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Abstract: Sparse subspace clustering (SSC) techniques provide the state-of-the-art in clustering of
hyperspectral images (HSIs). However, their computational complexity hinders their applicability to
large-scale HSIs. In this paper, we propose a large-scale SSC-based method, which can effectively process
large HSIs while also achieving improved clustering accuracy compared to the current SSC methods.
We build our approach based on an emerging concept of sketched subspace clustering, which was to our
knowledge not explored at all in hyperspectral imaging yet. Moreover, there are only scarce results on any
large-scale SSC approaches for HSI. We show that a direct application of sketched SSC does not provide
a satisfactory performance on HSIs but it does provide an excellent basis for an effective and elegant
method that we build by extending this approach with a spatial prior and deriving the corresponding
solver. In particular, a random matrix constructed by the Johnson-Lindenstrauss transform is first used to
sketch the self-representation dictionary as a compact dictionary, which significantly reduces the number
of sparse coefficients to be solved, thereby reducing the overall complexity. In order to alleviate the
effect of noise and within-class spectral variations of HSIs, we employ a total variation constraint on the
coefficient matrix, which accounts for the spatial dependencies among the neighbouring pixels. We derive
an efficient solver for the resulting optimization problem, and we theoretically prove its convergence
property under mild conditions. The experimental results on real HSIs show a notable improvement in
comparison with the traditional SSC-based methods and the state-of-the-art methods for clustering of
large-scale images.
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1. Introduction

Hyperspectral images (HSIs), acquired by the hyperspectral cameras, record the spectrum of materials
covering a wide range of wavelengths. The rich spectral information of HSIs enables discriminating the
materials that are often visually indistinguishable, which led to a number of applications in remote sensing,
such as target detection [1,2], environmental monitoring [3], geosciences, defense and security [4]. It is
often desired to categorize pixels in the imaged scene into different classes, corresponding to different
materials or different types of objects. When no training data is available, this task is called clustering.
Hence, clustering is also referred to as unsupervised classification.
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Two most popular clustering methods are fuzzy c-means (FCM) [5] and k-means [6,7] due to their
simplicity and superior computational efficiency. They group data points by finding the minimum distance
between test data and each cluster centroid which is updated iteratively. However, their performance is
sensitive to initial conditions and noise.

Recently, spectral clustering-based methods [8–13] have achieved a great success and have been
widely applied in various fields due to excellent performance and robustness to noise [14]. In general,
these methods first define a similarity matrix to construct a graph of data points, which is learned from
the input data under different critera. Then, the resulting similarity matrix is used within the spectral
clustering framework. The performance of spectral clustering heavily depends on the similarity matrix [14],
hence, its construction is a crucial step. Many of these methods, like local subspace affinity (LSA) [15],
spectral local best-fit flats (SLBF) [16] and locally linear manifold clustering (LLMC) [17] build the similarity
matrix with k nearest neighbours (KNN) using angle or Euclidean distance between two data points.
This approach tends to treat erroneously the data points near the intersection of two subspaces because
their closest points often lie in another subspace.

The recent sparse subspace clustering (SSC) method [11] constructs the similarity matrix based on the
self-expressiveness model where the input data is employed as the representation dictionary. SSC models
a high-dimensional data space as a union of low-dimensional subspaces. The key insight is that, for each
data point in the subspace Si, the global solution of the sparse coding problem with the self-representation
dictionary automatically selects the data points in the same subspace Si. Thus, each data point gets
automatically represented as a sparse linear or affine combination of other points in the same subspace.
This is called subspace preserving property and is explicitly expressed by non-zero entries of the coefficient
matrix C: i-th and j-th data points are in the same subspace if Ci,j 6= 0. The coefficient matrix leads directly
to the similarity matrix for spectral clustering.

As the SSC model calculates sparse coefficients individually and independently for each input data
point, the clustering performance is sensitive to noise. In order to solve this problem, various extensions
have been proposed with the aim to encode the spatial dependencies among the neighbouring data points
in hyperspectral data, and obtain thereby more accurate similarity matrices and improved clustering
results [18–25]. Guo et al. [18,19] focus on the clustering of 1-D drill hole hyperspectral data and regularize
the coefficients of neighbouring data points in depth to be similar by a `1 norm based smoothing
regularization. For the 2-D spatial-wise hyperspectral images, a smoothing strategy was introduced
in Reference [20] by minimizing the difference between coefficients corresponding to the central pixel and
to the mean of pixels in a local square window. A kernel version of SSC incorporating max pooling of the
sparse coefficient matrix was presented in Reference [21]. The spectral-spatial SSC method of Reference [22]
integrates an `2 spatial regularizer with the SSC model (L2-SSC), to penalize abrupt differences between
the coefficients of nearby pixels. In Reference [23,25], an `1,2 norm constraint on the coefficients of pixels in
each local region was incorporated in the SSC model. Based on the collaborative representation with an
`2 norm constraint on the coefficients, a novel model with a locally adaptive dictionary was proposed in
Reference [24].

While showing excellent performances, the above mentioned methods are also of considerable
computational complexity, resulting from iterative optimization. The time complexity in each iteration is
typically in the range of O((MN)3), where M and N are the number of rows and columns in each band.
For large scale HSIs with millions of pixels in each band, this bound can thus exceed 1018 elementary
operations per iteration, and such processing becomes often infeasible on the common computing
platforms. The approaches reported in References [26,27] addressed this problem by constructing a
graph based on a set of selected representative samples. In combination with modified spectral clustering
methods, a lower complexity has been reached, but the clustering results are sensitive to the initially
selected samples. Recently, some generalized large-scale methods [28–30] based on SSC have been
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proposed for clustering tasks in computer vision. In Reference [28], a scalable SSC method was designed
for large-scale data sets, where a small part of samples are first randomly selected and clustered with
the SSC model, and then clustering of remaining samples is executed by sparse coding with respect to
the dictionary constructed from previously selected samples. The work in Reference [29] studied an
efficient SSC model based on orthogonal matching pursuit (OMP) and discussed theoretical conditions
for subspace preserving representation. A recent sketched SSC model of Reference [30] lowers the
computational burden of SSC by using a clever random projection technique to sketch and compress the
input data to a computationally affordable level. While these large-scale SSC-based methods demonstrated
success in real applications with facial images, handwritten text and news corpus data, to the best of our
knowledge none of them was applied before in the clustering of HSIs. Our experiments show that despite
the scalability of these methods, their clustering performance in HSIs turns out to be poor. This can be
attributed to the complex spatial structure of HSIs, spectral noise and spectral variability.

In view of this, we propose a sketched sparse subspace clustering method with total variation (TV)
spatial regularization, termed Sketch-SSC-TV, which can handle large-scale HSIs while achieving a high
level of clustering performance. A sketching matrix constructed by a random matrix is firstly employed to
build a sketched dictionary, which is much smaller than the self-representation dictionary, resulting in a
significant reduction of the number of coefficients to be solved. By incorporating the spatial constraint
as the TV norm on the coefficient matrix, the proposed model greatly promotes the connectivity of
neighbouring pixels and improves the piecewise smoothness of clustering maps. Furthermore, we propose
an algorithm with theoretically guaranteed global convergence to solve the resulting optimization problem.
By adopting the sketching matrix, the optimization complexity of the TV-related sub-problem reduces
from O((MN)2log(MN)) to O(MNnlog(MN)) (n << MN), facilitating thus greatly the processing
of large-scale data. The similarity matrix is constructed by applying KNN on the obtained coefficient
matrix, and further employed within the spectral clustering method. Experiments conducted on four HSIs
show superior clustering performance compared to both traditional SSC-based methods and the related
large-scale clustering methods. The major contributions of the paper can be summarized as follows.

1. The most important contribution of this paper is a new SSC-based framework, which can be applied
on large-scale HSIs while achieving excellent clustering accuracy. To the best of our knowledge,
this is the first time to address the large-scale clustering problem of HSIs based on the SSC model.

2. Different from the traditional SSC-based methods which use all the input data as a dictionary,
we adopt a compressed dictionary by using random projection technique to reduce the dictionary
size, which effectively enables a scalable subspace clustering approach.

