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Abstract: This study investigates the effectiveness of gradient boosting decision trees techniques in 

estimating mangrove above-ground biomass (AGB) at the Can Gio biosphere reserve (Vietnam). For 

this purpose, we employed a novel gradient-boosting regression technique called the extreme 

gradient boosting regression (XGBR) algorithm implemented and verified a mangrove AGB model 

using data from a field survey of 121 sampling plots conducted during the dry season. The dataset 

fuses the data of the Sentinel-2 multispectral instrument (MSI) and the dual polarimetric (HH, HV) 

data of ALOS-2 PALSAR-2. The performance standards of the proposed model (root-mean-square 

error (RMSE) and coefficient of determination (R2)) were compared with those of other machine 

learning techniques, namely gradient boosting regression (GBR), support vector regression (SVR), 

Gaussian process regression (GPR), and random forests regression (RFR). The XGBR model 

obtained a promising result with R2 = 0.805, RMSE = 28.13 Mg ha−1, and the model yielded the highest 

predictive performance among the five machine learning models. In the XGBR model, the estimated 

mangrove AGB ranged from 11 to 293 Mg ha−1 (average = 106.93 Mg ha−1). This work demonstrates 

that XGBR with the combined Sentinel-2 and ALOS-2 PALSAR-2 data can accurately estimate the 

mangrove AGB in the Can Gio biosphere reserve. The general applicability of the XGBR model 

combined with multiple sourced optical and SAR data should be further tested and compared in a 

large-scale study of forest AGBs in different geographical and climatic ecosystems.  

Keywords: Sentinel-2; ALOS-2 PALSAR-2; mangrove; above-ground biomass; extreme gradient 

boosting; Can Gio biosphere reserve; Vietnam 
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1. Introduction 

Mangrove forests are among the most important components of natural ecosystems. They 

perform a wide range of crucial functions, such as mitigating the effects of tropical typhoons and 

tsunami, reducing coastal erosion, and storing huge amounts of blue carbon [1,2]. Despite their 

functions and benefits, mangrove forests have been reduced and degraded worldwide, more 

seriously in South East Asia, where the decimation rate reached its highest level in the last 50 years 

[3,4]. The driving factors of mangrove deforestation and degradation are conversion to shrimp 

aquaculture, agriculture (particularly rice and oil palm in West Africa and Southeast Asia), urban 

development, poor governance, and overexploitation [3,5]. Unfortunately, the loss of mangrove 

carbon on large spatial scales is little understood. Without this knowledge, we cannot mitigate the 

global loss of mangrove habitats [6]. 

Land-cover change is thought to alter the above-ground biomass (AGB) in the tropical areas [7–

9]. By mapping the spatial distribution of mangrove AGB and the carbon stocks associated with 

external factors, we could detect the changes in mangrove ecosystems, better understand the drivers 

of these changes, and reduce the uncertainty in estimating the loss of mangrove ecosystem services. 

A precise estimation of mangrove AGB is required for sustainably preserving and protecting 

mangrove ecosystems from loss and degradation under climate change and accelerated global 

warming. However, the complex structure of mangrove ecosystems hindered quantitative estimates 

of mangrove AGB. Especially, the biosphere reserves of mangroves are characterized by multiple 

species, very high diversity, and large spatial distributions. During the last 30 years, AGB retrieval of 

mangroves has been investigated worldwide [10–14]. Mangrove AGB can be accurately estimated 

from field-based measurements or forest inventory data. However, these approaches are 

disadvantaged by high cost and site-selection biases [15]. Cost-effective and accurate retrieval 

techniques for mangrove AGB in tropical and semi-tropical areas would provide baseline data for 

the monitoring, reporting, and verification schemes adopted in climate-change mitigation strategies, 

such as Blue Carbon projects and the United Nations’ Reducing Emissions from Deforestation and 

Forest Degradation (REDD+) program in the tropics [16]. 

In recent years, mangrove AGBs have been increasingly mapped using earth observation (EO) 

data collected by optical sensors [17–19], synthetic aperture radar (SAR) data [13,20,21], airborne 

LiDAR [22,23], and LiDAR data acquired form unmanned aerial vehicles (UAV) [24,25]. A few 

attempts combined the data of multispectral and SAR sensors for mangrove AGB retrieval in tropical 

regions. Fused data are particularly useful in biosphere reserves comprising multiple mangrove 

species and rich biodiversity. In such systems, the spatial distribution of the mangrove AGB is 

difficult to estimate with sufficient accuracy. By accurately estimating the mangrove AGB in 

biosphere reserves, we could effectively monitor their mangrove ecosystems and implement 

sustainable mangrove conservation and management.  

