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Abstract: Infrared and visible image fusion technology provides many benefits for human vision and
computer image processing tasks, including enriched useful information and enhanced surveillance
capabilities. However, existing fusion algorithms have faced a great challenge to effectively integrate
visual features from complex source images. In this paper, we design a novel infrared and visible
image fusion algorithm based on visual attention technology, in which a special visual attention
system and a feature fusion strategy based on the saliency maps are proposed. Special visual attention
system first utilizes the co-occurrence matrix to calculate the image texture complication, which can
select a particular modality to compute a saliency map. Moreover, we improved the iterative operator
of the original visual attention model (VAM), a fair competition mechanism is designed to ensure
that the visual feature in detail regions can be extracted accurately. For the feature fusion strategy, we
use the obtained saliency map to combine the visual attention features, and appropriately enhance
the tiny features to ensure that the weak targets can be observed. Different from the general fusion
algorithm, the proposed algorithm not only preserve the interesting region but also contain rich tiny
details, which can improve the visual ability of human and computer. Moreover, experimental results
in complicated ambient conditions show that the proposed algorithm in this paper outperforms
state-of-the-art algorithms in both qualitative and quantitative evaluations, and this study can extend
to the field of other-type image fusion.

Keywords: image fusion; visual attention; saliency map

1. Introduction

Image fusion is an important branch of information fusion, which involves many research fields
such as deep learning, image processing and computer vision [1–3]. Among them, the infrared and
visible image fusion has great application value in the practical engineering. The visible image contains
rich texture information and conforms to the human visual system. Infrared images distinguish
targets from background based on differences in thermal radiation. By combining the complementary
information of visible and infrared image, it is possible to generate fused images that are more
conducive to human decision-making or computer vision tasks, which has been applied to many fields
such as the military, target detection, surveillance and so on [4–9]. An excellent image fusion algorithm
must contain the following conditions. First, the fused image can contain the useful information of
the source image. Second, it gets a good robustness in complex environments such as noise. Third,
it cannot generate artifacts that hinder human observation or application.

In recent years, scholars have proposed many infrared and visible image fusion algorithm
through different schemes. They can be mainly divided into five categories including subspace-based
methods [10–12], multi-scale transform-based methods [13–15], sparse representation-based
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methods [16–18], deep learning-based methods [2,19,20] and other methods [21,22]. Next, the ideas of
these methods are briefly introduced.

The subspace-based method first projects high-dimensional source image into low-dimensional
space, and then fuses the information contained in the subspace, such as principal component
analysis (PCA) [10], independent component analysis (ICA) [11], robust principal component analysis
(RPCA) [12] and so on. Since processing subspace data consumes less time and memory than source
images, this kind of method has the advantage of high computational efficiency. However, its stability
is not good for application in complex environment. Multi-scale transform-based methods (MST) have
been widely applied since it was introduced into the field of infrared and visible image fusion such as
quaternion wavelet transform (QWT) [13], pyramid transform [14] and so on. Generally, this kind of
method has three fusion steps [15]: first of all, the source image is decomposed into multiple scale,
each of which contains different feature information. Then, the information of multiple scale is fused
according to the designed fusion rule. Finally, the fused image is obtained by reconstruction. Spare
representation-based methods aim to sparsely represent the source image by learning dictionary for
image fusion. The fused image based on the spare representation method is very consistent with human
visual perception. However, it lacks the reservation of details [16,17]. This kind of method has four
fusion steps [18]: each source image is decomposed into several overlapping blocks. Then, a complete
dictionary is learned from many high-quality natural images, and sparse coding is performed on each
patch to obtain sparse representation coefficients. Third, sparse representation coefficients are fused
according to a given fusion rule. Finally, the learned over complete dictionary is utilized to reconstruct
the fused image. Deep learning-based methods are to imitate the behavioral perception mechanism of
the human brain, which has strong adaptability and feature extraction ability [2]. However, this kind
of method is computationally intensive and requires high hardware equipment [19,20]. In addition,
there are other ideas and perspectives that inspire new image fusion method, such as entropy [21],
total variation [22] and so on.

With the development of computer vision technology, saliency-based methods have been
successfully implemented to infrared and visible image fusion because it effectively utilizes the
complementary information of the source image. Saliency-based methods have four fusion steps
including saliency region segmentation, designing a fusion rule of saliency region, designing a fusion
rule of the background region, and reconstruction [23]. Meng et al. [24] used significant detection
method to extract the interesting region, which can be mapped to the region of the fused image.
Zhang et al. [25] utilized a super-pixel saliency model to obtain the interesting regions of the infrared
image, which can retain the target information of the infrared image to the fused image. Liu et al. [26]
integrated saliency detection into the fusion sparse representation framework and used global and local
saliency maps to obtain the weight of reconstruction. Ma et al. [27] used the saliency maps to extract
the targets from the base layers. Then, the least squares method was used to fuse the detail layers.
However, existing saliency-based methods typically only extract significant targets in the infrared
image during the fusion process. It may be inappropriate for the infrared and visible image fusion,
as the interesting regions of the visible image and the weak targets cannot be captured. In addition,
the weak activity level cannot be properly enhanced, which will lead to the fusion algorithm cannot be
applied to complex environments. This is particularly true when noise appears in the background or
when the source image has low contrast.