3. To account for the spatial dependencies among the neighbouring pixels, we incorporate a powerful
TV regularization in our model, leading to a more discriminative coefficient matrix. The resulting
model proves to be more robust to spectral noise and spectral variability.

4. We develop an efficient algorithm to solve the resulting optimization problem and prove its
convergence property theoretically.

The rest of this paper is organized as follows. Section 2 briefly introduces the clustering of HSIs with
the SSC model. Section 3 describes the proposed Sketch-SSC-TV model and the resulting optimization
problem. Experimental results on real HSIs are presented in Section 4. Section 5 concludes the paper.

2. HSI Clustering with the SSC Model

Let a B-band HSI be denoted as Y ∈ RB×MN , where the i-th vector yi ∈ RB represents the spectral
signature of the i-th pixel in HSI and MN is the total number of pixels. Sparse subspace clustering (SSC)
partitions the high-dimensional data space into a union of lower dimensional subspaces. Concretely,
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it assumes that all high-dimensional data points yi’s, that is, spectral signatures of all the pixels from
a given HSI Y, are drawn from a union of subspaces, each of which corresponds to a particular class.
The key idea is that among infinitely many possibilities to represent a data point yi in terms of other
points, a sparse representation will select a few points that belong to the same subspspace as yi. This is
known as the subspace preserving property. Thus, SSC starts from a self-representation model where the
input data matrix Y is employed as a dictionary: Y = YC and infers the coefficient matrix C ∈ RMN×MN

by solving the sparse coding problem (requiring that C is sparse) and ensuring that the trivial solution
where each sample would be simply represented by itself is excluded. The non-zero entries in C will then
indicate directly which data points lie within the common subspaces. Formally, SSC solves the following
optimization problem:

arg min
C

‖C‖1 +
λ

2
‖Y− YC‖2

F s.t. diag(C) = 0, 1TC = 1T , (1)

where ‖C‖1 = ∑i ∑j |Cij|; 1 is an all-one vector; diag(C) is a diagonal matrix whose entries outside the
main diagonal are zero and λ is a parameter, which controls the balance between the data fidelity and the
sparsity of the coefficient matrix. The constraint diag(C) = 0 is introduced to avoid the trivial solution
of representing a sample by itself and the second constraint 1TC = 1T ensures that each data point is an
affine combination of other data points.

The problem in (1) can be solved by the ADMM algorithm [31], with the time complexity of
O((MN)2B + (MN)3(I + 1)) where I is the number of iterations. The coefficient matrix C yields directly
the dependence structure among the data points: a non-zero entry Cij indicates that the samples yi and yj
are in the same class. Thus, it is reasonable to construct the similarity matrix W ∈ RMN×MN as

W = |C|+ |C|T , (2)

where |C| takes the absolute values of C. The symmetric structure of W ensures that each pair of samples
are connected to each other if either side is selected to represent another, which results in a strengthened
connection of the graph. The similarity matrix W is then used as an input to spectral clustering [32] to
produce the clustering result. Specifically, the Laplacian matrix L ∈ RMN×MN is first formed by

L := D−W (3)

where D ∈ RMN×MN is a diagonal matrix with Dii = ∑j Wij [33]. Then the c eigenvectors {vk}c
k=1 of L

corresponding to the c smallest non-zero eigenvalues of L are calculated via singular-value decomposition
(SVD). Finally, the clustering result is obtained by running k-means clustering on the MN × c matrix
V = [v1, ..., vc].

3. Sketch-SSC-TV Model for HSIs

In this section, we first introduce our new SSC-based model with TV regularization (SSC-TV),
to effectively account for the spatial dependencies between the input data points. Next, we incorporate a
random sketching technique into this model, leading to our unified Sketch-SSC-TV model for large-scale
HSIs. Finally, we develop an efficient optimization algorithm for the resulting model based on ADMM.

3.1. The SSC-TV Model

HSIs not only record the spectrum of materials in the spectral domain but also capture the distribution
of ground-objects in the spatial domain. As the distribution of ground materials typically shows some
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continuity, HSIs are composed of various nearly homogeneous regions made of pixels that belong to
the same class with a very high probability [34–40]. For this reason, spectral signatures of pixels within
small local regions are typically very similar. Conversely, the pixels belonging to different classes are
more likely to occupy different spatial locations and exhibit significantly different spectral characteristics.
HSI clustering assigns pixels into distinct groups according to the spectral similarities such that the pixels
from the same group are more similar to each other than to those from other groups. Here, each cluster is
viewed as a subspace. Thus, by conducting subspace clustering the pixels of HSIs in local homogeneous
regions are likely to be grouped together in the same cluster. At the same time, the pixels showing
significant spectral differences, which are typically also spatially separated, are assigned to different
clusters. This way, subspace clustering results in a meaningful interpretation of the spatial content of HSIs.
Thus, idealy, the subspaces in the spectral domain correspond to the cluster structure in the spatial domain.
However, due to noise and spectral variability, the actual results of the subspace clustering model differ
from the ideal cluster structure, and do not agree perfectly with the spatial content. Such sensitivity to
noise and to spectral variability is inherent to all the methods that perform pixel-wise processing and
thus also to the SSC model in (1), where sparse coefficients are calculated independently for each pixel.
Random variations in the recorded spectral responses affect the solution of the sparse coding problem
such that in the resulting sparse representation some data points may be represented by data points from
different subspaces. This degrades the construction of the similarity matrix, thereby deteriorating spectral
clustering performance. We aim to alleviate this problem by imposing a spatial constraint that makes the
model less sensitive to random spectral variations of individual pixels.

To accommodate for the fact that pixels within a local homogeneous region are likely to belong to
the same class, we require explicitly that sparse coefficients of nearby pixels likely to be mutually similar,
that is, selecting similar sets of pixels in the subspace-sparse representation. Formally, this means that the
coefficient matrix C exhibits certain local smoothness. Recall that pixels yi and yj are likely to belong to
the same class if Cij 6= 0. In reality, Cij is rarely exactly 0, but the larger Cij, the more likely it is that yi and
yj are from the same class. Ideally, yi as an atom in the dictionary, only contributes to the representation
of pixels in the same class. Since neighbouring pixels from a local region of the input image Y usually
belong to the same class in the ideal case, all of them are likely to select the same atoms in the subspace
representation. Hence, any row of C, ci = [Ci1, Ci2, ..., CiMN ], composed of the coefficients that correspond
to an atom yi, will reflect some aspect of the spatial structure of HSI. In other words, the ideal coefficients
should reflect the local smoothness and discontinuities that are present in the original HSI, as shown
in Figure 1, where each ci is reshaped to a M× N 2-D slice. This motivates us to introduce TV spatial
regularization on sparse coefficients, which promotes effectively piece-wise smoothness while preserving
sharp transitions among the distinct regions.

Let x ∈ RMN denote a vector of raster scanned pixel values from a grayscale image of size
M× N and define the anisotropic TV norm (An alternative isotropic TV norm formulation is ‖x‖TV =

∑MN
i=1

√
[(Hxx)i]2 + [(Hyx)i]2 where (·)i is the i-th element of a vector) as

‖x‖TV = ‖Hxx‖1 + ‖Hyx‖1, (4)

where Hx and Hy are the forward finite-difference operators in the horizontal and vertical directions,
respectively, with periodic boundary conditions.

For the 2-D matrix Y reshaped from a 3-D HSI Y ∈ RM×N×B in HSI, the corresponding TV norm is
formulated as

‖Y‖TV = ‖HxYT‖1 + ‖HyYT‖1. (5)
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Now we incorporate the spatial constraint into the SSC model. In particular, we impose the TV norm
as defined above on the sparse coefficient matrix C, and formulate our SSC-TV model as

arg min
C

1
2
‖Y− YC‖2

F + λ‖C‖1 + λtv‖C‖TV s.t. diag(C) = 0, 1TC = 1T , (6)

where λ and λtv are two penalty parameters corresponding to sparsity and spatial constraint, respectively.
Like with the standard SSC, the similarity matrix is obtained from C by applying (2), and fed into
the spectral clustering. The TV norm imposed on C promotes the local smoothness of the resulting
subspace-sparse representation, which encourages neighbouring pixels to select a common set of pixels
from the same class. Since pixels belonging to the same class tend to be spatially clustered as well (within
one or multiple local regions), this locally smooth coefficient structure will also lead to an improved
agreement of the resulting spectral clustering with the underlying spatial structure.