Models for estimating AGB range from simple to multi-linear regression approaches [13,21,24] 

to sophisticated machine learning (ML) methods [17,18,26]. For mapping and estimating forest AGBs, 

non-parametric approaches using various ML algorithms have proven more effective than 

parametric methods using linear models. Meanwhile, numerous EO datasets have been compiled 

from optical, SAR, and LiDAR data. These data are commonly retrieved from non-parametric 

regression techniques such as the random forest regression (RFR) algorithm [17,25,27], artificial 

neuron networks (ANN) [26], and support vector regression (SVR) [28,29]. Recently, gradient 

boosting decision trees (GBDT) effectively solved regression problems such as evaporation prediction 

[30] and oil price estimation [31]. The extreme gradient boosting regression (XGBR) algorithm is a 

particularly potent tool in environmental problems in environmental problems such as urban heat 

islands [32], algal blooming [33], and energy-supply security issues [34]. However, to our knowledge, 

the usefulness of the XGBR algorithm in forest AGB estimation, particularly in tropical mangrove 
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habitats, has not been quantified. Especially, the current literature seems to lack a quantitative 

comparison of state-of-the-art ML techniques for estimating AGBs in different forest ecosystems. 

To overcome these challenges, we estimated the mangrove AGB in the Can Gio biosphere 

reserve (South Vietnam) using an ML model and the fused data of the Sentinel-2 (S2) MSI and ALOS-

2 PALSAR-2 sensors. We selected Sentinel-2 MSI because the multispectral bands of S-2 reflect the 

forest stand structures such as stem volume, whereas the longer wavelengths of the dual polarimetric 

(HH, HV) mode of the ALOS-2 PALSAR-2 sensor can penetrate mangrove forest canopies. The fused 

S2 MSI and ALOS-2 PALSAR-2 data were processed by a nonlinear regression model in the XGBR 

algorithm, providing the first estimation of mangrove AGB in the Can Gio biosphere reserve 

(CGBRS). Additionally, the performance of the XGBR model was compared with those of other GBDT 

techniques and several well-known ML algorithms (SVR, GPR, and RFR) on mangrove AGB 

estimation in the same study area. Incorporating the S-2 MSI and ALOS-2 PALSAR-2 data into the 

proposed model was found to improve the mangrove AGB estimation in a Vietnamese biosphere 

reserve and is potentially applicable to mangrove conservation in other biosphere reserves. 

2. Materials and Methods 

2.1. Study Area  

The present study was conducted in Can Gio, a coastal district located approximately 50 km 

south of Ho Chi Minh City (formerly Sai Gon) along the Southern coast of Vietnam. The geographical 

coordinates are 10°22′–10°40′ latitude and 106°46′–107°01′ longitude. The climate is tropical monsoon 

and has two typical seasons. The dry season begins in April and ends in November of the following 

year, whereas the rainy season occurs between May and October. The average temperature is 

approximately 26 °C, the annual rainfall is roughly 1300–1400 mm, and the relative humidity is 

approximately 80% [35]. This district is well-known for its mangrove reforestation and rehabilitation 

programs, not only in Vietnam but also throughout Southeast Asia [36]. The wetland ecosystem of 

Can Gio is diverse and includes the mangrove areas distributed in zone IV, which contains the largest 

mangrove forest among the four mangroves zones (See Figure 1) in Vietnam [37]. 
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Figure 1. Location map of study areas. 
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The Can Gio mangrove forests were declared as a biosphere reserve by the United Nations 

Educational, Scientific, and Cultural Organization (UNESCO) in 2000 [38]. The dominant species are 

Rhizophora apiculate, Sonneratia alba, Avicennia alba, Rhizophora mucronata, and others. Approximately 

33 species belonging to 15 families have been identified in the CGBRS [36]. 

2.2. Field Survey Data Collection 

With permission from the local authorities, the 2018 field survey of the CGBSR was conducted 

during the dry season, when the coastal tides impacting the mangrove forest were lowest. A total of 

121 plots were sampled by the stratified random sampling approach. Each plot sampling was initially 

assisted by a local counterpart to guarantee the whole range of AGB values over the reserve. During 

the surveying, the experimenters measured the diameter at breast height (DBH), tree height (H), and 

tree density. All living mangrove forest stands with DBH > 5 cm in a strata plot size of 25 × 20 m (0.05 

ha) were measured. The location (accuracy ± 2 m) of each sampling plot was measured by the Garmin 

eTrex global positioning system (GPS) (Figure 2).  

  
(a) (b) 

Figure 2. Aboveground biomass measurements in the study area. (a & b) Biophysical parameters 

measurement (Photographs were taken by L.V. Nguyen during the 2018 dry season).  

The mangrove AGB of each species was estimated by a specific allometric equation (see Table 

1). 

Table 1. Allometric equations for estimating the mangrove species in the study site. 