To overcome the above weaknesses, we propose a fusion algorithm based on visual attention
technology in this paper. Specifically, visual attention technology be used to obtain visual features of
the infrared and visible image at the same time, which ensures the fused image is appropriated for
human or computer vision tasks. The feasibility and superiority of visual attention technique are also
analyzed. Moreover, fusion rule is designed to combine the complementary features and enhance the
weak features. It can enable the fused image to preserve more tiny details, which leads to accurate
expression of the detection scene.
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The main contributions of this work are the following three aspects. First, we propose a special
visual attention system to extract visual features. The co-occurrence matrix is utilized to select a
particular modality, and then a linear normalization method is used to fairly extract visual feature
of each pixel. Secondly, we design a feature fusion strategy based on the saliency maps to combines
the visual features. The saliency maps of the infrared and visible image obtained by the special
visual attention system are used to integrate complementary information, and then the guided filter
is utilized to decompose multi-scale information for enhancing weak features. Last but not least,
experimental results in the public image fusion data set show that the proposed fusion algorithm has
great robustness and can extend to the field of other-type image fusion.

The rest of this paper is organized as following. In Section 2, we briefly introduced visual attention
technique for image fusion. In Section 3, the proposed fusion method in this paper is present in detail.
A comparison and analysis of experimental results is presented in Section 4. Finally, the conclusions
are presented in Section 5.

2. Visual Attention Technique for Image Fusion

In this section, we discussed the feasibility and advantages of visual attention technique in the
field of infrared and visible image fusion. In addition, we also analyze the original VAM.

2.1. Feasibility

According to Section 1, it shows that the fusion framework is mainly composed of three parts
including feature extraction, feature fusion and reconstruction. Among them, feature extraction is
a key step, which determines the feature information contained in the fused image. When people
observe images, the human visual system actively seeks interesting regions to reduce search tasks such
as object detection and recognition, so the human brain’s attention to the whole image is not balanced.
Therefore, visual attention technique as a feature extraction method is theoretically feasible for image
fusion because it can extract the visual features of the image by simulating the observation mechanism
of the human eye.

We further explain feasible from the perspective of real application. The purpose of most existing
fusion algorithms is to generate fusion images that help to perform human eye or computer vision
tasks. We study the image fusion algorithm based on human visual characteristics, which can
efficiently improve the visual sensory comfort of the fused image and help humans to monitor
the complex environment. This is especially important in practical application such as military,
surveillance. Therefore, the fusion image obtained by visual attention technique is also feasible in
practical applications.

2.2. Superiority

The advantages of fusion images based on visual attention technique over existing fusion
methods are two fold. First, it can effectively capture the interesting regions and remove a lot of
redundant information in the source image, so that the fused image has a nice visual effect. Secondly,
the human visual attention system can effectively extract the accurate information of targets from
various interference information, which makes the fusion algorithm have strong stability. There have
been various kinds of visual attention models to realize the simulation of visual attention systems,
and it has been proved that the attention target can be accurately extracted even under the interference
of noise. Therefore, compared with traditional methods, the algorithm based on visual attention
technique has the potential to produce higher visual effects in the results, and also has great potential
for better robustness in practical applications.

2.3. The Original VAM for Image Fusion

In order to extract visual attention features, Itti et al. [28] have established the visual attention
model. The original VAM first generates intensity, orientation and colors saliency maps corresponding
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to gray, texture and color features of the input image, and then fuses the saliency maps to obtain a gray
image to represent the parts that are easily noticed. However, applying the original visual attention
model directly to the field of image fusion may not be an effective method. Figure 1 shows a typical
example. Figure 1a is an infrared image, and the interesting region is shown in the red box. Consider
that the source images are gray images, only intensity and orientation modality are used. Its different
modalities saliency maps are shown in Figure 1b–d. In saliency maps, the larger the pixels, the stronger
the visual attention. It can be seen that Figure 1b can find the interesting region. Figure 1c cannot
effectively extract the features of the target, but redundant information is extracted (as shown in the
yellow box). Although Figure 1d retains the activity level of the interesting region, it is disturbed
by the orientation modality. Figure 1e is the visible image whose different modalities saliency maps
are shown in Figure 1f–h. We can see that a signal intensity or orientation saliency map can express
the salient features from the visible image (as shown in the red box), but the saliency information is
mutually suppressed in both modalities.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 1. Different modalities saliency maps of the original VAM. (a) is an infrared image, its intensity,
orientation and the combination of two modality saliency map are (b–d), respectively. (e) is a visible
image, its intensity, orientation and the combination of two modality saliency map are (f–h), respectively.

Based on the above analysis, selecting both modalities to collect feature information is not an
effective strategy because it causes the significant features of intensity and orientation to suppress each
other and may introduce a lot of redundant features. However, single selection of intensity or texture
features is also not a good strategy, which likely lead to loss of useful information. In addition, Figure 1
also shows that the original VAM suppressed the saliency of the weak activity position. The reason is
that it adopts an iterative nonlinear normalization operator to simulate the feature competition scheme,
which suppresses the weak activity location by the strong global peak.

3. Image Fusion Algorithm Based on Visual Attention Technique

Figure 2 shows the framework of the proposed infrared and visible image fusion algorithm. First,
we propose a special visual attention system that is used to extract salient features. Then, feature
fusion strategy based on visual saliency map is designed, which can combines the interesting region
and enhances the texture details. The brief introduction of the proposed algorithm is given in Section 3.
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Figure 2. The proposed fusion framework.

3.1. The Special Visual Attention System for Extracting Features

According to Section 2, we can utilize the original VAM to generate the fused image. However,
there are two disadvantages to this model. On the one hand, it doesn’t automatically select the optimal
modality, which may give unnecessary interference. On the other hand, due to the weak activity region
suppression mechanism, it likely causes the background of the fused image to be smooth. Therefore,
we propose a special visual attention system to extract the visual features of the source image for
image fusion.

3.1.1. Modality Selection Based on Texture Complication Evaluation

Features collected by the intensity and orientation modality are different, so we must find an
optimal modality. To solve this problem, we experimented on the TNO image fusion data set that is a
public data set in the field of infrared and visible image fusion and contains many different military
relevant scenarios. The observed results are as follows:

1. Collecting saliency information from intensity modality is an effective method when image
texture smoothing. Since it is very sensitive to the image contrast, the intensity modality can use
local contrast to measure the image activity level in the absence of direction information.