Figure 1. A motivation for applying the TV norm in the sparse subspace clustering (SSC) model. In the
ideal case, coefficient matrices of pixels in hyperspectral images (HSIs) should be piece-wise smooth in
local region and have similar edges to the original HSI, which becomes apparent after reshaping them to
a 3-D cube. Observe that each M× N slice in this cube corresponds to one row in the 2-D matrix C and
resembles the spatial structures in the original HSI. In order to preserve such smoothness in local regions
and edge structure of the coefficient matrix, the TV spatial constraint is employed.

3.2. The Sketch-SSC-TV Model for Large-Scale HSIs

The problem at this point is to solve the sparse coefficient matrix C from the cost function in (6).
However, as the number of pixels in HSIs, MN, is typically very large, the matrix C ∈ RMN×MN in (6) is
huge. The optimization problem of the SSC-TV model actually cannot be efficiently solved in practice due
to its prohibitively high computational complexity. The traditional SSC-based methods [11,20–23,41,42]
also suffer from the same problem. One key obstacle is that they have to calculate and save the
inverse of the entire large matrix (YTY + µI) ∈ RMN×MN in memory based on the ADMM algorithm,
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whose time complexity reaches O((MN)3), which is infeasible for large-scale data sets. In addition,
for the TV-regularized model in (6), the complexity to solve the subproblem with respect to the TV-norm
is O((MN)2log(MN)), which further increases the computation burden. Despite the effectiveness
of incorporating the TV-norm in the tasks such as HSI unmixing [43,44], superresolution [45] and
denoising [46–48], the exploitation of TV-regularization in the SSC model is impractical, especially for
large-scale HSIs. In the following parts, a sketched SSC (Sketch-SSC) [30] method designed for large-scale
data sets will be introduced, and then our Sketch-SSC-TV model is present.

3.2.1. The Sketch-SSC Model

The recently proposed Sketch-SSC method [30], which was explored in the context of computer
vision, employs a random projection matrix R ∈ RMN×n to sketch the input data, compressing the
self-representation dictionary Y in (1) to a compact one D ∈ RB×n := YR. The objective function of the
Sketch-SSC with respect to the sparse coefficient matrix A ∈ Rn×MN can be formulated as

arg min
A

‖A‖1 +
λ

2
‖Y−DA‖2

F. (7)

By using the random sketching matrix R, the number of optimization variables in the sparse matrix is
significantly reduced, making the Sketch-SSC model applicable to large-scale data sets. We illustrate this
pictorially in Figure 2. After obtaining the sparse matrix A, the similarity matrix W is built via the KNN
graph of A for spectral clustering.

Figure 2. Illustration of the traditional SSC-based models (top) and the sketched SSC model (bottom) where
C and A are two sparse coefficient matrices to be computed and R is a random matrix for sketching.

The random matrix R ∈ RMN×n used here is known as Johnson-Lindenstrauss transform (JLT),
which can compress Y to a very small dictionary while preserving major information in Y. The typically
used JLTs are matrices with independent and identically distributed (i.i.d.) ±1 entries multiplied by
1/
√

n [49]. It was proved in Reference [30] that with a properly selected sketching matrix R the compressed
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dictionary D shows an equal expressive capability to Y since it preserves the column space of Y with
high probability.

3.2.2. The Sketch-SSC-TV Model

By using the sketching technique in Reference [30], we convert the SSC-TV model in (6) to the
following Sketch-SSC-TV model:

arg min
A

1
2
‖Y−DA‖2

F + λ‖A‖1 + λtv‖A‖TV . (8)

Compared with (6), the self-representation dictionary Y is replaced with the sketched D, and also the
constraint diag(C) = 0 is not necessary any more because I is not the trivial solution of (8). For simplicity,
here we also remove the affine subspace constraint 1TC = 1T . D serves as the basis to represent the
whole data and thus pixels in HSI now lie in the union of subspaces described by D. Similarly to the
self-representation method SSC, the coefficients with respect to D should preserve the smoothness of pixel
values in local image regions. Since the neighbouring pixels are often in the same class, they ideally select
the same or similar set of atoms in D which are constituting together that particular class. As for the
computational complexity, the heaviest part in the traditional SSC-based methods for solving the inverse
of (YTY + µI) ∈ RMN×MN is replaced with the inverse of (DTD + µI) ∈ Rn×n in (8), which reduces the
complexity from O((MN)3) to O(n3). In addition, for the model in (6) the complexity of the solver to the
TV term is also reduced from O((MN)2log(MN)) in (6) to O(MNnlog(MN)) in (8). Note that n is much
smaller than MN. Our experimental results shown later indicate that when n is larger than 100, there is no
obvious performance improvement, and thus n can be empirically set to a value around 100, which can be
more than thousand times smaller than MN in large-scale HSIs. Therefore, the computational complexity
of the Sketch-SSC-TV model can be significantly reduced.

We solve the resulting model by the ADMM algorithm, as described in the following subsection.
After obtaining the sparse coefficient matrix A, we cannot apply it directly in the same way as the
traditional SSC-based methods to construct the similarity matrix since the size of A is n× MN and it
cannot explicitly indicate the connections between input data points.

Here we use a KNN graph to build the similarity matrix with the sparse matrix A. For each aaai from
the i-th column of A, the first k nearest neighbours in Euclidean distance are located, denoted as Nk(aaai).
Then the similarity matrix W is calculated as

Wij =

{
wij aaai ∈ Nk(aaaj) or aaaj ∈ Nk(aaai)

, 0 otherwise
(9)

where wij is obtained with a Gaussian kernel function:

wij = e
−‖aaai−aaaj‖

2
2

2σ2 . (10)

For large-scale HSIs, the construction of the KNN graph may result in a high computation burden.
However, various methods [50–52] can be used to speed up this procedure. The obtained sparse similarity
matrix W serves as an input to the spectral clustering framework to produce the clustering result.
The complete procedure of the proposed Sketch-SSC-TV method is summarised in Algorithm 1.
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Algorithm 1 The complete procedure of the proposed Sketch-SSC-TV method

1: Input: An input matrix Y ∈ RB×MN , D ∈ RB×n, λ, λtv, k, σ2 and c.
2: Calculate A by solving (8).
3: Construct W using (9).
4: Plug W into spectral clustering.
5: Output: A clustering map.

3.3. Optimization

In order to solve model (8), three auxiliary variables B, Z ∈ Rn×MN and U ∈ R2MN×n are introduced,
and then model (8) becomes

arg min
B,A,Z,U

1
2
‖Y−DB‖2

F + λ‖Z‖1 + λtv‖U‖1 s.t. A = B, A = Z, HAT = U , (11)

where H = [Hx; Hy] is the TV operator in spatial direction of HSIs.
Based on the efficient ADMM algorithm, the optimization problem (11) can be solved by minimizing

the resulting augmented Lagrangian function as:

L(B, A, Z, U,Y1, Y2, Y3) =
1
2
‖Y−DB‖2

F + λ‖Z‖1 + λtv‖U‖1 + 〈Y1, A− B〉+

〈Y2, A− Z〉+ 〈Y3, HAT −U〉+ µ

2
‖A− B‖2

F +
µ

2
‖A− Z‖2

F +
µ

2
‖HAT −U‖2

F, (12)

where Y1, Y2 ∈ Rn×MN and Y3 ∈ R2MN×n are the Lagrange multipliers, and µ is a weighting parameter.
To this end, the following subproblems can be solved iteratively. In each subproblem, a variable is updated
with others being fixed.