Species Allometric Equation Reference 

Rhizophora apiculata AGB = 0.235 × DBH2.42 (R2 = 0.98) [39] 

Avicennia alba AGB = 0.140 × DBH2.40 (R2 = 0.97) [40] 

Bruguiera gymnorrhiza AGB = 0.186 × DBH2.31 (R2 = 0.99) [41] 

Bruguiera parviflora AGB = 0.168 × DBH2.42 (R2 = 0.99) [41] 

Sonneratia caseolaris AGB = 0.199 × φ × 0.90 * DBH2.22 (R2 = 0.99) [40] 

Lumnitzera racemosa AGB = 0.740 × DBH2.32 (R2 = 0.99) [42] 

Ceriops zippeliana AGB = 0.208 × DBH2.36 (R2 = 0.96) [43] 

Xylocarpus granatum AGB = 0.082 × DBH2.59 (R2 = 0.99) [41] 

Note: AGB is the above-ground biomass (kg) of a mangrove tree, DBH is the diameter (cm) at breast 

height (1.3 m), φ is the wood density (tons dry matter per m3 fresh volume). 
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2.3. Remote Sensing Data Acquisition and Image Processing 

2.3.1. Data Acquisition  

The mangrove AGB in the CGBRS was estimated by fusing the ALOS-2 PALSAR-2 L-band dual 

polarimetric data level 2.1 obtained in high-sensitivity mode with Sentinel-2 (S-2) MSI images. Table 

2 presents the S-2 and the ALOS-2 PALSAR-2 data at the study site, acquired on 23 and 24 March 

during the 2018 dry seasons, respectively. 

Table 2. Acquired earth observation data for this study. 

Earth Observation 

Sensor 
Scene ID 

Acquisition 

Data 

Processing 

Level 

Spectral 

Band/Polarizations 

ALOS-2 PALSAR-2 
ALOS2206940200 

23 March 2018 2.1 L band (HH, HV) 
ALOS2206940190 

Sentinel-2 MSI 
S2A_MSI_T48PXS 

24 March 2018 1C 
11 Multispectral 

bands S2A_MSI_T48PYS 

To pre-process the satellite remotely sensed data, we resampled both multispectral bands of 

Sentinel-2 and the dual polarization model of ALOS-2 PALSAR-2 data at a ground sampling distance 

(GSD) of 10 m. The satellite images were processed as described in Subsection 2.3.2. To validate the 

model’s performance and optimize the hyperparameters for AGB retrieval in the CGBRS, the model 

was combined with the measured field data. Figure 3 is a flowchart of the satellite-image processing 

and the generation of mangrove AGB estimation models using the ML techniques in the current 

study.  

 

Figure 3. Flowchart for satellite-image processing and the generation of AGB models based on ML 

techniques. 
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2.3.2. Satellite Image Processing 

Two scenes of the ALOS-2 PALSAR-2 Level 2.1 data acquired on 23 March 2018 during the dry 

season were download from https://auig2.jaxa.jp/ips/home, the website of the Aerospace Exploration 

Agency (JAXA). The DN (Digital Number) of the ALOS-2 PALSAR-2 imagery was converted to 

normalized radar sigma-zero using Equation (1): 

σ0 [dB] = 10. log10 (DN)2 + CF (1) 

where σ0 is backscatter coefficients, and CF is the calibration factor. For HH and HV polarizations, 

CF = −83 dB [44]. Equation (1) converts the DN of each pixel to sigma naught (σ0) in decibel (dB).  

Two scenes of the Sentinel-2 (S-2) Level-1C sensors acquired on 24 March 2018 during the dry 

season were retrieved from Copernicus Open Access Hub of the European Space Agency (ESA). The 

radiometric and geometric corrections of the S-2 data were made to the UTM/WGS84, Zone 48 North 

projection at top-of-atmosphere (TOA) reflectance [45]. The S-2 MSI Level-1C data were processed to 

Level-2A at the bottom-of-atmospheric (BOA) reflectance using the Sen2Cor algorithm of ESA 

(http://step.esa.int/main/third-party-plugins-2/sen2cor/). The S-2 and ALOS-2 PALSAR-2 images 

were processed by the SNAP toolbox, and the modeling process was performed in Python 3.7 

environment using the Scikit-learn library [46].  

2.3.3. Transformation of Multispectral and SAR Data  

As a commonly employed method in previous mangrove AGB retrievals [13,47,48], image 

transformation was applied to the multispectral and SAR data of the present study. The image 

transformation of SAR data involves a combination of multi-polarizations such as HV/HH, HH/HV, 

and HH-HV, as suggested in [26]. Meanwhile, multispectral data are transformed using the 

vegetation indices, as each index is sensitive to mangrove structure and biomass. Table 3 shows the 

seven vegetation indices chosen for mangrove AGB retrieval at the CGBRS after referring to related 

studies [49–51]. The 23 predictor variables included five variables of ALOS-2 PALSAR-2 data (HV, 

HH, HV/HH, HH/HV, and HH-HV), 11 multispectral bands of S-2, and seven vegetation indices. 

Using the predictor variables, we computed the explanatory variables in the prediction model of 

mangrove AGB retrieval (Table 3). Figure 4 illustrates the image composites of different sensors and 

vegetation indices, along with the SAR transformation, in the study area.  

  
(a) (b) 

https://auig2.jaxa.jp/ips/home
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(c) (d) 

Figure 4. Illustrations of input variables in the study area. (a) Pseudo color composite of Sentinel-2 

(RGB: Bands 8-4-3), (b) Pseudo color composite of ALOS-2 PALSAR-2 (RGB: HH-HV-HH/HV), (c) 

NDVI, (d) SAR transformation (HH-HV). 

Table 3. List of vegetation indices used in the current study. 