2. When the texture details are rich, only the orientation modality can be used to achieve the best
effect. In texture-rich image, gradient information in different directions is strong. Therefore,
when synthesizing the four directions features maps into a single saliency map, the saliency
information is much stronger than the signal intensity modality.

We utilize co-occurrence matrix to quantize the texture complication. Different from other texture
evaluation metrics, it takes advantage of the rotation invariance of texture feature and thus has strong
resistance to noise [29]. The co-occurrence matrix g(x, y) is normalized as follows:

g(x, y) =
p(x, y)

Ng−1

∑
x=0

Ng−1

∑
y=0

p(x, y)

(1)

where p(x, y) is the number of occurrences of pixel. Ng is the quantized gray level. For reducing
computational complexity, we usually quantize the image to Ng=16.

Through the co-occurrence matrix, the local pattern and alignment rules of image can be analyzed,
and then the second statistic-contrast is obtained. The equation is as follows:

con =
Ng−1

∑
x=0

Ng−1

∑
y=0

(x− y)2 · g(x− y) (2)
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where con is the contrast. The large con means rich texture features. However, when the size of source
images is different, the calculated texture complication may have large deviation. In order to overcome
this problem, this paper will interpolate the image size to the same size (96× 96) when performing
texture complication evaluation. After experimenting on TNO data sets, the threshold con was found
to be 0.314 which only work for military relevant scenarios. When con exceed the threshold, only the
orientation modality is used to obtain SM. Otherwise, only intensity modality is used.

3.1.2. Across-Scale Combinations with a Fair Competition Mechanism

After modal selection, we will rely on the contrast or texture features of the image to generate
saliency maps. In order to accurately evaluate the activity level of each pixel, this paper attempts to
adopt a fair competition mechanism. The saliency map acquisition methods for the two modes are as
follows:

(1) Intensity modality

First, the image is gaussian sampled to generate a gaussian pyramid Iσ, where the pyramid scale
σ is in the range of [0, 1, . . . , 8].Then, the center-surround operator is utilized to generate feature maps.
The equation is as follows:

I(c, s)= |I(c)	 I(s)| (3)

where 	 indicates that the size of the two images is adjusted to be the same and then the matrix
subtraction operation is performed, s = c + σ, c ∈ {2, 3, 4}, σ ∈ {3, 4}. Therefore, we can get six
intensity feature maps I(c, s).

Then a linear normalization operator is used to simulate a fair competition mechanism which can
reasonably measure the activity level of the targets and the background. The equation is as follows:

SMc = Nor(
4
⊕

c=2

c+4
⊕

s=c+3
I(c, s)) (4)

where Nor( ) is linear normalization.⊕ indicates that the size of the two images is adjusted to be
the same and then the matrix addition operation is performed. SMc is the intensity saliency map.
In this way, a fair competition mechanism is formed so that the weak active in the background can also
be evaluated.

(2) Orientation modality

The orientations pyramid O(θ)σ is obtained by filtering Iσ in four angle with gabor filter:

O(θ)σ = Iσ ∗ Gabor(θ) (5)

where Gabor( ) is the gabor filter and θ ∈ {0◦, 45◦, 90◦, 135◦}.
Then, the center-surround operator also is utilized to generate feature maps. The equation is

as follows:
O(c, s, θ) = |O(c, θ)	O(s, θ)| (6)

Therefore, we can get 24 orientation feature maps O(c, s, θ).
The feature maps in the four directions are also calculated using the fair competition mechanism

to obtain four directions maps, and then summed and normalized to generate the final saliency map
SMo.The equation is as follows:

SMo = Nor( ∑
θ∈{0◦ ,45◦ ,90◦ ,135◦}

Nor(
4
⊕

c=2

c+4
⊕

s=c+3
O(c, s, θ))) (7)

Figure 3 shows the saliency maps from the original VAM and the special visual attention system.
Figure 3a,f are the infrared and visible image, respectively. Figure 3b,g are the infrared and visible
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intensity saliency maps by the original VAM. Figure 3d,i are infrared and visible the orientation
saliency maps by the original VAM, respectively. We can see that the original VAM can effectively
extract the visually significant areas in the image, but cannot accurately measure the activity level of
the details in the background. Figure 3c,h are the infrared and visible intensity saliency maps by the
special visual attention system, respectively. We can see that intensity modality not only effectively
extract the strong interesting regions, but also accurately measure the activity level in the background.
Figure 3e,j are the infrared and visible orientation saliency maps by the special visual attention system,
respectively. We can see that orientation modality also can overcome the phenomenon of weak activity
area suppression.

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Figure 3. The saliency maps from the original VAM and the special visual attention system. (a,f) are
the infrared and visible image, respectively. (b,g) are the infrared and visible intensity saliency maps
by the original VAM. (c,h) are the infrared and visible intensity saliency maps by the special visual
attention system. (d,i) are the infrared and visible orientation saliency maps by the original VAM.
(e,j) are the infrared and visible orientation saliency maps by the special visual attention system.

3.2. Feature Fusion Strategy Based on the Saliency Maps

A survey of existing saliency-based methods by Meher et al. [23] shows that most saliency-based
methods are to separately extract targets from the infrared image and then superimpose them into the
visible image (accurate extraction of the target contour is often difficult), which not only loses a lot of
complementary information in visible image, but also the noise in the visible image will greatly affect
the robustness of the fusion algorithm. Different from existing methods, we use the proposed special
visual attention system to extract the features of the infrared and visible image, respectively. Then,
normalizing the source image to make sure that the input variables are used equally. Finally, combine
the visual features contained in the saliency maps to get the fused saliency maps The_ f used_SM(x, y).
The equation is as follows:

The_ f used_SM(x, y) =
2

∑
n=1

Nor[ fn(x, y)]× SMn(x, y)
SM1(x, y) + SM2(x, y)

(8)

where fn(x, y) is nth the source image, and its corresponding saliency map is SMn(x, y), n ∈ {1, 2}.
The range of linear normalization is [0, 1]. It can be seen that the fused saliency map contains
complementary information of the source image. However, the comparison method is used to fuse
image features, which may result in smooth textures. It is not conducive to the observation of the weak
targets. To solve this problem, detail features need to be appropriately enhanced.