3.3.1. Update B

The objective function with respect to B is given by:

Br+1 = arg min
B

1
2
‖Y−DB‖2

F +
µ

2
‖Ar − B +

Yr
1

µ
‖2

F.. (13)

The solution can be obtained by setting the first-order derivative to zero:

Br+1 = (DTD + µI)−1(DTY + µAr + Yr
1). (14)

3.3.2. Update A

The objective function with respect to A is given by:

Ar+1 = arg min
A

1
2
‖A− Br+1 +

Yr
1

µ
‖2

F +
1
2
‖A− Zr +

Yr
2

µ
‖2

F +
1
2
‖HAT −Ur +

Yr
3

µ
‖2

F. (15)

By setting the first-order derivative to zero, we can obtain

A(HTH + 2I) = Zr + Br+1 −
Yr

1
µ
−

Yr
2

µ
+ (UrT −

YrT

3
µ

)H. (16)
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As for each row of A, H is a convolution, the above problem can be efficiently solved by using the
fast Fourier transform (FFT) method:

Ar+1 = F−1
[

G
2 + (F (Hx))2 + (F (Hy))2

]
, (17)

where G = F (Zr + Br+1 − Yr
1/µ− Yr

2/µ + (UrT − YrT

3 /µ)H), and F (·) and F−1(·) denote the FFT and
the inverse FFT, respectively.

3.3.3. Update Z

The objective function with respect to Z is given by:

Zr+1 = arg min
Z

λ‖Z‖1 +
µ

2
‖Ar+1 − Z+

Yr
2

µ
‖2

F.. (18)

By introducing the following soft-thresholding operator:

R4(x) =

{
sgn(x)(|x| −4) |x| ≥ 4
0 otherwise

(19)

the problem in (18) can be solved by

Zr+1 = R λ
µ
(Ar+1 +

Yr
2

µ
). (20)

3.3.4. Update U

The objective function with respect to U is given by:

Ur+1 = arg min
U

λtv‖U‖1 +
µ

2
‖HA(r+1)T −U +

Yr
3

µ
‖2

F (21)

Similarly, U can be updated by

Ur+1 = R λtv
µ

(HA(r+1)T
+

Yr
3

µ
). (22)

3.3.5. Update Other Parameters

The next step is to update the multipliers Y1, Y2, Y3 and µ by

Yr+1
1 = Yr

1 + µ(Ar+1 − Br+1)

Yr+1
2 = Yr

2 + µ(Ar+1 − Zr+1)

Yr+1
3 = Yr

3 + µ(HA(r+1)T −Ur+1). (23)

The above 5 steps are iteratively updated until the stop criterion is satisfied, that is, ‖Ar+1−Br+1‖∞ <

ε, ‖Ar+1 − Zr+1‖∞ < ε and ‖HA(r+1)T − Ur+1‖∞ < ε or r > MaxIter, where MaxIter is the
predefined maximum number of iteration. Algorithm 2 summarizes the whole optimization steps of the
Sketch-SSC-TV model.
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Algorithm 2 ADMM for solving the Sketch-SSC-TV model

1: Input: Y, R, λ and λtv.
2: Initialize: A = 0, Z = 0, U = 0, Y1 = 0, Y2 = 0, Y3 = 0, ε = 10−5, MaxIter = 100
3: Do
4: Update B by (14).
5: Update A by (17).
6: Update Z by (18).
7: Update U by (22).
8: Update other parameters by (23).
9: While (‖Ar+1 − Br+1‖∞ > ε or ‖Ar+1 − Zr+1‖∞ > ε or ‖HA(r+1)T −Ur+1‖∞ > ε and

r ≤ MaxIter)
10: Output: Sparse matrix Z.

3.4. Convergence Analysis

The convergence property of the ADMM algorithm has been theoretically proven when two blocks
of variables are alternatively updated [31,53,54]. However, it is difficult to guarantee the convergence
of ADMM for the cases with more than two blocks [55]. In our problem (11), there are four variables
{B, A, Z, U}. We show a week convergence property of our algorithm by proving that the solution obtained
by Algorithm 2 converges to a Karush-Kuhn-Tucker (KKT) point under some mild conditions. We refer to
these conditions as “mild”, meaning that they are most of the time fulfilled in practice, which is evidenced
by the experimental results shown later. This weak convergence property is stated in Theorem 1 given
below. We first introduce a lemma from Reference [56] that we will need in proving this theorem.

Lemma 1 ([56]). Let X be a real Hilbert space endowed with an inner product 〈·〉, a norm ‖ · ‖ with its dual norm
‖ · ‖dual, and y ∈ ∂‖x‖, where ∂ f (·) is the subgradient of f (·). Then we have ‖y‖dual = 1 if x 6= 0, and ‖y‖dual ≤ 1
if x = 0.

Theorem 1. Let {Γr = (Br, Ar, Zr, Ur, Yr
1, Yr

2, Yr
3)}∞

r=1 be the sequence that is derived from Algorithm 2.
If limr→∞ µ(Zr+1 − Zr) = 0 and limr→∞ µ(Ur+1T − UrT

) = 0, the sequence {Γr}∞
r=1 is bounded, and its

accumulation point Γ∗ = (B∗, A∗, Z∗, U∗, Y∗1 , Y∗2 , Y∗3) satisfies the KKT conditions. The sequence of {Γr}∞
r=1

converges to a KKT point.

Proof. We first prove the boundedness of the variable sequences {Br, Ar, Zr, Ur, Yr
1, Yr

2, Yr
3}. With the

definition of L(·) in (12) and the solver to the U-subproblem (22), we obtain

0 ∈ ∂LU(Br+1, Ar+1, Zr+1, U, Yr
1, Yr

2, Yr
3)|U=Ur+1

= λtv∂‖Ur+1‖1 − µ(HAr+1T −Uk+1 +
Yr

3
µ
)

= λtv∂‖Ur+1‖1 − Yr+1
3 , (24)

where ∂LU(·) is the subgradient of the non-smooth function L(·) with respect to U. Based on the

above-stated Lemma 1, we derive that ‖Yr+1
3

λtv
‖dual

1 ≤ 1 from (24), so the sequence {Yr+1
3 } is bounded. In the

update of Z, we have
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0 ∈ ∂LZ(Br+1, Ar+1, Z, Ur, Yr
1, Yr

2, Yr
3)|Z=Zr+1

= λ∂‖Zr+1‖1 − µ(Ar+1 − Zk+1 +
Yr

2
µ
)

= λ∂‖Zr+1‖1 − Yr+1
2 , (25)

Similarly, we obtain ‖Yr+1
2
λ ‖

dual
1 ≤ 1 based on the Lemma 1, and thus we conclude that the sequence

{Yr+1
2 } is bounded. For the update of A, we have

0 = ∇LA(Br+1, A, Zr, Ur, Yr
1, Yr

2, Yr
3)|A=Ar+1

= µAr+1(HTH + 2I)− µZr − µBr+1 + Yr
1 + Yr

2 − (µUrT − YrT

3 )H, (26)

where ∇LA denotes the gradient of smooth function L(·) with respect to A. With the updating rules for
Y2 and Y3 in (23), we reformulate the equation in (26) as follows:

0 = Yr+1
1 + Yr+1

2 + µ(Zr+1 − Zr) + µ(Ur+1T −UrT
) + Yr+1T

3 H. (27)

When limr→∞ µ(Zr+1 − Zr) = 0 and limr→∞ µ(Ur+1T − UrT
) = 0, we deduce that the sequence

{Yr+1
3 } is bounded due to the boundedness of {Yr+1

1 } and {Yr+1
2 }. More specifically, Yr+1

3 =

Yr+1
3 HHT(HHT)−1 as HHT is invertible. Then we can obtain the boundedness of {Yr+1

3 } with the

boundedness of {Yr+1T

3 H}. According to the updating steps in Algorithm 2, we have that

L(Br+1, Ar+1, Zr+1, Ur+1, Yr
1, Yr

2, Yr
3)

≤ L(Br, Ar, Zr, Ur, Yr
1, Yr

2, Yr
3)

= L(Br, Ar, Zr, Ur, Yr−1
1 , Yr−1

2 , Yr−1
3 ) + 〈Yr

1 − Yr−1
1 , Ar − Br〉

+ 〈Yr
2 − Yr−1

2 , Ar − Zr〉+ 〈Yr
3 − Yr−1

3 , HArT −Ur〉 (28)