Vegetation Index Acronyms Formula References 

Ratio Vegetation Index RVI 
𝐵𝑎𝑛𝑑8

𝐵𝑎𝑛𝑑4
 [28] 

Normalized Difference Vegetation Index  NDVI 
𝐵𝑎𝑛𝑑8 − 𝐵𝑎𝑛𝑑4

𝐵𝑎𝑛𝑑8 + 𝐵𝑎𝑛𝑑4
 [29] 

Soil Adjusted Vegetation Index SAVI 
(1 + 𝐿) (

𝐵𝑎𝑛𝑑8−𝐵𝑎𝑛𝑑4

𝐵𝑎𝑛𝑑8+2.4𝐵𝑎𝑛𝑑4+𝐿
)  

L = 0.5 in most conditions 
[31] 

Normalized Difference Index using 

bands 4 and 5 of Sentinel-2 
NDI45 

𝐵𝑎𝑛𝑑5 − 𝐵𝑎𝑛𝑑4

𝐵𝑎𝑛𝑑5 + 𝐵𝑎𝑛𝑑4
 [32] 

Difference Vegetation Index DVI Band 8–Band 4 [33] 

Green Difference Vegetation Index GNDVI 
𝐵𝑎𝑛𝑑8 − 𝐵𝑎𝑛𝑑3

𝐵𝑎𝑛𝑑8 + 𝐵𝑎𝑛𝑑3
 [34] 

Inverted Red-Edge Chlorophyll Index IRECl 
𝐵𝑎𝑛𝑑7 − 𝐵𝑎𝑛𝑑4

𝐵𝑎𝑛𝑑 5 𝐵𝑎𝑛𝑑⁄ 6
 [35] 

2.4. Selection of Machine Learning Model 

To identify the best model for AGB retrieval in CGBSR, we compared the performances of 

several ML techniques (XGBR, GBR, GPR, RFR, and SVR). The SVR model best predicted the 

mangrove AGB in a coastal area of North Vietnam [9], whereas the RFR model delivered the best 

monitoring results of mangrove biomass changes in South Vietnam [10]. Therefore, SVR and RFR 

were selected for the present study. The other ML algorithms were chosen because they are 

commonly used for solving regression problems in various fields [40–42]. 

2.4.1. Gradient Boosting Decision Trees Algorithms 

a. Gradient Boosting Regression (GBR) 

GBR is an ensemble-based decision tree method that boosts the performance of weak learners to 

those of stronger ones. Each regression tree of the GBR learns the residual of each tree conclusion. 

The main purpose is to reduce the previous residuals and thereby decrease the model residual along 
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the gradient direction. The results of all regression trees are integrated to give the final result [52,53]. 

The GBR model can handle mixed data types and is robust to outliers [54]. As GBR has not been 

widely applied to mangrove biomass estimation, it was considered for testing in the present study.  

The parameters to be determined are the learning rate, number of trees, minimum number of 

samples required at a leaf node, maximum depth, and the number of features for the best split. The 

hyperparameters of the GBR model were optimized by five-fold cross-validation (CV) techniques. 

b. Extreme Gradient Boosting Regression (XGBR)  

The Extreme Gradient Boosting (XGB) algorithm, proposed by Chen and Guestrin [55], is a novel 

GBR technique that develops strong learners by an additive training process. To resolve the 

drawbacks of weakly supervised learning, the additive learning is divided into two phases: A 

learning phase fitted to the entire input data, followed by adjustment to the residuals. The fitting 

process is repeated many times until the stopping criteria are achieved. This algorithm is based on 

“boosting decision trees”, which handle both classification and regression tasks in weakly supervised 

machine learning by the additive training strategies. The XGBR technique alleviates the undesired 

over-fitting problem.  

The XGBR algorithm optimizes the loss function not by the first-order derivative (as in GBR) but 

by an efficient second-order expression. To avoid the over-fitting problem, the objective function 

treats the model complexity as a regularization term, and the regular term is added to the cost 

functions [55]. The XGBR model is quite generalizable and avoids both over-fitting and under-fitting. 

It also supports parallel computing to reduce computational time. 

The parameters of XGBR are those of the GBR algorithm, and an additional parameter gamma 

(γ) representing the minimum loss of further partitioning a leaf node of the tree. The larger the γ, the 

more conservative is the algorithm. The XGBR model was also optimized by five-fold CV in the 

Python environment.  

2.4.2. Support Vector Regression (SVR) 

SVM is a supervised learning technique based on the statistical learning theory developed by 

Vapnik [56]. This method is widely used for classification and regression tasks in computer vision, 

pattern recognition, and environmental problems. SVR is an SVM method that solves specific 

regression problems. A nonlinear kernel function in SVR transforms the dataset into a higher 

dimensional feature space, where the data can be treated by simple linear regression. In this study, 

the selected kernel function was the radial basis function (RBF), the most widely adopted kernel for 

optimizing forest AGBs in prior studies [29,50]. 

The SVR model is generally configured by three hyperparameters: Epsilon (ε), the regulation 

parameter (C), and the kernel width (γ) of the RBF. In the present study, these parameters were 

optimized through five-fold CV. 