Since the pixel value of the texture is low, we perform logarithmic transformation to emphasize
the low gray value region, the transformation method is as follows:

S(x, y) = log[1 + The_ f used_SM(x, y)] (9)



Remote Sens. 2020, 12, 781 8 of 21

where S(x, y) is transformed image.
Then, the guided filter is utilized to extract multi-scale detail information. Guided filter is an

edge-preserving filter proposed by He et al. [30], which is widely used in image processing [31].
The equation is as follows:

Ri(x, y) = guided_ f ilter(ωi, εi) ∗ S(x, y) (10)

where guided_ f ilter( ) is guided filter, ωi and εi are the filter window and coefficient, respectively.
Ri(x, y) is the ith output layer using S(x, y) as both input and guidance image. As the scale of
detail continues to increase, the time-consuming will grow linearly, so it is appropriate for i to be 3.
The parameters ωi and εi have been discussed in many literatures [30,32]. Therefore, due to the length
of the article, it will not be explained in detail here.

We can combine the output layers to obtain the enhanced fusion saliency map Enhanced_SM(x, y),
the equation is as follows:

Enhanced_SM(x, y) =
N

∑
i=1

ωi[S(x, y)− log(Ri(x, y) + 1)] + The_ f used_SM(x, y) (11)

where ηi is the weight coefficient, and its sum is 1.Then multiply the enhanced feature saliency map by
255 to get the fused image Fused(x, y). In order to guarantee that all pixel values are between [0, 255],
we also design an overflow judgment. The equation is as follows:

Fused(x, y) =


255 Fused(x, y) ≥ 255

0 Fused(x, y) ≤ 0
Fused(x, y) 0 < Fused(x, y) < 255

(12)

4. Experimental Results and Analyses

To test the effectiveness of the fusion algorithm in this paper, we utilize the most commonly used
infrared and visible image fusion sets as experimental data. In addition, we compared with classic
and state-of-the-art algorithms from qualitative and quantitative, respectively. The computational
complexity of our proposed algorithm and comparative algorithms is also discussed. Finally, we
have extended the proposed fusion algorithms to the field of medical, multi-focus and multi-exposure
image fusion.

4.1. Experimental Settings

(1) Image sets

In experimenting, we selected seven pairs of visible and infrared images as the experimental sample,
which was collected from the site: https://figshare.com/articles/TNO$_$Image$_$Fusion$_$Dataset/
1008029. Figure 4 shows the seven pairs of images including “Soldier-in-trench”, “Soldier-behind-smoke”,
“Kaptein-1123”, “Airplane”, “Road”, “Bench”, and “Kaptein-1654”. Among them, “Soldier-in-trench”
contains significant infrared targets and texture-smooth visible images. In “Soldier-behind-smoke”,
the visible image contains smoke, and the infrared image has the interesting region. “Kaptein-1123” not
only has infrared targets but also contains rich background information in the visible image. The contrast
of “Airplane” is very low. “Road” is a set of images taken at night. Both visible and infrared image in
“Kaptein-1654” contain significant information. “Bench” contains significant infrared targets, but the
background of the visible image has a lot of noise information. The size of images is 768 × 576,
768× 576, 620× 450, 595× 328, 256× 256, 620× 450 and 280× 280, respectively. Each image pair is
pre-registered, which can fully verify the effect of the proposed algorithm from different scenes.

https://figshare.com/articles/TNO$_$Image$_$Fusion$_$Dataset/1008029
https://figshare.com/articles/TNO$_$Image$_$Fusion$_$Dataset/1008029
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(c)Kaptein_1123 (d)Airplane

(b)Soldier_behind_smoke(a)Soldier_in_trench

(g)Bench(e)Road (f)Kaptein_1654

Figure 4. The infrared and visible image sets used in experiments. (a) The “Soldier-in-trench” image
set. (b) The “Soldier-behind-smoke” image set. (c) The “Kaptein-1123” image set. (d) The “Airplane”
image set. (e) The “Road” image set. (f) The “Kaptein-1654” image set. (g) The “Bench” image set.

(2) Compared algorithms

The proposed algorithm base on visual attention technology (PROPOSE) is compared with
seven image fusion algorithms based on gradient transfer (GTF) [22], convolutional neural network
(DENSE) [33], guided filter (GFF) [32], latent low-rank representation (LATLRR) [34], visual saliency
map and weighted least square optimization (VSM-WSM) [27], feature extraction and visual
information preservation (FEVIP) [35] and discrete wavelet transform (DWT) [15], respectively.
Among these compared algorithms, DWT is a classic multi-scale transform-based method that first
divides the source images into two scales, then fuses the information contained in the two scales,
and finally reconstruct the fused image. GFF uses the guided filter to obtain the fusion weight value,
which is also a classic image fusion algorithm. In addition, we also compare with five state-of-art
image fusion algorithms. VSM-WSM is a saliency-based method that utilizes the gaussian filter to
divide the image into base and detail parts, and then fuses them by the least square method and
the weighting method, respectively. FEVIP is also a saliency-based method that first reconstructs
the infrared background by quadtree and Bedizer interpolation, then subtract the infrared image to
obtain the target, and finally superimposes the visible image to obtain the fused image. DENSE, a deep
learning-based method, uses convolutional neural network to extract various features and combine
them to obtain fused results. LATLRR is a sparse representation-based method that utilize latent
low-rank representation to decompose the source image into two layers and design different rules
to obtain the fused image. GTF uses gradient transfer and total variation minimization to design
decomposed method and fusion rules. These five methods were proposed in the last three years.
These compared algorithm codes are derived from public data, and the parameters are the default.