= L(Br, Ar, Zr, Ur, Yr−1
1 , Yr−1

2 , Yr−1
3 ) +

1
µ
(‖Yr

1 − Yr−1
1 ‖2

F + ‖Yr
2 − Yr−1

2 ‖2
F + ‖Yr

3 − Yr−1
3 ‖2

F)

Let r vary from 1 to t and sum both sides of (28), we get

L(Bt+1, At+1, Zt+1, Ut+1, Yt
1, Yt

2, Yt
3)

= L(B1, A1, Z1, U1, Y0
1, Y0

2, Y0
3) +

1
µ

t

∑
r=1

(‖Yr
1 − Yr−1

1 ‖2
F + ‖Yr

2 − Yr−1
2 ‖2

F + ‖Yr
3 − Yr−1

3 ‖2
F)) (29)

Because of the boundedness of Yr
1, Yr

2 and Yr
3, we conclude that L(Bt+1, At+1, Zt+1, Ut+1, Yt

1, Yt
2, Yt

3)

is also bounded. We can obtain the following equation with (12)

L(Br+1, Ar+1, Zr+1, Ur+1, Yr
1, Yr

2, Yr
3) +

1
2µ

(‖Yr
1‖2

F + ‖Yr
2‖2

F + ‖Yr
3‖2

F)

=
1
2
‖Y−DBr+1‖2

F + λ‖Zr+1‖1 + λtv‖Ur+1‖1 +
µ

2
‖Ar+1 − Br+1 +

Yr
1

µ
‖2

F

+
µ

2
‖Ar+1 − Zr+1 +

Yr
2

µ
‖2

F +
µ

2
‖HAr+1T −Ur+1 +

Yr
3

µ
‖2

F. (30)
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Due to the boundedness of L(Br+1, Ar+1, Zr+1, Ur+1, Yr
1, Yr

2, Yr
3), Yr

1, Yr
2 and Yr

3, the left side is
bounded and thus the right side of (30) is bounded as well, which deduces that each term in the right
side of (30) is bounded. Therefore, we conclude that the sequences of {Br}, {Ar}, {Zr}, {Ur} are bounded.
To this end, the proof to the boundedness of the variable sequences {Br, Ar, Zr, Ur, Yr

1, Yr
2, Yr

3} is complete.
Let Γr = (Br, Ar, Zr, Ur, Yr

1, Yr
2, Yr

3) be the sequence that is generated by Algorithm 2. Based on
Bolzano-Weierstrass theorem [57], it is known that for a bounded sequence, there exists at least one
accumulation point. We denote by Γ∗ = (B∗, A∗, Z∗, U∗, Y∗1 , Y∗2 , Y∗3) the accumulation point of the sequence
{Γr}∞

r=1, that is,

lim
r→∞

(Br, Ar, Zr, Ur, Yr
1, Yr

2, Yr
3) = (B∗, A∗, Z∗, U∗, Y∗1 , Y∗2 , Y∗3) (31)

Next, we prove that the accumulation point Γ∗ satisfies the KKT conditions [58], which means {Γ}∞
r=1

converges to a KKT point. The proof is similar to that in Reference [59,60].
A KKT point of (11) should meet the KKT conditions, including:

A− B = 0 (32)

A− Z = 0 (33)

HAT −U = 0 (34)

∇LB = DTDB−DTY− Y1 = 0 (35)

∇LA = YT
3 H + Y1 + Y2 = 0 (36)

Y2 ∈ λ∂‖Z‖1 (37)

Y3 ∈ λtv∂‖U‖1 (38)

According to the updating rules in (23), we have:

Yr+1
1 − Yr

1
µ

= Ar+1 − Br+1 (39)

Yr+1
2 − Yr

2
µ

= Ar+1 − Zr+1

Yr+1
3 − Yr

3
µ

= HA(r+1)T −Ur+1 (40)

As limr→∞(Yr+1
1 − Yr

1) = 0, limr→∞(Yr+1
2 − Yr

2) = 0, limr→∞(Yr+1
3 − Yr

3) = 0, we obtain A∗ =

B∗, A∗ = Z∗ and HA∗
T −U∗ = 0. Thus, the KKT conditions (32)–(34) hold.

Based on the updating rules in (14), we have:

Br+1 − Br = (DTD + µI)−1(DTY + µAr + Yr
1)− Br. (41)

By left multiplying DTD + µI, we obtain that

(DTD + µI)(Br+1 − Br) = (DTY + µAr + Yr
1)− (DTD + µI)Br (42)

Considering limr→∞(Br+1 − Br) = 0, we drive the following equation:

(DTY + µA∗ + Y∗1)− (DTD + µI)B∗ = 0 (43)
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Due to A∗ = B∗, we can infer that DTDB∗ −DTY∗ − Y∗1 = 0, which satisfies the KKT condition (35).
Similarly, we have the following equation according to the updating rule (17)

Ar+1 −Ar = (Zr + Br+1 −
Yr

1
µ
−

Yr
2

µ
+ (UrT −

YrT

3
µ

)H)(HTH + 2I)−1 −Ar (44)

Thus,

(Ar+1 −Ar)(HTH + 2I) = (Zr + Br+1 −
Yr

1
µ
−

Yr
2

µ
+ (UrT −

YrT

3
µ

)H)−Ar(HTH + 2I). (45)

Combining limr→∞(Ar+1 − Ar) = 0 and the proved conditions (32)–(34), we obtain Y∗
T

3 H + Y∗1 +
Y∗2 = 0, which satisfies the KKT condition (36). To prove the condition (37), we reformulate it as follows:

Z +
Y2

µ
∈ Z +

λ

µ
∂‖Z‖1 = Θ λ

µ
(Z), (46)

where scalar function Θ λ
µ
(t) = t + λ

µ |t| is applied to Z element-wise. Based on Reference [61], we have the

following relation:

Z = Θ−1
λ
µ

(Z +
Y2

µ
) = R λ

µ
(Z +

Y2

µ
). (47)

Now the condition (37) is transformed equivalently to (47). Based on the updating rules in (18),
we have

Zr+1 − Zr = R λ
µ
(Ar+1 +

Yr
2

µ
)− Zr. (48)

As limr→∞(Zr+1 − Zr) = 0 and A∗ = Z∗, we derive that Z∗ = R λ
µ
(Z∗ + Y∗2

µ ), which satisfies the

condition (37). The last KKT condition (38) can be proved similarly as (37). We first reformulate it to the
following equivalent condition:

U = R λtv
µ

(U +
Y3

µ
). (49)

With the updating rule (22), we have

Ur+1 −Ur = R λtv
µ

(HA(r+1)T
+

Yr
3

µ
)−Ur. (50)

Taking limr→∞(Ur+1 − Ur) = 0 and HA∗
T − U∗ = 0, we conclude that U∗ = R λtv

µ

(U∗ + Y∗3
µ ),

which proves the condition (38). Overall, the accumulation point Γ∗ satisfies all the KKT conditions.
This completes the proof of Theorem 1.

Theorem 1 assures the theoretical convergence property of our algorithm under mild conditions.
In the next Section, we will prove the convergence empirically by conducting experiments on real data sets.
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4. Experiments

4.1. Experimental Settings

We conduct experiments on three widely used bench mark data sets: Indian Pines, Pavia University
and Salinas. The results of two classical clustering methods FCM [5] and k-means [7], the random swap
clustering (RSC) [62], the original SSC method [11], the SSC-based extensions L2-SSC [22] and JSSC [23],
and the state-of-the-art large-scale clustering methods SSSC [28], SSC-OMP [29] and Sketch-SSC [30] are
reported and analysed. The clustering methods FCM, k-means, RSC, SSC, SSSC, SSC-OMP and Sketch-SSC
yield the results based on the spectral information alone while the L2-SSC, JSSC and Sketch-SSC-TV
methods employ both spatial and spectral information.

We conduct four independent experiments using the three data sets. The traditional SSC-based
methods [11,22,23] cannot cluster large-scale data sets. For this reason, we first test all the methods on the
cropped version of Indian Pines. In order to compare with the methods [28–30] designed for large-scale
data sets, we also test the performance on the original large-scale HSIs. We refer to the cropped data set as
the small HSIs and to the original data sets as the large-scale HSIs.