2.4.3. Random Forests (RF) 

RF [57] is the most common bagging model applied to both classification and regression 

problems. For training, RFR creates multiple uncorrelated trees from a randomly selected subset of 

2/3 of the total samples (in-bag). The remaining 1/3 of the total samples (out-of-bag, OOB) are used 

for estimating the OOB error and validating the method. A tree is grown from in-bag samples with 

m features for optimizing the split at each node. In the absence of pruning, the tree reaches its largest 

possible extent. The RFR model produces (1) an OOB error and (2) the relative importance of each 

variable. From these outputs, it assesses the prediction accuracy and the contribution of each variable. 

RFR is a high-performance non-parametric method that processes nonlinear data without 

overestimation during the training and testing phases. Accordingly, it has been widely employed in 

remote sensing [58,59]. The RFR requires the number of trees and the number of features m for the 

split. In this study, both RFR parameters were optimized by five-fold CV in the Python environment.  
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2.4.4. Gaussian Processes (GP) 

Based on the non-parametric Bayesian theory, GPs are applicable to both classification and 

nonlinear regression problems. The GPR model learns the fit function from a small dataset using 

various kernels, finding the probability distribution that best describes the data. The input data are 

assumed to follow a multivariate Gaussian distribution, and the noise is independent of the data 

measurements [60]. The mean vector and covariance matrix are estimated from the training data by 

mean and covariance functions, respectively, creating a detailed posterior distribution from which 

the confidence interval and uncertainty of the prediction results can be interpreted. The mean value 

of a GP represents the best estimation from the model, and the variance (𝝈𝟐) helps to measure the 

confidence level. GPs are well-known as good predictors of biophysical parameters [61].  

2.5. Model Evaluation 

2.5.1. Input Data for Model Running  

To create the input data for training models, the 121 sampling plots were divided into training 

set (80%) and testing dataset (20%) using the well-known Scikit-learn [46] library in Python 

programming environment. Because the measured plot size (500 m2) greatly exceeded the image pixel 

size (10 m), all satellite data were smoothed through a median filter with a window size of 5 × 5 pixels 

in the SciPy library [62].  

2.5.2. Hyperparameters Tuning in XGBR, GBR, RFR, SVR, and GPR 

Hyperparameter tuning is often required when optimizing machine learning techniques. In this 

work, the parameters of each ML model were optimized by grid searching and five-fold CV. The 

results are listed in Table 4.  

Table 4. Optimized hyperparameters of the ML applied in this study. 

Algorithm Learning_Rate/Epsilon 
Min_Samples_Leaf 

Min_Child_Weight 
Gamma 

Max_Depth/Max 

Features 

n_Estimators 

or C Value 

RFR NA 2 NA 5, 15 50 

SVR 0.01 NA 1000 NA 1000 

GBR 0.2 5 NA 7, 3 100 

XGBR 0.2 3 1 3 100 

In the GPR, we combined the RBF with a length scale of 100 and WhiteKernel with a noise level 

of 1.0. The hyperparameters and kernels were maintained during the training and testing phases.  

2.5.3. Feature Importance 

The variables in RFR and gradient boosting machine algorithms, such as XGBR and GBR are 

often ranked by the variable-importance approach [55,63,64]. Relative variable importance is 

computed as follows. The first step searches for a candidate subset of variables (in this case, by the 

grid search approach). Initially, the grid search includes all variables derived from the S-2, VIs, and 

ALOS-2 PALSAR-2 datasets. The datasets are input to the XGBR model, which ranks the variables in 

descending order of their importance based on the root mean squared error (RMSE) and the 

coefficient of determination (R2). Next, a certain number of the least important variables are removed, 

and the surviving variables form a variable subset. In this paper, the search/selection iterations were 

terminated when the R2 of the prediction model of the subset did not improve the performance in the 

test set. The final step validates the selected variable subset and determines the relative variable 

importance (in this case, by the five-fold CV approach). 

The modeling and generated variable importance of the XGBR model were implemented in the 

Python environment. 
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2.5.4. Model Evaluation 

The model performances of the various ML techniques were evaluated and compared by the 

RMSE (Equation (2)) and R2 (Equation (3)), which are widely employed in estimates of forest AGB 

biomass. Both standards evaluate the errors in a regression model from the differences between the 

measured data (the mangrove forest measurements) and the estimated AGB data [50]. A well-

performing model will achieve a high R2 and a low [24,47]. 

RMSE = √∑
(𝑦𝑒𝑖−𝑦𝑚𝑖)2

𝑛

𝑛
1  (2) 

2 1

2 2

1

( )( )

( ) ( )





 


 





n

i ii

n

i ii

ye ye ym ym
R

ye ye ym ym
 

(3) 

In the above expressions, 𝑦𝑒𝑖  is the mangrove AGB predicted by the ML model, 𝑦𝑚𝑖  is the 

measured mangrove AGB, n is the total number of sampling plots, and ye and ym  are the mean 

values of the predicted and measured mangrove AGBs, respectively. 