The above seven image fusion algorithms can obtain desired fusion results, and the types of
these algorithms are different. By comparing with these algorithms, the superiority of the proposed
algorithm can be effectively shown.

(3) Computation platform

The proposed algorithm and the compared algorithms are all implemented on a PC-Windows
10 platform with Inter (R) Core (TM) i7-8700K @ 3.70 GHz processor, 16GB RAM, and CeForce GTX
1080 Ti. Besides, DENSE is performed on graphics processing unit (GPU), while other algorithms are
programmed in Matlab.
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4.2. Qualitative Evaluation

The qualitative evaluation for infrared and visible image fusion can be achieved by the visual
effect of the fused image. The experimental results of the DWT, GTF, DENSE, LATLRR, VSM-WLS,
FEVIP, GFF and PROPOSE are shown in Figures 5a–h–11a–h.

(a)DWT (b)GTF (c)DENSE (d)LATLRR

(e)VSM-WLS (f)FEVIP (g)GFF (h)PROPOSE

Figure 5. The fusion results of the “Kaptein-1654” image set. (a–h) are the result of DWT, GTF, DENSE,
LATLRR, VSM-WLS, FEVIP, GFF and PROPOSE, respectively.

Figure 5 shows the fusion results of the “Kaptein-1654” image set. Each fusion algorithm can
accomplish the purpose of image fusion. However, different fusion algorithms may produce different
fused images. The DWT result loses the significant information and tiny details because this algorithm
cannot fully extract various features from the source image (see Figure 5a). The GTF result can
preserve the interesting infrared region, but a lot of information contained in the visible image is
lost. The DENSE and LATLRR results are better visually than Figure 5a, but these algorithms are also
unable to retain the significant information. The VSM-WLS result can preserve the target, but the
contrast is low. The background of the FEVIP result is overall bright, which leads to poor visual effects.
The GFF results lose a lot of infrared information. However, the result of the proposed algorithm not
only can better highlight the interesting region of the source image but also suit the human perception.
In summary, the fusion result of the “Kaptein-1654” image set proves that the proposed algorithm can
effectively combine the complementary information of the source image.

In addition to verifying the effect of retaining complementary information, it is necessary to test
the ability of the proposed algorithm to preserve tiny details. Figure 6 shows the fusion results of the
“Kaptein-1123” image set. It can be seen that the DWT fusion result is not only low in contrast but also
blurry on the floor. The GTF fusion result can retain the significant information of the infrared image,
but it loses a lot of visible background information. The DENSE and LATLRR fusion results are unclear
in the texture areas. The FEVIP fusion result has artifacts in the sky. The GFF fusion result appears a
lot of noise. The VSM-WLS fusion result is the best of the comparison results, but it cannot retain the
salient and detailed regions in the visible image. However, the fusion result of the proposed algorithm
not only preserves the interesting region but also has rich tiny details. In summary, the fusion results
of the “Kaptein-1123” image set prove that the proposed algorithm can effectively retain the details of
the source image, and the artificial information does not appear in the background.
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(a)DWT (b)GTF (c)DENSE (d)LATLRR

(e)VSM-WLS (f)FEVIP (g)GFF (h)PROPOSE

Figure 6. The fusion results of the “Kaptein-1123” image set. (a–h) are the result of DWT, GTF, DENSE,
LATLRR, VSM-WLS, FEVIP, GFF and PROPOSE, respectively.

We also experiment with the source images that contain noise to verify the robustness of the
proposed algorithm. Figure 7 shows the fusion results of the “Bench” image set. The DWT, DENSE,
LATLRR and GFF fusion results lose significant information and have low contrast. The GTF fusion
result is disturbed by the noise of the source image. The VSM-WLS and FEVIP fusion results appear
some noise in the background, which results in poor visibility. However, due to the better noise
immunity of PROPOSE, the fusion result of the proposed algorithm is very clear and overcome noise
interference. To further illustrate the robustness of the proposed algorithm, we also chose to experiment
in a smoke-interfering environment. In Figure 8, the fusion results of GFF, GTF and the proposed
algorithm can clearly observe the interesting region. On the contrary, other fusion results cannot see
the target. However, the GTF fusion result can retain target because a lot of visible information is lost.
Compared with the GFF fusion result, the proposed algorithm can observe a more complete significant
information. In summary, the proposed algorithm can be applied to environments that contain noise.

(a)DWT (b)GTF (c)DENSE (d)LATLRR

(e)VSM-WLS (f)FEVIP (g)GFF (h)PROPOSE

Figure 7. The fusion results of the “Bench” image set. (a–h) are the result of DWT, GTF, DENSE,
LATLRR, VSM-WLS, FEVIP, GFF and PROPOSE, respectively.
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(a)DWT (b)GTF (c)DENSE (d)LATLRR

(e)VSM-WLS (f)FEVIP (g)GFF (h)PROPOSE

Figure 8. The fusion results of the “Soldier-behind-smoke” image set. (a–h) are the result of DWT, GTF,
DENSE, LATLRR, VSM-WLS, FEVIP, GFF and PROPOSE, respectively.

In addition, we also experimented with the source images taken at night. Figure 9 shows the
fusion results of the “Road” image set. The fusion results of DWT, DENSE, LATLRR and GFF cannot
highlight the interesting regions such as light and vehicles. The GTF fusion result is very blurred,
which is not suitable for human eye observation. The fusion results of VSM-WLS and FEVIP have
better contrast than other comparison fusion results. However, because the tiny features are properly
enhanced, our fusion results are the clearest among all fusion results. In summary, the proposed
algorithm is suitable for observation at night.

