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Abstract: Ship detection in multispectral remote-sensing images is critical in marine surveillance
applications. The previously proposed ship-detection methods for multispectral satellite imagery
usually work well under ideal conditions. When meeting complex environments such as shadows,
mists, or clouds, they fail to detect ships. To solve this problem, we propose a novel spectral-reflectance-
based ship-detection method. Research has shown that different materials have unique reflectance
curves in the same spectral wavelength range. Based on this observation, we present a new feature
using the reflectance gradient across multispectral bands. Moreover, we propose a neural network
called lightweight fusion networks (LFNet). This network combines the aforementioned reflectance
and the color information of multispectral images to jointly verify the regions with ships. The method
utilizes a coarse-to-fine detection framework because of the large-sense- sparse-targets situation in
remote-sensing images. In the coarse stage, the proposed reflectance feature vector is used to input the
classifier to rule out the regions without ships. In fine detection, the LFNet is used to verify true ships.
Compared with some traditional methods that merely depend on appearance features in images, the
proposed method takes advantage of employing the reflectance variance in objects between each band
as additional information. Extensive experiments have been conducted on multispectral images from
four satellites under different weather and environmental conditions to demonstrate the effectiveness
and efficiency of the proposed method. The results show that our method can still achieve good
performance even under harsh weather conditions.
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1. Introduction

Ship detection in remote-sensing imagery is of significant importance in maritime security and
transportation surveillance applications, such as vessel salvage and fisheries management [1–3].
As revisit periods have decreased, along with the improvements in image resolution for optical satellites,
continuous monitoring over a vast area via images has become a reality through sensors embedded
within these satellites. According to the statistics from Reference [4], ship detection in remote- sensing
images received increasing attention in the period from 1978 and 2016, and this trend continues. Among
them, the adoption of multispectral remote-sensing images allows for a more detailed analysis of
the reflectance variance in different objects in different wavelength intervals [5,6], thus offering a
significant advantage by presenting discriminate reflectance when the target is occluded by shadows,
mist, or clouds. Moreover, it provides an aerial view mode that makes it more convenient to intuitively
observe fleets over vast ranges.

Previous research has shown the productive results in ship detection under the limited resolution
of spaceborne multispectral images, as presented in References [5,7,8]. Specifically, in Reference [5],
a ratio image of two bands in the multispectral image was used to make a land mask, and a Bayes
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classifier was then applied to the three bands of the multispectral remote-sensing image to remove
the islands from the potential ships. In Reference [7], six bands in multispectral images were treated
as multidimensional data and were processed as biquaternions. In References [1,9], a ship-detection
method that can be applied to both panchromatic imagery and multispectral imagery is proposed. These
two methods perform ship detection in only one band. However, because optical remote-sensing images
are susceptible to bad weather and have a negative impact on detection tasks [4], these algorithms can
barely resist false alarms under complex weather conditions.

The powerful feature representation of convolutional neural networks (CNNs) on computer vision
detection tasks has been demonstrated in Reference [10]. Compared with traditional features designed by
human-subjective accumulated knowledge, CNN features rely on a large amount of positive and negative
sample data to perform detection tasks, and its deep structured neural networks can automatically
generate feature representations from original image pixels. Since then, this technique was utilized to
pursue higher accuracy by making deeper and more complicated networks (e.g., References [11–14]).
If these advances to the improvement of accuracy are used directly in remote-sensing images, they might
not necessarily make networks more efficient with respect to the detection tasks of large scenes and
sparse targets but requires high computational and storage expenses. For utilizing CNNs in missions
with restricted space and time, researchers have suggested using lightweight CNNs [15,16]. The rise of
CNNs technology has also led to its application research in high-resolution optical satellite image target
detection (e.g., References [17–21]). Due to the powerful feature representation of CNNs, Reference [17]
combined a singular-value decomposition algorithm with a three-layered CNN operated on 2-m or even
higher resolution panchromatic remote-sensing images. The method in Reference [18] has modified
AlexNet CNN [10], the winner of the ImageNet [22] competition in year 2012, to obtain rotation-invariant
appearance features in remote-sensing images with a spatial resolution ranging from 0.5 m to 2 m; the
method in Reference [20] built a new network architecture based on Reference [23] to adapt to capturing
the clustered small objects in remote-sensing images. Both methods were applied in RGB color space
images. The methods in References [3,19–21] combined the CNN technique with the coarse-to-fine
strategies and believed that this would perform better in remote-sensing image-detection tasks. They all
took full advantage of the spatial feature representation of remote-sensing images and benefitted from
a large data set or the large size (increased depth) of the network to improve their performance under
different situations (e.g., References [11–13]) but ignored the essential difference between remote-sensing
images and natural scene images. Among these works, Reference [9] is the only work to conduct
experiments under different weather conditions. To address this problem, this paper investigates and
exploits the spectral properties in multispectral images to compensate for the insufficient appearance
features on targets in multispectral remote-sensing images in different environment conditions.

