80 79.71 93.62

Orchard 8.47 1.44 4.30 0.36

High-density multistory building 56.34 16.12 32.15 42.24

High-density single-story building 33.73 2.29 7.11 8.67

Impervious surface 24.65 15.68 29.19 32.47

Grassland 22.18 1.33 7.06 6.30

Water 4.41 2.82 7.23 2.95

Cropland 6.08 0.00 0.00 0.00

Park, green area 19.09 6.23 19.68 20.33

Open storage yard 86.35 64.10 121.01 151.33

Construction site 26.52 12.84 26.98 30.27

Multistory independent building 37.09 30.38 56.60 66.75

Single-story building 73.50 0.25 5.55 14.81
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Table A4. Cont.

Land Use Type
NLI

RD NLS NSLM NSEM

Parking lot 30.88 44.84 81.77 94.71

Nursery 2.83 0.00 2.01 0.00

Airport 88.77 118.38 208.93 253.79

Railway 37.36 37.10 73.32 86.20

Nature surface 12.13 12.67 17.98 16.97

Industrial 40.29 58.80 93.88 110.63

Waste disposal 8.19 4.98 10.88 7.94

Levee 2.71 0.00 0.00 0.00

Junkyard 8.30 1.69 4.24 0.26

Mining 11.85 2.58 5.80 2.78

Spectator recreation 41.94 23.22 45.97 55.39

Pool 37.71 0.00 0.00 1.22

regression R2 1.00 0.50 0.53 0.58
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Table A5. Top ten lightest and darkest land use types at night in the three study areas.

Top Ten Lightest Land Use Types at Night Top Ten Darkest Land Use Types at Night

ID Berlin Massachusetts Shenzhen ID Berlin Massachusetts Shenzhen

1 City square/promenade Multifamily
residential Airport 11 Large residential areas and

free-standing high-rise buildings Waste disposal Grassland

2 Core area Commercial Open storage yard 12 Concentration in detached house
areas Forest Water

3 Culture Marina Industrial 13 Rural mixed development Cropland Mining

4 Church Urban
public/institutional Parking lot 14 Vilas and urban villas with

park-like garden Pasture Pool

5 Parking lot Industrial Street 15 Row and duplex houses with yard Open land Orchard

6 Mixed area without character of
residential area, high building density

Spectator
recreation Railway 16 Freestanding single-family house

with yard
Water-based

recreation Junkyard

7 Administration Transportation Multistory independent
building 17 School, old buildings Cranberry bog Forest

8 Heterogeneous, inner-city mixed
development Cemetery Spectator recreation 18 Other youth facilities Saltwater sandy beach Cropland

9 Storey residential building Junkyard High-density multistory
building 19 Campground Very low density

residential Nursery

10 Utilities area High-density
residential Impervious surface 20 Vacant area Brushland/successional Levee
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