(a)DWT (b)GTF (c)DENSE (d)LATLRR

(e)VSM-WLS (f)FEVIP (g)GFF (h)PROPOSE

Figure 9. The fusion results of the “Road” image set. (a–h) are the result of DWT, GTF, DENSE,
LATLRR, VSM-WLS, FEVIP, GFF and PROPOSE, respectively.

Finally, we experiment with low contrast source images to test the effectiveness of the proposed
algorithm. Figure 10 shows the fusion results of the “Airplane” image set. It can be seen that the
fusion results of the DWT, LATTRR and VSM-WLS have low contrast. The GTF and GFF fusion results
lose a lot of complementary information. The FEVIP fusion result has artifacts in the sky. However,
because the proposed algorithm protects weak activity regions, the problem of low contrast is solved.
Figure 11 shows the fusion results of the “Soldier-in-trench” image set. We can see that the fusion
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result of the proposed algorithm is clearer than the comparison method. In summary, when the source
images contrast is low, the fusion algorithm in this paper can still have a good effect.

(a)DWT (b)GTF (c)DENSE (d)LATLRR

(e)VSM-WLS (f)FEVIP (g)GFF (h)PROPOSE

Figure 10. The fusion results of the “Airplane” image set. (a–h) are the result of DWT, GTF, DENSE,
LATLRR, VSM-WLS, FEVIP, GFF and PROPOSE, respectively.

(a)DWT (b)GTF (c)DENSE (d)LATLRR

(e)VSM-WLS (f)FEVIP (g)GFF (h)PROPOSE

Figure 11. The fusion results of the “Soldier-in-trench” image set. (a–h) are the result of DWT, GTF,
DENSE, LATLRR, VSM-WLS, FEVIP, GFF and PROPOSE, respectively.

In conclusion, the qualitative evaluation results show that the proposed algorithm is suitable for
application in various complex environments.

4.3. Quantitative Evaluation

The qualitative evaluation has the disadvantage of human intervention and time-consuming,
therefore we also utilize the quantitative method to evaluate the fused images. Quantitative evaluation
mainly relies on mathematical calculations to describe image features, which are a very reliable
evaluation method. However, the fused images may have some noise, it causes the results of evaluation
to be incorrect. To avoid this problem, we will employ multiple evaluation metrics to comprehensively
evaluate the fused images. This subsection first introduces the concept of each metric and then the
evaluation results are analyzed.

4.3.1. Quantitative Metrics

In recent years, a series of methods for quantitatively evaluating fused images have been proposed.
Liu et al. [36] have surveyed the existing quantitative metrics for image fusion and pointed out that
these metrics can be divided into three categories: information metrics, image texture metrics and
human perception metrics. In this paper, we selected representative metrics from each category
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including entropy (EN) [37], mutual information (MI) [38], spatial frequency (SF) [39] and visual
information fidelity (VIF) [40]. Each metric is defined as follows:

(1) information metrics: EN and MI

EN means the richness of the information contained in the fused image. A larger EN value reflects
the better performance in information content. This metrics can be calculated as:

EN = −
L−1

∑
l=0

pi log pi (13)

where L is gray levels, pi is the normalized histogram of the corresponding gray level in the fused image.
MI shows the amount of information that the source images convey to the fused image, which

can evaluate the ability of the fusion algorithm to combine the complementary information. A larger
MI value means that a lot of complementary information is transferred from the source image to the
fused results. This metrics can be calculated as:

MI = MIA,F + MIV,F (14)

MIX,F = ∑
x, f

pX ,F(x, f ) log
pX ,F(x, f )

pX(x)pF( f )
(15)

where MIA,F and MIV,F are the amount of information that is transferred from infrared and visible to
the fused image, respectively. pX ,F(x, f ) is the joint histogram of the source image X and the fused
image F. pX(x) and pF( f ) are the marginal histograms of X and F, respectively.

(2) image texture metrics: SF

SF measure the clarity of image texture. A larger SF value means the rich tiny details in the fused
image. This metrics can be calculated as:

SF =
√

RF2 + CF2 (16)

RF =

√
∑M

i=1 ∑N
j=1 (F(i, j)− F(i, j− 1))2 (17)

CF =

√
∑M

i=1 ∑N
j=1 (F(i, j)− F(i− 1, j))2 (18)

(3) human perception metrics: VIF

The VIF is used to evaluate the visual effect of the fused image. The larger VIF value, the more
consistent with human visual perception. This metric relies on natural scene statistical models, image
signal distortion channels, and human visual distortion models.

4.3.2. Quantitative Evaluation Results

The quantitative evaluation results of all image fusion algorithms are shown in Table 1. The bold
value in Table 1 represents the maximum value in the corresponding column, and the larger value
indicates better performance.
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Table 1. The results of quantitative evaluation for eight algorithms.