Unlike the RGB channel in the natural colorful images, each spectral band in a multispectral
remote-sensing image records the ratio of the reflected over the incoming radiation in a specific
spectral wavelength range falling on each pixel, which can be used for surface material identification.
The studies in References [5,6] showed that the reflectance varieties among bands in multispectral
satellite images would benefit ship detection. Figure 1 shows a grayscale image of the blue, green,
red, and near-infrared bands containing clouds, ships, and islands. In Figure 1, the vegetation on the
island clearly has a higher intensity in the fourth spectral band than in the other three bands. However,
the cloud in the blue band seems larger though they are the same cloud in these four images. The ships
seem to have a higher contrast in the fourth band. Different surface materials exhibit varying degrees
of reflection intensity in each spectral band.
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(a) (b) (c) (d)

Figure 1. Four bands of a multispectral satellite image with cloud and wave backgrounds: (a) the
grayscale image of the blue band; (b) the grayscale image of the green band; (c) the grayscale image of
the red band; and (d) the grayscale image of the near-infrared band.

Research on spectrum imaging shows that different materials have unique spectral reflectances in
remote-sensing images. Researchers have assembled digital spectral libraries recording the reflectance
spectra of seawaters, minerals, mineral mixtures, and many other materials [24] for hyperspectral
images. These spectral properties in hyperspectral remote-sensing images are widely applied for
analyzing object composition. For example, the normalized difference vegetation index (NDVI) [25]
is used to calculate vegetation coverage and the normalized difference water index (NDWI) is used
to delineate water features [26]. Spectral properties are also generally used for the classification of
scenes and land usage in hyperspectral satellite images [27,28]. While spectral feature extraction in
hyperspectral data is often performed to reduce dimensionality for classification, it is rarely applied
to multispectral data with lower spectral resolution [28]. However, as indicated in Reference [6],
the reflectance of water and ships differs among bands with different wavelength spectra and could
serve as efficient auxiliary information in ship detection. Although spectral bands show a pronounced
advantage in performing ship detection, these characteristics have neither been comprehensively
analyzed nor been efficiently utilized [4].

Therefore, in this paper, we propose a ship-detection method based on the reflectance of the
multispectral satellite images. To address the large scene and sparse targets problem, we applied a coarse-
to-fine detection framework. In the coarse stage, the reflectance image of the original multispectral image
was obtained and a feature set was designed. We use the reflectance gradients to extract ship pixels
and to obtain the locations of ship candidates. In the fine stage, the reflectance image and synthesized
false color image obtained from the original image were combined to learn the weight of the proposed
lightweight fusion network (LFNet). In this way, the network learned the shape, color, and reflectance
features of the ships. Compared with other deep CNNs, LFNet does not require very large training
samples. In addition, LFNet is performed on patches to improve the processing efficiency instead of the
whole image. The entire detection process of the proposed method is shown in Figure 2. It included
three stages: preprocessing stage, ship candidate extraction stage, and ship verification stage. In the
preprocessing stage, the Geographic Information System (GIS) was utilized to obtain the sea–land
mask. Besides, the reflectance images of the original input, four-band images were calculated and the
3-channel false color image was synthesized for further process. In the ship candidates extraction stage,
spectral reflectance gradients were calculated from the reflectance images and combined with random
forest classifier for classification of ship and nonship. In the ship verification stage, the obtained ship
candidates from the previous stage were input into the lightweight fusion network for feature extraction
and screened for false ship candidates.
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Figure 2. The flowchart of the proposed method: When considering a multispectral image, we use
geographic information to obtain the ocean regions. Afterward, a coarse detection stage is performed,
where the spectral reflectance image is computed based on the ocean image. This procedure is then
followed by the calculation of the reflectance gradient across different bands for each pixel. The pixels
are classified according to the designed features. The classification result enables us to obtain the ship
candidate location. In the fine detection stage, we use the lightweight fusion network to further verify
the ship candidates. After this step, the final ship-detection results are achieved.

The contributions of the proposed work are as follows:

(1) To the best of our knowledge, this study might be the first to utilize spectral reflectance to perform
ship detection tasks. Furthermore, a new type of feature to coarsely rule out the regions without
ships is carefully designed;

(2) A new CNN architecture, i.e., LFNet is designed based on References [16,17] to effectively combine
the reflectance map with the color map of the multispectral image for extracting the ship reflectance
features and appearance features.

The paper is structured as follows. Section 2 presents the analysis of the spectral properties of the
targets and the task-related background objects in multispectral remote-sensing images. The spectral
feature calculation formula and details of the structure of the LFNet used for ship detection are introduced
in Section 3. Section 4 delineates the training process for the detection algorithm. The experimental results
from four multispectral remote sensors are reported in Section 5, and a conclusion is drawn in Section 6.

2. Coarse Detection Based on Reflectance

In this section, the details of the coarse detection are introduced.