3. Results 

3.1. Mangrove Tree Characteristics in CGBRS 

Table 5 gives the characteristics of the mangrove trees in the 121 sampling plots. The AGBs 

ranged from 7.26 to 305.41 Mg ha−1, with a mean of 97.54 Mg ha−1. The mangrove heights varied from 

6.47 to 17.35 m, and their DBHs ranged from 6.69 to 22.19 cm. The mangrove tree densities ranged 

from 170 to 1680 trees ha−1 (Table 5).  

Table 5. Characteristics of the mangrove trees in CGBRS. 

Attribute Min Max Mean Standard Deviation (SD) 

DBH (cm) 6.69 22.19 13.24 3.5 

H (m) 6.47 17.35 11.87 2.5 

Tree density (tree ha−1) 170 1680 694 26.45 

AGB (Mg ha−1) 7.26 305.41 97.54 5.88 

3.2. Modeling Results, Assessment, and Comparison 

Table 6 and Figure 5 compare the performances of the five regression methods with all input 

variables derived from S-2 MSI, VIs, and ALOS-2 PALSAR-2 images for mangrove AGB estimation 

in the study area. The XGBR model incorporating the S-2 (11 MS bands), ALOS- 2 PALSAR-2 (5 

bands), and VIs (7 bands) data achieved the highest performance (Table 6), with an R2 of 0.805 and 

an RMSE of 28.13 Mg ha−1 in the testing dataset (23 predictor variables based on the fused S-2, the VIs 

and the ALOS-2 PALSAR-2 data), implying a good fit between the model estimates and field-based 

measurements. The next-highest performers were the GBR and RFR models. In contrast, the SVR and 

GPR models were unsuitable for retrieving the mangrove AGB at the study site (Table 6).  

Table 6. Performance comparison of ML techniques on mangrove AGB estimation. 

No Machine Learning Model R2 Training (80%) R2 Testing (20%) RMSE (Mg ha−1) 

1 Extreme Boosting regression (XGBR) 0.992 0.805 28.13 

2 Gradient Boosting regression (GBR) 0.998 0.632 39.54 

3 Random Forests regression (RFR) 0.721 0.468 48.44 

4 Support Vector regression (SVR) 0.480 0.421 48.49 

5 Gaussian Processes regression (GPR) 0.509 0.378 50.23 
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Figure 5. Scatter plots of the estimated (X axis) versus the measured (Y axis) mangrove AGB in the 

five ML models, integrating the data of S-2, ALOS-2 PALSAR-2, and VIs in the testing phase. (a) GBR, 

(b) XGBR, (c) RFR, (d) SVR, (e) GPR. 

Table 7 lists the performances of the XGBR method in five scenarios (SCs) of mangrove AGB 

prediction, using different combinations of the S-2, ALOS-2 PALSAR-2, and VIs data. 
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Table 7. Performance of the XGBR model using different numbers of variables. (Bold values highlight 

the best-performing model). 

Scenario 

(SC) 
Number of Variables  

R2 Testing 

Set 

RMSE 

(Mg ha−1) 

SC1 11 variables from MS bands of S2 data 0.600 36.54 

SC2 5 variables from ALOS-2 PALSAR-2 data 0.492 39.48 

SC3 18 variables from MS bands and VIs from S2 0.739 34.86 

SC4 
23 variables (11 MS bands + 7 vegetation indices + 5 

bands from ALOS-2 PALSAR-2) 
0.805 28.13 

SC5 
16 variables (11 MS bands + 5 bands from ALOS-2 

PALSAR-2) 
0.656 43.25 

As clarified in Table 7, the XGBR model yielded a promising result in SC3 using the combined 

S-2 and VIs, but the model achieved a poor result in SC2 using the ALOS-2 PALSAR-2 alone. The 

performance in SC1 using the S-2 dataset alone was moderate. We concluded that fusing all data in 

SC4 boosted the prediction performance of XGBR for estimating the mangrove AGB in the study area. 

The visual results of the testing phase (Figure 5) reconfirm the high performance of mangrove AGB 

estimation by XGBR with the 23 variables of the fused data. Particularly, the green scatter points 

cluster around the blue line and the RMSE is small.  

3.3. Variable Importance 

Among the multispectral bands of S-2 MSI, the Red (665 nm), Vegetation Red Edge (704 nm), 

and the narrow NIR (864 nm) spectra were most sensitive to the mangrove AGB of the present study, 

followed by the SWIR spectrum (MS band 11 at 1610 nm). Interestingly, among the seven VIs indices, 

the Inverted Red-Edge Chlorophyll Index (IRECl) and the Normalized Difference Index (NDI45) 

(bands 4 and 5 of S-2) were likely sensitive to the mangrove AGB in the study area. The band ratios 

derived from the incorporated HH and HH polarizations in the ALOS-2 PALSAR-2 data were also 

important for retrieving mangrove AGB in the biosphere reserve (see Figure 6). The backscatter 

coefficients of the crossed-polarimetric HV in ALOS-2 PALSAR-2 are likely more important than 

those of the HH for estimating the mangrove AGB in the study region (Figure 6).  