Group Fusion Algorithm
Evaluation Index

EN MI SF VIF

Kaptein-1654

DWT 6.4807 12.9614 8.3551 0.6842
GFF 7.0315 14.0630 9.7603 0.7862

VSM-WSM 6.7426 13.4853 12.158 0.7933
FEVIP 6.6648 13.3297 11.803 0.8394

DENSE 6.4133 12.8267 6.9027 0.6976
GTF 6.5244 13.0488 9.1600 0.6558

LATLRR 6.5546 13.1093 7.6490 0.6651
PROPOSED 7.0438 14.0877 14.314 0.9089

Bench

DWT 7.0807 14.1614 18.0912 0.6409
GFF 7.4934 14.9868 23.2069 0.8241

VSM-WSM 7.1646 14.3293 26.3591 0.6546
FEVIP 6.9297 13.8594 21.7905 0.6886

DENSE 7.3496 14.6993 21.6091 0.6627
GTF 6.7781 13.5562 21.8149 0.7237

LATLRR 6.8550 13.7101 15.8557 0.5950
PROPOSED 7.3676 14.7352 27.5356 0.8357

Kaptein-1123

DWT 6.9721 13.9442 8.2929 0.7879
GFF 6.8563 13.7127 7.0714 0.7057

VSM-WSM 6.9714 13.9429 10.580 0.8895
FEVIP 7.1691 14.3383 9.2726 0.9552

DENSE 6.9073 13.8147 7.1428 0.8230
GTF 6.9581 13.9162 6.4738 0.7037

LATLRR 6.7016 13.4032 6.4051 0.7232
PROPOSED 7.4212 14.8424 10.701 0.9851

Soldier-in-trench

DWT 6.8856 13.7711 10.5937 0.8135
GFF 7.1845 14.8668 13.0178 0.9179

VSM-WSM 6.9738 13.9477 13.8672 0.9587
FEVIP 6.9431 13.8864 11.7221 0.8934

DENSE 6.9996 13.9993 10.1163 0.8834
GTF 6.6015 13.2031 12.5306 0.8535

LATLRR 6.5548 13.1097 8.11250 0.7282
PROPOSED 7.2061 14.4122 14.0425 0.9365

Airplane

DWT 6.6942 13.3885 5.5777 0.7933
GFF 6.4477 12.8954 5.2579 0.7515

VSM-WSM 6.6104 13.2210 5.9202 0.8567
FEVIP 6.7302 13.4606 7.1918 0.8798

DENSE 7.0350 14.0700 6.1090 0.9516
GTF 5.8563 11.7127 4.3989 0.6881

LATLRR 6.4571 12.9143 4.2604 0.7423
PROPOSED 7.1444 14.2889 8.1186 1.0698

Soldier_behind_smoke

DWT 6.9039 13.8079 8.5219 0.7425
GFF 7.5263 15.1527 11.884 0.9369

VSM-WSM 6.9735 13.9470 11.831 0.9064
FEVIP 7.0271 14.0543 11.626 0.9149

DENSE 7.0523 14.1046 7.8967 0.8117
GTF 6.6015 13.2030 10.924 0.8302

LATLRR 6.9239 13.8479 7.7548 0.7209
PROPOSED 7.6489 15.2979 15.063 0.7842

Road

DWT 6.6485 13.2971 12.8952 0.5427
GFF 7.1527 14.3056 17.7289 0.7165

VSM-WSM 7.2656 14.5313 22.8475 0.6218
FEVIP 7.3325 14.6650 21.5730 0.7106

DENSE 7.0858 14.1717 13.9473 0.5809
GTF 7.0878 14.1756 14.6903 0.5906

LATLRR 7.1803 14.3606 16.4928 0.5532
PROPOSED 7.5860 15.1721 26.6966 0.7334

First of all, the ability of all fusion algorithms to combine the complementary information and the
information richness of fused images are evaluated by information metrics (MI and EN), respectively.
The EN evaluation results show that the fused images of GTF contain the least amount of information
because of the improper evaluation of the source images gradient. Besides, the fused images of DWT
also have low values, the reason for this problem is that DWT cannot extract various image features.
Due to better feature extraction capabilities, the other comparative fusion algorithms (GFF, VSM-WSM,
FEVIP, DENSE and LATLRR) have rich information in the fused image. However, since the special
visual attention system can measure the activity level of tiny details, the fused images of the proposed
algorithm contain more information than the fusion result of the comparison fusion algorithm. For the
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ability to combine source image information, the MI evaluation results show that GFF, VSM-WSM
and FEVIP have higher evaluation values, which indicates that these three algorithms can better
combine the source image information. However, FEVIP utilizes quadtree to reconstructs the infrared
background, which may result in the loss of infrared information. GFF has poor robustness so that
the features of different scenes cannot be accurately extracted by guided filtering. This may cause the
redundant information to be transmitted to the fused image. Therefore, compared with FEVIP and
GFF, the proposed algorithm achieves high performance, except that GFF has the highest value on the
“Bench” and “Soldier-in-trench” because they contain much useless visible image information.

Secondly, the details of the fused image are evaluated by texture metric (SF). The evaluation
results show that the DWT and GTF evaluation results have poor performances. Among them, DWT
can’t extract the significant features, which lead to texture smoothing. The GTF fusion results have low
texture complexity because a lot of visible information is lost. But other comparative fusion algorithms
have good gradient information. However, compared with GFF, VSM-WSM, FEVIP, DENFUSE and
LATLRR, the evaluation results of the proposed algorithm have great advantages. This is because the
fusion algorithm in this paper not only can better extract the salient features of the image, but also
design a feature combination strategy to retain the extracted interesting region in the fused image.
In conclusion, the proposed algorithm can obtain the fused image with clear texture.

Thirdly, the human visual perception of the fused image is evaluated by human perception metrics
(VIF). The evaluation results show that the fused images of the saliency-based methods (VSM-WSM,
FEVIP) have better visual in the fusion results of all comparison algorithms because LATLRR, DWT,
GFF, GTF and DENSE cannot effectively extract interesting region. However, VSM-WSM and FEVIP
use a simple weighted method to fuse the extracted features, which results in the fused image with
low contrast. Compared with VSM-VSM and FE-VIP, the fused images of the proposed algorithm
has better performance. This is because the feature fusion method designed in this paper can better
combine the extracted features, and we also enhance the tiny features.