2.1. Spectral Characteristics Analysis

The multispectral satellite images discussed in this paper include four bands, namely the blue
band (band 1, ranging from 0.45 to 0.52 microns), green band (band 2, ranging from 0.52 to 0.59 microns),
red band (band 3, ranging from 0.63 to 0.69 microns), and near-infrared band (band 4, ranging from
0.77 to 0.89 microns). These images have six-meter, ten-meter, sixteen-meter, and twenty-meter spatial
resolutions, respectively. In the following paragraphs, we use Bi, i = 1, 2, 3, 4 to refer to the values of
each band within an multispectral satellite image (MSI).

To further investigate the reflectance of different materials, some statistics were processed.
Specifically, pixels belonging to ships, clouds, islands, and seawater are collected from multispectral
images to establish their spectral reflectance signatures in the four bands for classification. The image
of 2000 ships (19,530 pixels) and 20,000 seawater pixels under the conditions of shadows, mist, clouds,
and clear sky are selected; 15,422 island pixels and 20,500 cloud pixels are also gathered. Details of
the environmental conditions classification are explained in Section 5.1. Here, we mainly applied
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Fourier transform [29] to characterize clouds in a given tile of an image. All come from four different
multispectral remote sensors and are converted to reflectance values.

To calculate the reflectance value from the digital number (DN) of the pixel value in MSIs, the first
step is to convert the DN to radiance:

Rad(Bi) = DN(Bi) · G(Bi) + b(Bi) (1)

where i ∈ 1, 2, 3, 4 is the number of each spectral band, Rad is the radiance value (W×m−2 × sr−1 ×
µm−1), and G and b are the band-specific rescaling gain factor and bias factor in one radiometric,
respectively. Then, the radiance is converted into reflectance:

Re f (Bi) =
Rad(Bi) · π · d2

E(Bi) · cos(θ)
(2)

where Re f is the reflectance value, E is the band-specific exoatmospheric irradiance (W×m−2× sr−1×
µm−1), d is the Earth–Sun distance on the day of acquisition for the specific scene in astronomical
units, and θ is the solar zenith angle in degrees. Values for the band-specific rescaling gain factor, bias
factor, and the exoatmospheric irradiance used in this paper (see Tables A1 and A2 for details) are
detailed by CRESDA (China Centre for Resources Satellite Data and Application). Values for the scene
acquisition day and the solar zenith angle are packaged together with the image data of that scene.
The Earth–Sun distances can be calculated using the day of scene acquisition [30].

The average reflectance values for ships, seawater, islands, and clouds collected under different
conditions and their average values are shown in Figure 3. The dots in the graph represent the
reflectance values for each individual pixel, while the dashed lines represent the average values for
each category. In the analysis, we found that the same substances show different reflection curve
clusters. The seawater pixels concentrate in three sets of reflection clusters, as the pixels came from
three distinct areas: clear seawater, shadowed seawater, and high sediment seawater. Pixels belonging
to clouds were gathered into two sets of clusters due to their thickness differences. The island pixels
were clustered according to whether they were covered by plants into two groups. The ships were
grouped into five subcategories based on their reflection changes. Especially, the reflectance of some
clear seawater was similar to that of ships. The nuances between different clear seawater were
scrutinized by applying different linear enhancements in each band image. It turns out that this clear
seawater, similar to the reflection of a ship, was actually covered with mist.

Figure 3. The reflectance values of seawater, clouds, islands, and ships collected from multispectral
images in each band.
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2.2. Feature Construction

Some objects in Figure 3 have overlapping ranges of reflectance values in these four bands,
so direct application of reflectance values for classification may have limited performance. However,
the identical material collected under equal situations has the same gradient for the reflectance values
in the four bands. Considering that each spectral band for a satellite sensor has a distinctive central
wavelength and that the same spectral bands for different satellites also have nuances of central
wavelength, the gradient calculation formula is designed as follows:

grad(Bi, Bj) =
Re f (Bi)− Re f (Bj)

λBi − λBj

(3)

where i 6= j, i, j ∈ 1, 2, 3, 4, and λBi and λBj are the central wavelengths of the ith and jth spectral bands,
respectively. To amplify the result of the gradient, λBi used units of µm. In this way, the gradient
obtained was less affected by the parameters of the sensor. As shown in Figure 4, the reflectance
gradient values for ships, seawater, clouds, and islands in groups grad(B1, B3) and grad(B2, B3) and
in groups grad(B1, B2), grad(B1, B4) and grad(B2, B4) have analogous distributions. Thus, combining
them all into one feature set would be redundant. Consequently, one of these two groups will be chosen
to compose a feature set of three reflectance gradients. Figure 5 shows an example of the values for the
seawater, clouds, islands, and ships in three reflectance gradients. It displays that the island pixels
are linearly separable from ship, seawater, and cloud in these three-dimensional reflectance gradient
features. Compared to the one-dimensional reflectance gradient in Figure 4, higher-dimensional
features are needed in order to distinguish among ship, seawater, and cloud. Moreover, a proper
classifier is needed to accurate classify each category.

(a) (b) (c)

(d) (e) (f)

Figure 4. The reflectance gradients between two different bands for ships, seawater, clouds, and islands:
(a) the reflectance gradients between band 1 and band 2; (b) the reflectance gradients between band
1 and band 3; (c) the reflectance gradients between band 1 and band 4; (d) the reflectance gradients
between band 2 and band 3; (e) the reflectance gradients between band 2 and band 4; and (f) the
reflectance gradients between band 3 and band 4.