Two commonly utilized quantitative metrics including overall accuracy (OA) and Kappa coefficient
(κ) are employed to evaluate the clustering performance. In addition, we report the running time (t) as
well for all the methods. For a dataset Y = [y1, y2, ..., yN ] ∈ RB×N with N samples, the OA is obtained by
∑N

i=1 δ(map(ri), li)/N, where ri and li are the cluster label obtained by clustering and the true label of yi,
respectively, and δ(x, y) equals one if x = y and equals zero otherwise. The map(·) is a pair-wise mapping
function that finds the best match between the clustering results and ground truth. We apply here the
Hungarian algorithm [63] to derive the best mapping function. For more details about cluster matching,
we refer to Reference [64]. The obtained mapping function finds the label for each pixel. Thus, κ can be
directly computed from the corresponding confusion matrix [65]. The running time records the whole
clustering procedure for each clustering method. The optimal parameters for the traditional SSC-based
methods SSC, L2-SSC and JSSC on the small HSI are set according to References [20,22,23]. The parameters
of the other analysed methods were tuned to produce the best results in terms of OA to guarantee a
fair comparison. The total number of the randomly selected samples in the SSSC method is equal to n
for the small HSIs. For simplicity, the number of samples in the large-scale HSIs is set to 10 per class.
In order to avoid the biased clustering results caused by randomness, the methods FCM, k-means, SSSC,
Sketch-SSC and Sketch-SSC-TV are repeated five times and the averaged performance are reported. In the
spectral clustering method, to reduce the computational complexity, we only calculate c eigenvectors of the
Laplacian matrix L whose time complexity is O(c(MN)2). For the Sketch-SSC and Sketch-SSC-TV models,
the sketching matrices R are shared in each simulation. We set n = 70, σ2 = ∑i,j ‖aaai − aaaj‖2

2/(MN)2

and k = 30 for the proposed Sketch-SSC-TV model based on the empirical optimization. We search
λ in the range of {1 × 10−4, 5 × 10−4, 1 × 10−3, 5 × 10−3, 1 × 10−2, 5 × 10−2} and λtv in the range of
{1 × 10−4, 5 × 10−4, 1 × 10−3, 5 × 10−3, 1 × 10−2, 5 × 10−2, 1 × 10−1, 5 × 10−1}. All the methods were
implemented in MATLAB on a computer with an Intel c© core-i7 3930K CPU with 64 GB of RAM.

4.2. Data Description

4.2.1. Indian Pines

This image was captured in 1992 by the Airborne/Visible Infrared Imaging Spectrometer (AVIRIS)
sensor over the Indian Pines region in North-western Indiana. The image has a spatial resolution of 20 m
per pixel, and contains 16 ground-truth classes and 220 spectral reflectance bands in the wavelength range
0.4–2.5 µm. The image size is 145× 145× 220. During the test, 20 spectral bands in 104–108, 150–163 and
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200 are removed due to water absorption. Figure 3a,b show the false color image and the ground truth of
the cropped Indian Pines with the size of 85× 70, which includes 4 classes. The complete data set is shown
in Figure 5.

(a) (b)

Figure 3. The false color image (a) and the corresponding ground truth (b) of the tested Indian Pines.

4.2.2. Pavia University

This data was collected by the Reflective Optics System Imaging Spectrometer (ROSIS) sensor during
a flight campaign over Pavia, Northern Italy. The typically used image consists of 610 × 340 pixels,
resulting in 207,400 pixels with 103 spectral reflectance bands. The resolution is 1.3 m per pixel and the
number of ground-truth classes is 9. The false color image and ground truth are shown in Figure 6a,b.

4.2.3. Salinas

The third image was acquired by the AVIRIS sensor over the Salinas Valley, CA, USA. The geometric
resolution is 3.7 m per pixel, and the image size is 512× 217× 224. There are 16 ground-truth classes.
Twenty bands in 108–112, 154–167 and 224 are removed due to water absorption. The false color image
and ground truth are shown in Figure 7a,b.

4.3. Experiments on the Small HSI

In this part, the experiments are conducted on the data in Figure 3 that is cropped from the original
Indian Pines as indicated by the yellow box in Figure 5a. The specific class names and their corresponding
clustering results are shown in Table 1, where the best result is marked in bold and the sub-optimal result
is underlined.

The results reveal that our proposed Sketch-SSC-TV model achieves the best performance in terms
of clustering accuracy and κ. The optimal parameters of the Sketch-SSC-TV in terms of OA are λ =

10−3, λtv = 10−2. Compared with the classical clustering methods FCM and k-means, the SSC-based
methods SSC, L2-SSC, JSSC, Sketch-SSC and Sketch-SSC-TV usually yield higher accuracy, showing the
superior capability of SSC model in such clustering task. RSC is a k-means based clustering method,
which consists of a sequence of centroid swaps and fine-tuning of the exact centroids with k-means.
It shows better performance than k-means in Table 1 in terms of OA and κ. The number of iterations in
RSC is set by default to 5000 in the source code (http://www.uef.fi/web/machine-learning/software),
resulting thereby in longer running time than k-means and FCM. The classification accuracy of k-means for

http://www.uef.fi/web/machine-learning/software
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the class “Soybean-notill” is zero, which means that all the pixels belonging to class 3 are wrongly assigned
to other classes. Compared with the original SSC model, the extensions L2-SSC and JSSC by incorporating
different spatial information obtain the improved performance with the higher accuracy, which indicates
the importance of spatial information in HSI clustering. It is very interesting and also surprised to
find that the proposed Sketch-SSC-TV method yields higher clustering accuracy than the L2-SSC and
JSSC methods which not only use the uncompressed self-representation dictionary but also takes the
spatial information into account. Compared with the large-scale clustering methods SSSC, SSC-OMP and
Sketch-SSC, our method yields significant accuracy improvement of more than 20%. The SSSC model
heavily relies on the initially selected samples. So when the data sets are contaminated by noise or much
diverse in each class, the performance may be greatly degraded. Compared with the Sketch-SSC model,
our method offers significant improvement as well, which demonstrates the effectiveness of our approach.

Figure 4 shows the similarity matrices obtained by different clustering methods. For a better visual
comparison, we randomly select 75 samples per class and arrange them in the sequential order by classes.
It is known that the ideal similarity matrix should be block-diagonal as only the samples of the same class
are connected in the graph [11]. The results in Figure 4 indicate that our method (Figure 4f) preserves
such block-diagonal structure best, which is also the main reason why our approach achieves the highest
accuracy in the spectral clustering in Table 1. In general, the similarity matrices in Figure 4e,f constructed
by KNN are sparser than that by (2) in Figure 4a–c, but surprisingly they achieve comparable or even better
spectral clustering performance, demonstrating the efficiency of sparse graph in the spectral clustering.
The similarity matrix in Figure 4d is over sparse due to the strict sparsity constraint in the OMP algorithm,
leading to the poor clustering performance. It is clearly observed that there are a lot of wrong connections
between class 3 and class 4 in Figure 4a–c,e, which consequently results in the low accuracy for class 3 and
class 4 as shown in Table 1. While it is less pronounced in Figure 4f, showing much closer block-diagonal
structure, which achieves the highest accuracy for class 3 and 4. Such improved graph connectivity mainly
benefits from the utilization of TV spatial regularization.