 

Figure 6. Variable importance comparison of S-2, VIs, and ALOS-2 PALSAR-2 data in this study. 
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3.4. Generation and Analysis of the AGB Map  

The prediction performance of the XGBR model in mangrove AGB retrieval was improved by 

integrating the Sentinel-2 multispectral bands, vegetation indices, and ALOS-2 PALSAR-2 datasets. 

Thus, the XGBR model was selected for retrieving mangrove AGB in a biosphere reserve. The final 

results were computed to a raster in GeoTiff format for visualizing in QGIS. The AGB map was 

interpreted by seven classes (Figure 7), obtaining mangrove AGBs from 11 to 293 Mg ha−1 (average = 

106.93 Mg ha−1). As can be seen from Figure 7, the biomass is highest in the core zone of the biosphere 

reserve and lower in the transition and buffer zones. These results are consistent with prior mangrove 

AGB estimates [17] and [65], in which the high biomass was mainly distributed in the core zone of 

the biosphere reserve, and the lower biomass was observed in the remaining zones. 

 

Figure 7. Estimated spatial distribution of mangrove AGB in the study area. 

4. Discussion 

The modeling results of mangrove AGB retrieval in the CGBSR obtained by the five ML models 

(XGBR, GBR, GPR, SVR, and RFR) are given in Table 6. Clearly, the XGBR model yielded the highest 

performance, with an R2 and RMSE of 0.805 and 28.13 Mg ha−1, respectively. The worst performing 

model was GPR, with an R2 and RMSE of 0.378 and 50.23 Mg ha−1, respectively. Both the XGBR model 

(R2 = 0.805) and GBR model (R2 = 0.632) were good predictors of mangrove AGB, indicating that the 

GBDT regression models were applicable to the study area, where the mangrove biomass is higher 
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than in other mangrove regions of Vietnam. As shown in Table 7, the combined S-2 and ALOS-2 

PALSAR data significantly improved the performance of estimating the mangrove AGB in the study 

area. These results are consistent with a recent previous study [50]. Overall, the XGBR model 

outperformed the existing algorithms in retrieving the mangrove AGB in a Vietnamese biosphere 

reserve.  

Previous studies reported that long-wavelength PolSAR data, such as the L and the P bands, are 

well correlated with mangrove forest structures. Among these data, crossed-polarized HV appears 

to be most correlated with biophysical attributes [13,66,67]. The variable-importance analysis 

revealed that crossed-polarization HV is more sensitive to mangrove AGB in the study area than HH 

polarization (Figure 6), consistent with previous results [26,29]. However, mangrove forests in a 

biosphere reserve exhibit unique stand structures and species compositions that may saturate 

multispectral and SAR sensors. Data saturation of multispectral sensors such as Landsat TM, ETM+ 

or OLI, and the S-2 sensor degrades the prediction accuracy of mangrove AGBs in dense forest 

canopies. The saturation range of multispectral data reaches 100–150 Mg ha−1 in complex tropical 

forests, much higher than in mixed and pine forest ecosystems (with a saturation range of >150 to 

<160 Mg ha−1) [68,69]. In several recent investigations, the saturation levels of the mangrove AGBs 

retrieved from SAR data ranged from above 100 Mg ha−1 [20] to below 150 Mg ha−1 [21,26]. This large 

range probably manifests from the root systems of different mangrove species in intertidal tropical 

and sub-tropical regions [13]. The sigma backscatter coefficients of the dual polarimetric data of 

ALOS-2 PALSAR-2 increased when the mangrove AGB fell below 100 Mg ha−1 and then saturated at 

a higher AGB because the high mangrove cover density extinguished the radar signals [70,71].  

Biosphere reserves often consist of various mangrove species. The species types (i.e., R. 

appiculata, B. gymnorrhiza, and S. caseolaris) are densely grown and characterized by high DBH and 

tall height. Some species, such as A. germinans and C. decandra, form small but high-density mangrove 

patches in which high and low biomasses are easily underestimated and overestimated, respectively, 

by machine learning algorithms. In the current study, the XGBR model possibly over-estimated the 

low mangrove AGBs (below 50 Mg ha−1) and under-estimated the high values (over 250 Mg ha−1). 

Despite these limitations, the combined ALOS-2 PALSAR-2 and S-2 data sensitively detected 

mangrove AGBs exceeding 200 Mg ha−1 in the CGBRS (See Figure 5). Our findings agree with the 

conclusions of prior research on biosphere reserves [17,65]. Given the species complexity in 

mangrove biosphere reserves, we recommend the inclusion of species classification or richness 

indices for improved mangrove AGB estimation in future work [19,21]. 