Remote Sens. 2020, 12, 792 7 of 19

Figure 5. The 3-dimensional reflectance gradient values of seawater, clouds, islands, and ships.

2.3. Classification of Ship Candidates

To separate the ship from the background, support vector machine (SVM) with Gaussian kernel
and random forest (RF) are adopted as basic classifiers based on two classes and four classes for
analysis and comparison.

The first two methods employ SVM as the basic classifier. One considered the classification as a
two-class recognition problem, named SVM-2c; the other one was a general multiclass classification
strategy, named SVM-mc. The last two methods used RF as the classifier; one was binary classification
(RF-2c), and the other was multiple classification (RF-mc). In SVM-2c and RF-2c, all samples were
classified into two classes: ship and nonship. In SVM-mc and RF-mc, the nonship class includes several
subclasses: seawater, cloud, and island. In these four methods, the classifier used all of the above
reflectance gradients as classification features and trained the classifiers on training set I. The results
in Section 5 show that RF-2c has won the competition. Thus, this paper uses random forest as the
basic classifier with reflectance gradient features to classify ship candidates. After a close look at the
distribution of the reflectance gradient, we find that some reflectance gradients are unnecessary to
include. Therefore, the reflectance gradient feature set with a higher recall rate was employed finally.
In this step, pixels that did not belong to ships were eliminated and set to zero to obtain a binary
map of the ship. Afterwards, the connected component-labeling algorithm was used to label eight
connected objects (areas larger than 3 pixels were retained). Then, the bounding boxes of the ship
candidates were drawn according to the binary map for further verification.

3. Fine Detection Based on LFNet

In this section, we introduce the details of fine detection.

3.1. The Basic Idea of Feature Fusion

As shown in Equation (2), the reflectance image is nonlinearly related to the digital numbers of
the original MSI when pixels come from different scenes. Therefore, the combination of the reflectance
image with the original image will provide more useful information. To learn the spatial features
with color information along with the spatial features with reflectance information, we propose a
feature fusion based on a synthesized false color image and a reflectance image. The methods in
References [31,32] demonstrated that the blue band supplies less effective information than the other
three bands in detection tasks. After a comprehensive exploration of the combination with different
spectral bands, a three-channeled false color image synthesized from bands 4, 3, and 2, arranged
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as red, green, and blue in the three channels, respectively, was used for feature fusion with the
reflectance image.

3.2. Network Configuration

A binary tree structure consisting of two input paths, called lightweight fusion network (LFNet),
was used because it ensures that each input path is mixed with features first from its own input
channel. As suggested in Reference [33], we use the grouped convolutional filter in the first two layers
because it learns better representations and reduces the number of parameters. In each branch of the
LFNet, there are two layers of grouped convolutional filters and a max pooling layer. The features
extracted by these two branches were then concatenated and shuffled for fusion and finally flowed into
one mainstream for higher feature representation and classification. In the mainstream of the LFNet,
the depthwise separable convolution technology [16] was applied, followed by a global pooling and a
fully connected convolution for final prediction. The complete network structure is shown in Figure 6.
As displayed in the graph, the pink colored branch of the LFNet receives the synthesized false color
image for feature extraction while the orange colored branch receives the reflectance image.

Table 1 illustrates the overall parameters of the proposed network. LFNet consists of seven weight
layers, including six convolutional layers and one fully connected layer. During training, the output of
the last fully connected layer was fed to the sigmoid function, which produced a prediction probability
over the target category label.

Table 1. Detail parameters in the lightweight fusion network. Key: Output groups are the number of
group convolutions in each layer and each group; FC denotes fully convolutional layer.

Layer Output Size Kernel Size
Output Groups (g)

g = 1 g = 2 g = 3 g = 4

Color Image 32× 32 – 3

GConv1_1 26× 26 7× 7 11 11 13 –

GConv1_2 20× 20 7× 7 2 2 1 –

MaxPool 10× 10 2× 2 57

Reflectance Image 32× 32 – 4

GConv2_1 26× 26 7× 7 8 12 11 12

GConv2_2 20× 20 7× 7 1 3 2 3

MaxPool 10× 10 2× 2 102

DWConv2_4 6× 6 5× 5 159

GConv2_5 6× 6 1× 1 159

GlobalPool 1× 1 6× 6 159

FC 1× 2 159× 2 2

For a comparative analysis, a similar network was also implemented, removing the branch that
receives the synthesized false color image of the proposed LFNet. In this network, only the reflectance
images of the original four-band multispectral image were received. By implementing this network,
the benefits of synthesized false color images in feature fusion can be explored.
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Assume that one of the input groups = has a size of W × H × D and that one grouped
convolutional layer exists in any branch of LFNetwork, denoted asW , we have the output feature F ,
represented by the following:

F = g(= ∗W) (4)

where g(·) is the sigmoid activation function defined as

g(θ) =
1

1 + e−θ
(5)

and ∗ is the convolution operation.
The overall structure and design of the LFNet is a brand new idea, but some of its components

were learned from other inventors. The idea behind the design and structure of the first two layers
of the LFNet branch is inspired by SVDNet [17], but it has entirely different convolutional filter
components. Instead of using ordinary convolution, the proposed network utilizes the grouped
convolution to learn a more sparse representation. Additionally, a max pooling layer is added after the
second convolutional layer to retain as much texture information as possible. The component after
the concatenation layer in the mainstream of LFNet is a simplified version of the shuffle unit from
ShuffleNet [15] and the depthwise separable convolution unit from MobileNets [16].