Moreover, in order to better appear the quantitative performance of the proposed algorithm,
Figure 12 also shows the average assessment results of each algorithms. The average score on Figure 4
is shown here. We can see that the EN and MI values of PROPOSE are the largest because the special
visual attention system in this paper can effectively extract the complementary information of the
source images. SF also has the best performance because the proposed algorithm can properly enhance
the details. Finally, since the visual features can be effectively extracted, the VIF of PROPOSE has the
highest score.

4.4. Computational Costs

In addition to qualitative and quantitative evaluation, we need to measure the computational
cost of the fusion algorithm, which determines the practical application value of these image fusion
algorithms. Running time is used to estimate the computational cost of all fusion algorithms.

The evaluation results of each algorithm processing 7 image sets are listed in Table 2, where the
bold value denotes the maximum value in the corresponding column, and the larger value indicates
better performance. It can be seen that the longest time is the LATLRR, because this algorithm contains
a large number of parameters in the LATLRR model. The time of GTF is wasted by traversing the pixels
multiple times to obtain gradient information. The VSM-WSM repeats the filtering operation, resulting
in an increase in time complexity. The DWT and GFF algorithms have low computational complexity
and therefore take less time. Although DENSE performs multi-layer feature extraction, the convolution
layer size is small, therefore this image fusion algorithm is faster. Compared with other algorithms,
the computational efficiency of the proposed algorithm is second to FEVIP that utilizes an efficient
quadtree decomposition strategy, but the fusion algorithm in this paper wastes a lot of computing
resources on the guided filter and the co-occurrence matrix. However, efficient programming through
C++ without using MATLAB can increase the speed of the fusion algorithm, and as the hardware
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conditions continue to increase, real-time programs based on the proposed algorithm will not become
a problem.
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Figure 12. The average quantitative assessment of each fusion method. (a) The evaluation results of
EN. (b) The evaluation results of SF. (c) The evaluation results of MI. (d) The evaluation results of VIF.

Table 2. The comparison of the computational costs.

Fusion Algorithm Kaptein-1654 Bench Kaptein-1123 Soldier-in-Trench Airplane Soldier_behind_SMOKE Road

DWT 0.2417 0.0981 0.2085 0.3058 0.1647 0.2735 0.1009
GFF 0.2047 0.0628 0.2042 0.3086 0.1669 0.3046 0.0709

VSM-WSM 1.6626 0.2464 1.6521 2.8538 1.1455 2.8557 0.2132
FEVIP 0.0827 0.0467 0.0904 0.0997 0.0761 0.1074 0.0500

DENSE 0.4263 0.3906 0.6727 0.4877 0.6018 0.5047 0.3663
GTF 3.5350 0.2946 3.1396 6.2277 3.1988 3.8056 0.2673

LATLRR 58.971 13.081 59.234 108.09 42.076 110.11 10.999
PROPOSED 0.2054 0.0514 0.2161 0.3570 0.1534 0.3443 0.0487

4.5. Extension to Other-Type Image Fusion Field

To further exhibit robustness of the fusion algorithm, we extend the proposed algorithm to
multi-modal image fusion, multi-medical image fusion and multi-exposure image fusion. Different
types of image have their own characteristics, so the framework and factors considered are also
different during the image fusion process. However, since the proposed framework has certain
universality and the visual attention technology is not susceptible to complex environments, the fusion
algorithm in this paper can be extended to other types of images.

The fusion results of the multi-medical images are shown in Figure 13a. It can be seen that the
fusion result can effectively retain the complementary information of the source image.

The fusion results of the multi-modal images are shown in Figure 13b. It can be seen that the
fusion result is clearer than the source image. This is because the results obtained by the special visual
attention system is similar to the fusion image obtained by the weighted average method, and then the
quality of the detail information is improved by the feature fusion strategy.
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The fusion results of the multi-exposure image are shown in Figure 13c. It can be seen that
the proposed algorithm can successfully solve the over-exposure problem by extracting the exposed
regions and retain the details of the source image at the same time.

The discussion and analysis of the experimental results prove that the fusion framework in this
paper is a reasonable way. Therefore, future research on fusion algorithms can be continued using
this framework.

(a) 

(b) 

(c) 

Figure 13. Fusion results of the other three modal images. (a) Medical image fusion. (b) Multi-focus
image fusion. (c) Multi-exposure image fusion.

4.6. Algorithm Limitation Analysis

The proposed fusion algorithm still has some limitations that may weaken its performance under
certain conditions.

1. Optimal modality selection threshold. As can be seen from Section 3.1, the optimal modality
has played a key role in the proposed algorithm. However, for different data sets, the contrast
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and texture features of the interesting region are different, so thresholds need to be adjusted for
different data sets. In order to resolve this issue, we can experiment on many different data sets,
and then the threshold empirical equation can be fitted according to the experimental results.
In this way, we can automatically select thresholds for different data sets.

2. Manual parameter selection. As can be seen from Section 3.2, this paper proposes that the feature
fusion strategy has the problem of manually designing parameters, which result in the algorithm
not being able to run automatically. One possible solution is to match the gray-scale histogram.
If there is an over-enhancement phenomenon, adjust the feedback.

5. Conclusions

In this paper, we propose a visible and infrared image fusion algorithm based on visual attention.
The proposed algorithm first uses the co-occurrence matrix to select a particular modality. Then, a fair
competition mechanism was utilized to obtain the saliency maps. Moreover, a feature fusion strategy is
designed to fuse the visual features and appropriately enhance the tiny features, which ensure that the
proposed algorithm can be applied to real environment. Experimental results show that the proposed
fusion algorithm has advantages in both quantitative and qualitative evaluation, and can be extended
to other types of images. Although the proposed method may have some disadvantages (as described
in Section 4.6), we have proposed corresponding solutions. In conclusion, the image fusion algorithm
in this paper is meaningful and worthwhile. In the future, we will utilize the color modality of visual
attention technology to study other-type of color image fusion, such as multispectral image.
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