The results in Table 1 show that the SSSC method achieves the shortest computational time. k-means
is known to be an efficient clustering algorithm with the complexity of O(IBcMN) where I is the number
of iterations. The time complexity of SSSC is O(I1Bn3 + I2nc2 + MNn2), where n is set to 70 in the
experiment. k-means took slightly longer running time than SSSC because it needed much more iterations
to converge than SSSC on this data set. However, the results on the big data sets such as Pavia University
and Salinas shown later indicate that k-means consistently is the fastest algorithm. It is also observed that
the computation time t of the SSSC method is increased when the number of initially selected samples
becomes larger. Among the clustering methods designed for large-scale data, SSC-OMP takes the longest
time. In general, the large-scale clustering methods are much faster than the traditional SSC-based methods,
with more than hundred times speed improvement. The reason for the significant speed improvement is
that traditional SSC-based methods SSC, L2-SSC and JSSC use the self-representation dictionary Y, which is
commonly huge for large-scale data and involves thereby many time-consuming operations of matrix
multiplications and inverse calculations on the large dense matrix YTY ∈ RMN×MN in the optimization
loop, while scalable clustering methods SSSC, Sketch-SSC and Sketch-SSC-TV employ a compressed
dictionary, thus enabling a much lower computational complexity. In our method, the column size of the
sketched dictionary D is 70 so that the cost of matrix multiplications and inverse calculation on the new
matrix DTD ∈ R70×70 in the optimization algorithm is significantly reduced in comparison with that on
the huge matrix YTY in the traditional SSC-based methods. That is why our method only uses 6 seconds to
obtain clustering result while the traditional SSC-based methods take around 10 minutes. The computation
time of our sketching-based method is comparable to that of FCM and k-means, and hence much smaller
than the computation time of the traditional SSC-based methods. Compared with other large-scale
clustering methods, the computational cost of the Sketch-SSC-TV is similar.
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(a) (b) (c)

(d) (e) (f)

Figure 4. Similarity matrix obtained by (a) SSC, (b) L2-SSC, (c) JSSC, (d) SSC-OMP, (e) Sketch-SSC and
(f) Sketch-SSC-TV.

4.4. Experiments on the Large-Scale HSIs

In this part, we conduct three more experiments on the entire HSIs. Due to the high computational
memory requirement of the traditional SSC-based methods on large-scale HSIs, the SSC, L2-SSC and JSSC
methods cannot be run on our computer for the Pavia University and Salinas. We estimate the required
memory for only saving the large matrix YTY in the three HSIs by MATLAB as in Table 2. The required
memory for the Pavia University is 320.5 GB without considering the extra memory cost for the operations
including matrix multiplications and inverse calculations, which is unaffordable for normal computational
devices. We report the experimental results in Tables 3–5. The clustering maps are shown in Figures 5–7.
The optimal parameters of the Sketch-SSC-TV model are λ = 10−3, λtv = 10−1 for the Indian Pines,
λ = 5× 10−2, λtv = 5× 10−1 for the Pavia University and λ = 10−3, λtv = 10−4 for the Salinas.
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Table 1. Clustering results on the parts of Indian Pines.

No. Class Name FCM k-Means RSC SSC L2-SSC JSSC SSSC SSC-OMP Sketch-SSC Sketch-SSC-TV

1 Corn-notill 62.39 69.85 69.65 60.00 61.09 74.03 53.31 69.35 62.19 61.41
2 Grass-trees 94.66 53.84 51.10 98.36 99.32 100 89.73 99.86 100 100
3 Soybean-notill 44.13 0 1.23 76.91 79.37 86.20 49.13 44.40 68.80 100
4 Soybean-mintill 63.83 57.59 58.63 50.68 54.89 87.79 63.85 41.68 58.87 93.81

OA(%) 65.34 50.17 50.33 65.11 67.78 86.40 63.28 58.14 68.12 88.46
κ 0.5118 0.2833 0.2851 0.5296 0.5629 0.8069 0.4772 0.4419 0.5628 0.8342

t (seconds) 5.6 2.5 81 543 624 270 2.2 22 2.8 5.8

Table 2. Required memory for saving YTY in different HSIs.

Indian Pines Pavia University Salinas

Spatial image size 145× 145 610× 340 512× 217
Matrix size of YTY 21,025 × 21,025 207,400 × 207,400 111,104 × 111,104

Required memory (GB) 3.5 320.5 92
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Table 3. Clustering accuracy for Indian Pines.

No. Class Name FCM k-Means RSC SSC L2-SSC JSSC SSSC SSC-OMP Sketch-SSC Sketch-SSC-TV

1 Alfalfa 23.91 0 17.39 36.96 0 0 14.78 0 7.39 57.83
2 Corn-notill 25.70 28.71 29.06 23.39 43 48.25 25.48 19.33 2.28 33.70
3 Corn-mintill 24.82 44.34 43.49 34.34 20.48 18.19 24.24 35.90 0.53 32.53
4 Corn 6.33 14.35 20.25 9.28 0 0.42 5.91 53.16 2.62 42.53
5 Grass-pasture 43.89 49.69 49.69 65.01 55.49 65.22 46.54 36.02 1.90 65.84
6 Grass-trees 25.75 40.82 44.52 37.95 56.71 75.21 48.49 49.04 12.41 45.18
7 Grass-pasture-mowed 0 71.43 0 0 85.71 75.00 7.14 0 12.86 0
8 Hay-windrowed 89.33 85.15 81.80 55.02 71.13 98.74 56.32 77.41 15.10 100
9 Oats 0 0 30.00 65.00 45 0 6.00 65.00 3.00 20.00
10 Soybean-notill 23.46 18.83 18.42 30.04 58.54 62.04 24.96 27.16 3.48 75.23
11 Soybean-mintill 28.35 38.98 39.55 33.93 37.64 43.34 38.07 23.87 89.42 76.85
12 Soybean-clean 23.61 18.21 17.20 22.26 24.28 44.69 16.42 19.06 3.27 64.99
13 Wheat 99.51 97.07 96.59 96.10 98.54 100 55.71 58.54 5.66 79.61
14 Woods 30.99 41.82 41.50 38.50 38.42 53.12 39.43 41.11 99.81 71.46
15 Bldgs-grass-trees-drives 17.62 18.13 17.36 21.50 16.06 38.08 15.18 11.14 1.40 11.92
16 Stone-steel-towers 59.14 86.02 87.10 19.35 95.70 67.74 25.59 18.28 19.78 79.14

OA 31.31 38.08 38.22 34.80 42.10 50.90 33.24 31.98 36.78 60.48
κ 0.2556 0.3099 0.3118 0.2864 0.3593 0.4525 0.2563 0.2659 0.2234 0.5575

t (seconds) 74 10 503 16906 20769 18326 9 462 7 26
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Table 4. Clustering accuracy for Pavia University.

No. Class Name FCM k-Means RSC SSC * L2-SSC * JSSC * SSSC SSC-OMP Sketch-SSC Sketch-SSC-TV

1 Asphalt 84.54 90.51 90.63 - - - 35.60 59.64 64.88 99.78
2 Meadows 38.61 43.83 44.09 - - - 28.47 27.55 42.55 57.25
3 Gravel 7.58 0.10 0.10 - - - 11.92 1.05 20.14 19.43
4 Trees 70.33 63.67 64.07 - - - 61.29 82.38 91.17 75.05
5 Painted Metal Sheets 74.80 48.25 48.77 - - - 62.05 97.10 99.79 100
6 Bare Soil 37.78 32.89 32.49 - - - 18.56 31.64 27.94 60.93
7 Bitumen 0 0 0 - - - 5.86 0 0.38 0
8 Self-Blocking Bricks 87.48 94.24 93.75 - - - 31.48 77.49 65.11 0.15
9 Shadows 99.89 100 100 - - - 8.91 0 75.73 73.75

OA 51.88 53.41 53.50 - - - 30.13 40.65 49.84 58.71
κ 0.4238 0.4337 0.4343 - - - 0.1794 0.3093 0.3957 0.4858

t (seconds) 209 17 1640 - - - 30 72397 838 974

* Note: SSC, L2-SSC and JSSC cannot be implemented on our computer in this data due to the out-of-memory problem.
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Table 5. Clustering accuracy for Salinas.