True 

Ships

Ship Candidates

Reflectance Image

False Color Image

Global

Pool
FC

7×7

GConv

1_2

7×7

GConv

2_2

7×7
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Figure 6. The architecture of the proposed network: The pink colored branch of the network receives
the synthesized false color image input with two grouped convolution (GConv) layers and a max
pooling layer, and the orange colored branch receives reflectance image input having the same structure
as the pink colored branch. The mainstream consists of GConv, depthwise convolution (DWConv),
global pooling layer, and a fully connected layer.

4. Training for Detection

In the coarse stage, we adjusted the two parameters in the random forest classifier: number of
trees to grow ntree and number of variables randomly selected at each node mtry. After experiments
on different combinations of ntree = {20, 30, 35, 40, 50} and mtry = {1, 2, 3}, we set the random forest
with parameters mtry = 2 and ntree = 35. In fact, the increase in precision and recall begins to slow
down when ntree = 30 and mtry = 2. This classifier trains on training set I.
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In the fine stage, a training set II (consisting of patches with positive and negative samples) is
used to learn through an unsupervised learning algorithm to first obtain the parameters of the first
two layers of LFNet’s two branches. After that, all of the filter banks were trained on the same training
set by a supervised learning algorithm. Hence, LFNet’s learning process is divided into two steps:
unsupervised learning and supervised learning.

For the two grouped convolutional layers in the branches of LFNet, the efficient singular value
decomposition (SVD) unsupervised learning algorithm was used to represent the eigenvectors [17,34].
Assume that the randomly selected patches Ii for group g of the input layer with size k× k can be
reshaped into a vector and I = [I1, I2, . . . , In] ∈ Rk2×n. Then, the SVD of the matrix I is

I = UΣVT (6)

where U ∈ Rk2×k2
and V ∈ Rn×n are orthogonal unitary matrices and Σ ∈ Rk×n is a rectangular

diagonal matrix with the singular value σi of I on its diagonal. Then, we choose ui from the U with the
largest singular values that fulfill the following condition:

N = {min(i)|σ1 + · · ·+ σi
Σ

> 0.99} (7)

where N is the number of filter banks. The filter banks belonging to group g are then obtained from U
by forming ui into 2_D filters. Different from the usage of SVDs in Reference [17], this unsupervised
learning algorithm is applied to the input layers of more than one channel of the grouped convolutional
layers. The number of filters in each layer is determined by Equation (7).

In the second step of LFNet training, each ship target sample in the training set is labeled with a
ground-truth class u (+1 for ships and −1 for nonships). The log loss L is applied on each labeled ship
target sample for training for final prediction as follows:

L(y, u) = log(1 + e−yu) + β‖w‖2
2 (8)

where β is a weight decay parameter, y is the output from the last layer, and w is the weight of the
fully connected layer. Then,

y = wTx (9)

where x is the output from the upper layer. The prediction error calculated by the log loss will propagate
back by the gradient from the last layer to the front layers except for the unsupervised-learning layer.
Finally, they are fine-tuned together.

5. Experiment and Discussion

In the following section, extensive experiments are carried out to verify the effectiveness of each
stage in the proposed method. First, images with pixels containing ships, seawater, islands, and clouds
are prepared to verify the performance of the proposed ship candidate-extraction method. Second,
the performance of LFNet with different parameters is evaluated and the results are given in detail.
Third, an experiment comparing several other methods with the proposed algorithm is conducted.

The assessment criteria in Reference [35] are used here, and the definitions are as follows:

precision =
ntp

ntp + n f p
(10)

recall =
ntp

ntp + n f n
(11)

F1 =
2× precision× recall

precision + recall
(12)



Remote Sens. 2020, 12, 792 11 of 19

where ntp is the number of true positives, n f p represents the number of false positives, and n f n denotes
the number of false negatives. precision and recall are the precision rate and recall rate, respectively.
F1 is the F1-measure. So far, no public multispectral satellite ship detection dataset contains related
satellite parameters used for reflectance calculation, and few researchers have published their source
code or software. Therefore, we do not directly compare this method with other methods.

5.1. Data Description

We tested our method on forty-eight images, twelve each from GaoFen-1 (GF1), ShiJian-9 (SJ9),
ZiYuan-3 (ZY3), and CBERS-04 (CB04) MSIs taken at different times and locations and containing
coastal landscapes. The images from the first three satellites have varying spatial resolutions, while
images from the fourth have a different resolution and quantization level from the first three sets
of images. Detailed information on these images is presented in Table 2. As the proposed method
takes advantage of the spectral features of the original images, the wavelength of each band and the
quantization level of each satellite sensor are provided for comprehensive analysis.