In the variable-importance results, the mangrove AGB in the study area was largely retrieved 

from the Red band and the Vegetation Red Edge band. A similar result was reported elsewhere 

[18,72]. The vegetation red edge, narrow NIR, and SWIR reflectance are likely to be more strongly 

correlated with forest biomass and carbon stock volume than visible reflectance [17]. Accordingly, 

the new vegetation index ND145, which is computed from the Sentinel-2 data bands, is a probable 

sensitive indicator of mangrove AGB. Band 8A in the narrow NIR and band 11 in the SWIR (1613 nm) 

also played a crucial role in the AGB retrieval. Interestingly, the IRECl derived from S-2 was strongly 

correlated with mangrove AGB in the biosphere reserve. More in-depth studies would elucidate the 

effectiveness of image transformations involving new vegetation indices derived from the Narrow 

NIR bands, SWIR of S-2 data, and other image transformations computed from the fully polarized 

data (HH, HV, VH, and VV) of the Gaofeng-3 and the ALOS-2 PALSAR-2 sensors in biosphere 

reserves.  

To accurately estimate mangrove AGBs, researchers attempted multi-linear regression, which 

performed poorly with R2 ranging from 0.43–0.65 [13,21,73], and various ML algorithms such as GPR, 

MLPNN, SVR, and RFR [17,18,29]. ML approaches have proven more successful in mangrove AGB 

than multi-linear regression and other parametric methods [18,47], but the R2 has rarely exceeded 

0.70. Therefore, novel approaches for mangrove AGB estimation are urgently needed. In this 

research, the performance of the XGBR model was boosted by incorporating data from the ALOS-2 

PALSAR-2, S-2 sensors. The result (R2 = 0.805 for the AGB of a mangrove biosphere reserve in the 

tropics) demonstrates the promise of this approach. Despite the good fit between the XGBR-predicted 
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and measured-mean mangrove AGBs, the range of the predicted mangrove AGBs did not reach the 

extrema of the actual distribution range, which was maximized at 305.41 Mg ha−1 and minimized at 

26 Mg ha−1 (Table 5). The predicted results may have been degraded by the saturation levels of the S2 

MSI sensor and the dual polarimetric L-band ALOS-2 PALSAR-2 when retrieving mangrove AGB in 

intertidal areas. Although the AGB was well predicted by the XGBR model, the R2 values in the 

training and testing phases were significantly different (Table 6). This difference is likely attributable 

to the mixed mangrove species planted in the CGBRS and the number of plots. To archive a more 

accurate forest AGB map, we should exploit the advantages of various novel GBDT algorithms with 

multi-sensor data integration [74]. In more intensive works, novel boosting decision tree techniques 

should exploit the full capability of multi-source EO data in different mangrove communities 

occupying tropical intertidal areas at different geographical locations, particularly those of biosphere 

reserves. Such developments are needed for rapid mangrove AGB monitoring in the future.  

5. Conclusions 

We report the first attempt to incorporate Sentinel-2 and ALOS-2 PALSAR-2 data into the 

extreme gradient boosting regression (XGBR) model and thereby estimate the mangrove AGB in 

Vietnam’s Can Gio biosphere reserve. The XGBR model outperformed four other machine learning 

models in mangrove AGB retrieval in the study area. When provided with the Sentinel-2 and ALOS-

2 PALSAR-2 data, XGBR estimated the mangrove AGB with satisfactory accuracy (R2 = 0.805, RMSE 

= 28.13 Mg ha−1). Interestingly, we found that new vegetation indices derived from the Sentinel-2 

data, such as the Normalized Difference Index (NDI45) and the Inverted Red-Edge Chlorophyll Index 

(IRECl), sensitively detected mangrove AGB in the biosphere reserve. In future investigations, the 

proposed approach should be tested in other tropical forest ecosystems.  
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Abbreviation:  

List of abbreviations in this study. 

No Abbreviation Full Name 

1 AGB Above-Ground Biomass 

2 ALOS The Advanced Land Observing Satellite 

3 ANN Artificial Neuron Networks 

4 PALSAR Phased Array type L-band Synthetic Aperture Radar 

5 TOA Top Of Atmosphere 

6 BOA Bottom Of Atmospheric 

7 CGBRS Can Gio Biosphere Reserve in South Vietnam 

8 CV Cross-validation 

9 DBH Diameter at breast height 

10 EO Earth Observation 

11 ESA European Space Agency 

12 GBDT Gradient Boosting Decision Trees 
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13 GBR Gradient Boosting Regression 

14 GeoTiff Tagged Image File Format for GIS applications 

15 GP Gaussian Processes 

16 GPR Gaussian Process Regression 

17 GPS Global Positioning System 

18 JAXA Japan Aerospace Exploration Agency 

19 LiDAR Light Detection and Ranging 

20 ML Machine Learning 

21 MRV Monitoring, Reporting, and Verification 

22 MSI Multispectral Instrument  

23 NA Not Available 

24 QGIS Quantum Geographic Information System 

25 RBF Radial Basis Function  

26 REDD+ Reducing Emissions from Deforestation and Forest Degradation  

27 RFR Random Forest Regression 

28 RMSE Root Mean Square Error 

29 S2 Sentinel-2 

30 SAR Synthetic Aperture Radar 

31 SC Scenarios  

32 SNAP Sentinel Application Platform 

33 SVM Support Vector Machine 

34 SVR Support Vector Regression  

35 SWIR Short-Wave InfraRed 

36 VIs Vegetation indices  

37 XGB Extreme Gradient Boosting 

38 XGBR Extreme Gradient Boosting Regression  
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