Table 2. Detailed information on experimental images. Key: Qt. = Quantization.

Satellite Resolution Size (Pixel)
Wavelength (µm)

Qt.
Band1 Band2 Band3 Band4

GF1 8 m 12,000 × 13,400 0.450∼0.520 0.520∼0.590 0.630∼0.690 0.770∼0.890 10 bit

SJ9 10 m 4548 × 4544 0.450∼0.520 0.520∼0.590 0.630∼0.690 0.770∼0.890 10 bit

ZY3 6 m 8816 × 8792 0.450∼0.520 0.520∼0.590 0.630∼0.690 0.770∼0.890 10 bit

CB04 20 m 6500 × 6500 0.450∼0.520 0.520∼0.590 0.630∼0.690 0.770∼0.890 8 bit

Two training sets were collected from images produced by all the satellites referenced above:
details of training set I can be found in Section 2.1: training set II including 60,780 ship target samples
and 69,475 negative samples after data augmentation. The data augmentation performed here is
90◦ rotations each time and scaling each sample by downsampling to 0.8, 0.5, and 0.2 scales of its
original size.

In terms of testing, we prepared a test set for each stage and a test set for a comprehensive
comparison. Test set I includes 4660 ship pixels, 7120 seawater pixels, 5764 cloud pixels, and 5544
island pixels; test set II contains 6379 ship target patches and 11,256 nonship-target patches; and test
set III contains 40 MSIs, including 1372 ship targets in various weather conditions, i.e., clean, wavy,
and cloudy sea situations. The experimental images in test set III were divided into three categories
based on the environment on the images: “wavy”, “cloudy”, and “clean” refers to the images that
contain environments such as heavy waves, clouds, or clean sea conditions. When classifying the
images based on environmental conditions, we first characterized the clouds in a given image and
then characterized waves. If the results indicated that no cloud and wave conditions were found,
the given image was classified as a clean image. Specifically, we first traversed the image based on the
ocean background characterization algorithm in Reference [29] to determine whether a given image
contains clouds. If the tiles (200 by 200 pixels suggested by Reference [29]) in the ocean part of a given
image containing clouds exceed thirty percent of its ocean part, the given image was classified as
“cloudy”; otherwise, we traversed the image to determine the sea surface roughness measured by the
standard deviation (recommend by References [36,37]). If the tiles (512 by 512 pixels suggested by
Reference [38]) in the ocean part of a given image has a standard deviation larger than 15 (empirically
set), exceeding fifty percent of its ocean part, the given image was classified as “wavy”. A given
image that dissatisfied both of the above conditions was classified as “clean”. To apply the original
one-band-based clouds and sea states characterization algorithm in multispectral images, we used
the average result from each band as the final result for a given tile. After automatically classifying
environmental conditions, we manually checked and corrected the results.
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In the statistics, ships with a length of more than five pixels (ships with a length of more than
100 m in CB04, ships with a length of more than 80 m in GF1, ships with a length of more than 50 m in
SJ9, and ships with a length of more than 30 m in ZY3) were counted because smaller pixel clusters
have very limited object details/features to extract and are barely recognizable by the human eye.

5.2. Reflectance Gradient Analysis and Classification

The experiment in this section was performed on test set I. All sampled pixels were divided
into four categories: ship, cloud, seawater, and island. In the following experiments in this section,
all classifiers were trained from the training set I. Considering that the reflectance gradient classification
was the first step in the whole process, we pursued a higher recall rate than the precision rate in the
following experiments in this section.

The first experiment analyzed the performance of the classification ability in which each reflectance
gradient was treated as a classification feature. The experiment was based on the selection of each
different reflectance gradient combined with the classifier. Figure 7 clearly shows that each feature had
a lower classification ability for ships than for seawater. That is, each reflectance gradient combined
with SVM was a weak classifier for ship classification, which leads to the second experiment.

Figure 7. Performance of classification based on every single feature.

The second experiment adopted all reflectance gradients as classification features to compare the
classification capabilities of the SVM and RF. In this experiment, the aforementioned four classification
approaches were compared, and their results are listed in Table 3. It is easy to find that the precision
and recall of RF was much higher than SVM, which is inferable from the results of the first experiment.
The classification ability of each feature for different objects varies, which leads to their divergent
importance in filtering ships. Random forests classifier has the capability to estimate the importance
of variables [39], which makes it more suitable for classification used in combination with these
features than support vector machine. Moreover, the recall of RF-mc based on four categories was
lower than the recall of RF-2c based on two-class classification. Therefore, RF-2c was adopted in the
following experiment.

Table 3. The classification result of different approaches: Testing time is the classification time per megapixel,
including the calculation of reflectance gradients; for definitions of abbreviations, see Section 2.3.

Method SVM-2c SVM-mc RF-2c RF-mc

Recall (%) 77.79 84.52 99.05 98.71

Precision (%) 92.36 91.83 97.92 98.08

Testing time (s) 18 22 19 19

Training time (s) 67 109 34 38
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As mentioned previously, the distribution of reflectance gradient values for ships, seawater,
clouds, and islands in groups grad(B1, B3) and grad(B2, B3) and in groups grad(B1, B2), grad(B1, B4),
and grad(B2, B4) was similar. To reduce the redundancy of classification features and to maintain
good performance, a third experiment was conducted. We selected one feature from grad(B1, B3)

and grad(B2, B3) and the other from grad(B1, B2), grad(B1, B4), and grad(B2, B4) and then combined
them with a fixed feature grad(B3, B4) to compose a feature set. Table 4 listed the details of feature
set combinations. Then, we obtained six feature sets listed in Figure 8a. These feature sets based on
RF were adopted to analyze the performances of different combinations of feature sets, as shown in
Figure 8a. set4 achieved the highest recall rate when using feature sets as classification features and 0.1%
lower than the recall rate using all reflectance gradients as classification features. The low precision
rate mainly came from the misclassification of mist-covered seawater and other man-made objects at
sea. Most misclassified mist-covered seawater scattered on the binary map of ship candidates can be
screened out easily by area. Thus, we adopted the set4 combined with RF in the following experiments.

Table 4. The feature sets for contrast.

Featureset Set1 Set2 Set3 Set4 Set5 Set6

features
grad(B1, B3) grad(B1, B3) grad(B1, B3) grad(B2, B3) grad(B2, B3) grad(B2, B3)

grad(B1, B2) grad(B1, B4) grad(B2, B4) grad(B1, B2) grad(B1, B4) grad(B2, B4)

grad(B3, B4) grad(B3, B4) grad(B3, B4) grad(B3, B4) grad(B3, B4) grad(B3, B4)

(a) (b)

Figure 8. (a) Performance of classification based on every feature set and (b) performance of classification
based on LFNet with/without color image input with different band combination.

5.3. Color Image Fusion Experiment

In this experiment, we implemented an LFNet with its branch that receives the synthesized false
color image cutoff, which means that the reflectance image was the only input for the network, named
exp A. The remaining control groups were all implemented through a fully structured LFNet, but the
input-synthesized false color image differed in band combination. The synthesized false color image
of exp B treated band 4, band 2, and band 1 as red, green, and blue, respectively; the synthesized false
color image of exp C used band 4, band 3, and band 1; group exp D synthesized from band 4, band 3,
and band 2; and the last group exp E synthesized from a combination of band 3, band 2, and band 1.
They were conducted under a maximum number of training iterations of T = 1000 on the training set
II and tested on the test set II.
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In Figure 8b, the result of exp A shows that the precision fell outside 90% without the input of
color image. As we also give the predictions for other band combinations, the combined band 3, band
2, and band 1 as red, green, and blue, respectively, was not the best choice for ship detection. Group
exp D achieved the highest precision and recall.

5.4. Parameter Optimization

We explored the performance of the LFNet under a maximum number of iterations of T = 1000
by measuring the object proposal capability against our test set II under different learning rates and
weight decay coefficients. Figure 9 shows the prediction results. The figure shows that the LFNet
obtained the highest performance when the learning rate was set to µ = 5× 10−4 and the weight decay
coefficient was set to β = 1× 10−3.

(a) (b)

Figure 9. Ship-detection results of the LFNet measured in terms of precision and recall over ship and
nonship classes under different parameter settings: (a) precision rate and (b) recall rate. The highest
precision and recall rate values are indicated with bold numbers on their corresponding bars.

5.5. Ship-Detection Performance

In this experiment, the proposed method was verified on satellite images with complex backgrounds,
changing resolutions, and variable quantization levels, with the aim of demonstrating its robustness.
LFNet was fine-tuned for optimal performance when used here.

For comparison, six algorithms were implemented and trained with training set II and then tested
on test set III. The algorithms used were: the dense scale-invariant feature transform (denseSIFT) [40]
with SVM [41]; local binary pattern [42] with SVM; histogram of oriented gradient (HOG) with
SVM, as some methods used new derivatives of HOG as the feature extractor [43,44]; the method of
Reference [9] (denoted as cdDNN) and SVDNet [17] with band 4 as its input; and YOLT [20] with
RGB color image as its input. Figure 10 displays the precision-recall curves of these four methods
and the proposed method in this paper (denoted as Spec + LFN). The proposed algorithm was clearly
superior to the other six algorithms in performance in test set III. Table 5 shows the F1-measurement
of these algorithms and the proposed algorithm. The outcome indicates that the proposed method
had relatively similar performances in different environments. Other algorithms achieved their best
performance in clean sea situations.
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Figure 10. Precision-recall curves of six different feature descriptors: HOG, LBP DenseSIFT, SVDNet,
cdDNN, YOLT, and Spec+LFN; for definitions of abbreviations, see Section 5.5.

Table 5. F1-measurement of performance on experimental images.

Condition Clouds Waves Clean

DenseSIFT 0.830 0.841 0.865

LBP 0.810 0.806 0.839

HOG 0.824 0.826 0.855

cdDNN 0.934 0.924 0.954

SVDNet 0.749 0.986 0.959

YOLT 0.951 0.972 0.978

Spec + LFN 0.976 0.974 0.977

Some typical images from GF1, SJ9, ZY3, and CB04 are shown in Figure 11. The first column in
Figure 11 presents a few detection results of multiscale ship targets in relatively calm seas with no
clouds. The second column shows the ship-detection results under mist both with and without ocean
waves. The pictures in the last column show successful detections of ships beneath dense clouds.

Based on the analysis of the experimental results, we can conclude that the performance of the
proposed method in ship detection is rarely affected by cloudy weather, waves, resolution, or quantization
level of the sensors. Furthermore, the performance of the proposed model can be related to the discussed
parameters of the sensors except for the resolution and quantization level.

The utilization of spectral features in regular four-band multispectral images when performing
ship detection has been analyzed. The reflectance value of the objects related to the ship-detection
task itself is susceptible to weather conditions and may overlap each other in some cases; however,
its gradient remains relatively stable under different conditions and therefore allows the relatively low
spectral resolution of four-band multispectral images to apply this feature to coarse ship detection
but with limited precision. By exploiting the gradients between different two bands, one can separate
ships from most seawater, cloud, and island pixels. The difference among the mist-covered seawater,
ships, and other man-made objects is indistinguishable using only the reflectance gradient features
due to the low spectral resolution of the four-band multispectral image.

In the verification stage, the optimal synthesized false color image for feature fusion has been
analyzed. The result showed that the false color image synthesized by selected bands (NIR–red–green)
outperforms the traditional red–green–blue band-synthesized false color image in ship detection and
other synthesized false color images. To our knowledge, this is the first evidence that three-channel false
color images synthesized from different band combinations from the multispectral remote-sensing
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image have different ship-detection performances. The explanation for this result may lie in the
enhancement effect of the selected bands.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 11. The performance of the proposed method under different conditions: (a,d,g,j) Calm, (b,e,h,k)
waves and (c,f,i,l) mist and thick clouds. (a–c) represents images from GF1. (d–f) represents images
from SJ9. (g–i) represents images from ZY3. (j–l) represents images from CB04.
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6. Conclusions

This paper proposes a novel method of ship detection based on the spectral features and a CNN-based
network with a binary tree structure known as LFNet in a coarse-to-fine manner. It analyzed the spectral
reflectance relationship between the targets to be detected and objects that may obstruct the detection
under various weather and environmental conditions. It is observed that their reflectance values
may overlap in some cases; however, their reflectance gradients remain relatively unchanged under
complex environment. The proposed features designed based on this characteristic combined with
the random forests classifier to extract ship candidates with limited precision but high recall. In the
second stage, the LFNet with two input paths received information from the synthesized false color
image and the reflectance image for ship verification. It is observed that the synthesized false color
image treating band 4, band 3, and band 2 as red, green, and blue, respectively, combined with the
reflectance image in feature fusion performs better than other options.

The experiments conducted on a set of multispectral images from the GF1, SJ9, ZY3, and CB04
satellites demonstrate the effectiveness and robustness of method with 8-m, 10-m, and 6-m resolutions
with a 10-bit quantization level and with a 20-m resolution with an 8-bit quantization level. The idea
of spectral reflectance gradient features is transferable to object detection on multispectral images or
hyperspectral images.
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Appendix A

Table A1. Exo-atmospheric irradiance used in the experiment (W×m−2 × µm−1).

Sensor Name Band1 Band2 Band3 Band4

GF-1 PMS1 1944.98 1854.42 1542.63 1080.81
GF-1 PMS2 1945.34 1854.15 1543.62 1081.93

CB-04 MUX [45] 1958 1852 1559 1091
SJ-9A MUX 1942.93 1854.03 1543.25 1080.87

Table A2. Satellite parameter used in the experiment from CRESDA (China Centre for Resources Satellite
Data and Application; W×m−2 × sr−1 × µm−1).

Sensor Name Year
Band1 Band2 Band3 Band4

Gain Bias Gain Bias Gain Bias Gain Bias

GF-1 PMS1
2015 0.211 0 0.1802 0 0.1806 0 0.187 0
2016 0.232 0 0.187 0 0.1795 0 0.196 0
2017 0.1424 0 0.1177 0 0.1194 0 0.1135 0

GF-1 PMS2
2015 0.2242 0 0.1887 0 0.1882 0 0.1963 0
2016 0.224 0 0.1851 0 0.1793 0 0.1863 0
2017 0.1460 0 0.1248 0 0.1274 0 0.1255 0

CB-04 MUX 2015 0.6575 0 0.6303 0 0.6145 0 0.5369 0

SJ-9A MUX 2014 0.1830 −2.1067 0.1660 −1.8065 0.1570 −0.4350 0.1428 −0.3639
2015 0.1789 0.953 0.1608 −2.1306 0.1519 −2.176 0.1479 −1.2396
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