No. Class Name FCM k-Means RSC SSC * L2-SSC * JSSC * SSSC SSC-OMP Sketch-SSC Sketch-SSC-TV

1 Brocoli-green-weeds-1 99.75 98.36 99.90 - - - 66.99 0 99.43 99.94
2 Brocoli-green-weeds-2 39.59 66.56 30.30 - - - 88.60 0.05 98.91 99.53
3 Fallow 19.13 0 0.00 - - - 28.64 0 11.92 8.21
4 Fallow-rough-plow 99.21 90.32 99.21 - - - 50.63 0 19.90 59.83
5 Fallow-smooth 91.67 76.14 92.87 - - - 44.20 0 99.45 98.92
6 Stubble 94.44 87.95 94.49 - - - 99.50 0.05 99.54 99.55
7 Celery 98.63 97.99 98.21 - - - 90.98 0 55.25 82.16
8 Grapes-untrained 34.08 93.60 70.95 - - - 58.62 98.82 98.67 98.95
9 Soil-vinyard-develop 57.97 74.13 75.58 - - - 77.94 99.92 99.72 99.94

10 Corn-senesced-green-weeds 7.29 30.96 33.10 - - - 44.23 0.06 88.04 94.26
11 Lettuce-romaine-4wk 4.12 0 0.00 - - - 34.01 0 54.21 56.95
12 Lettuce-romaine-5wk 89.52 91.65 96.11 - - - 12.36 0 70.97 90.75
13 Lettuce-romaine-6wk 99.02 98.58 98.80 - - - 8.84 0 0 0
14 Lettuce-romaine-7wk 87.38 89.25 88.41 - - - 54.04 0 97.78 78.77
15 Vinyard-untrained 30.02 0.01 48.56 - - - 28.46 0 0.28 0.30
16 Vinyard-vertical-trellis 12.06 0 0.00 - - - 47.58 0 97.61 98.17

OA 52.93 63.79 65.15 - - - 57.97 32.04 73.43 77.00
κ 0.4900 0.5926 0.6116 - - - 0.5340 0.1743 0.7007 0.7411

t (seconds) 394 31 1946 - - - 37 21831 269 335

* Note: SSC, L2-SSC and JSSC cannot be implemented on our computer in this data due to the out-of-memory problem.
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The results in Tables 3–5 reveal that our method consistently achieves the highest clustering accuracy
in the three HSIs, which confirms its effectiveness. Clustering for the Indian Pines is a very challenging task
as some of the spectral signatures from different classes are very close and also parts of the spectrum are
highly mixed due to low spatial resolution [20]. As depicted in Table 3 most of the approaches achieve
quite low clustering accuracy, while our method yields a much better result with the accuracy of 60.48%.

(a) (b) (c) OA = 31.31 (d) OA = 38.08 (e) OA = 38.22

(f) OA = 34.80 (g) OA = 42.10 (h) OA = 50.90 (i)OA = 34.37 (j) OA = 31.98

(k)OA = 34.27 (l) OA = 62.03

Figure 5. Indian Pines image. (a) False color image (yellow box is the cropped image), (b) Ground truth,
and Clustering maps of (c) Fuzzy c-means (FCM), (d) k-means, (e) Random swap clustering (RSC), (f) SSC,
(g) L2-SSC, (h) JSSC , (i) SSSC, (j) SSC-OMP, (k) Sketch-SSC and (l) Sketch-SSC-TV.

The FCM, k-means and RSC produce similar accuracy in the Indian Pines and Pavia University, but the
k-means is more efficient in terms of computation time than FCM and RSC. The traditional SSC-based
methods SSC, L2-SSC and JSSC can be run only on the Indian Pines, however, our method is not only
capable of running on all the three large-scale HSIs but also improves clustering performance, which mainly
benefits from the exploitation of TV-norm spatial constraint and the sketching technique. Also in Table 3
we can see the computation time of the Sketch-SSC-TV method is significantly reduced by at least 600 times
compared to the SSC, L2-SSC and JSSC methods, indicating the efficiency of using a compressed dictionary
in our method instead of using the large self-representation dictionary. For the clustering methods
designed for large-scale data, SSC-OMP uses much longer time than SSSC, Sketch-SSC and our method.
The reason is that the sparse coding for each sample is performed in series. The computational time
can be reduced by running simulation in parallel. Compared with the SSC clustering map in Figure 5f,
the L2-SSC, JSSC and Sketch-SSC-TV methods have less impulse noise in the clustering maps, which is
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due to the use of spatial information to promote the connectivity between neighbouring pixels, leading to
a more robust similarity matrix. The clustering results in Table 4 show that the accuracy of our method on
“Self-Blocking-Bricks” is much lower than that of the reference methods. This can mainly be attributed
to the over-smoothed clustering results as shown in Figure 6i, where the “Painted Metal Sheets” and the
neighbouring “Self-Blocking-Bricks” are merged. However, this can be alleviated by relaxing the spatial
constraint with a smaller λtv. A possible risk is the reduced overall accuracy.

(a) (b) (c) OA = 51.88 (d) OA = 53.41 (e) OA = 53.50

(f) OA = 33.78 (g) OA = 40.65 (h)OA = 50.63 (i) OA = 61.15

Figure 6. Pavia University image. (a) False color image, (b) Ground truth, and Clustering maps of (c) FCM,
(d) k-means, (e) RSC, (f) SSSC, (g) SSC-OMP, (h) Sketch-SSC and (i) Sketch-SSC-TV.

The large-scale clustering methods SSSC and SSC-OMP typically yield worse performance in terms
of accuracy than the k-means and RSC method in the three large-scale HSIs, which indicates the limitation
of their performance in HSI clustering. In Figures 5i, 6f and 7f the SSSC clustering maps are seriously
deteriorated by the impulse noise, which is caused by the limited discriminative information in the spectral
domain. The SSC-OMP method also suffers from the same problem for the Indian Pines and Pavia University
as shown in Figures 5j and 6g. Compared with the Sketch-SSC method, our method achieves significant
improvement in terms of accuracy in the three large-scale HSIs, especially in the Indian Pines with the
accuracy enhancement of 23.7%. The cost is a slight increase of computational time that comes from the
TV-norm regularization. The Sketch-SSC model also suffers from the same impulse noise problem to the
SSSC and SSC-OMP approaches in the clustering maps as shown in Figures 5k, 6h and 7h, while in our
method such a problem is greatly alleviated as connections between neighbouring pixels are strengthened
by the TV-norm constraint.
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(a) (b) (c) OA = 52.93 (d) OA = 63.79 (e) OA = 65.15

(f) OA = 60.08 (g) OA = 32.04 (h) OA = 74.36 (i) OA = 80.28

Figure 7. Salinas image. (a) False color image, (b) Ground truth, and Clustering maps of (c) FCM,
(d) k-means, (e) RSC, (f) SSSC, (g) SSC-OMP, (h) Sketch-SSC and (i) Sketch-SSC-TV.

4.5. Analysis of Parameters

In this part, we analyse the effect of the parameters λ, λtv, n and k on the clustering performance of
the Sketch-SSC-TV method in the large-scale HSIs.

4.5.1. Effect of λ and λtv

λ and λtv in (8) controls the sparsity level and spatial constraint of the sparse matrix, respectively,
which are two important parameters in the model. Let λ be varied in the range of {1× 10−4, 5× 10−4, 1×
10−3, 5× 10−3, 1× 10−2, 5× 10−2} and λtv in the range of {1× 10−4, 5× 10−4, 1× 10−3, 5× 10−3, 1×
10−2, 5× 10−2, 1× 10−1, 5× 10−1}. The clustering results with respect to λ and λtv are shown in Figure 8
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for the three large-scale HSIs. The results indicate that the clustering performance is more stable with
respect to λ than λtv. According to the experimental results, we recommend to set λ = 10−3 for all the
data. For the parameter λtv, the value may be different for different data sets, but the clustering accuracy
is stable and superior over other methods in a wide range, that is, when λtv ∈ [5× 10−3, 10−1] for the
Indian Pines, λtv ∈ [5× 10−3, 5× 10−1] for the Pavia University and λtv ∈ [10−4, 5× 10−3] for the Salinas.
The results of Salinas in Figure 8c are quite different with those of the Indian Pines and Pavia University.
For the Salinas when the values of λtv and λ are similar, the results typically show better performance,
which means the sparsity constraint and spatial constraint are equally important. In contrast, for the Indian
Pines and Pavia University our method achieves better performance when λtv is larger than λ, indicating
the spatial constraint is more important than the sparsity. The reason may lie in different types of HSIs
and different levels of data quality. As each crop in the Salinas is planted regularly in block, there are more
homogeneous regions and less edge than the Indian Pines and Pavia University, resulting in much smaller
value of the TV-norm in Salinas. In addition, due to high data quality of the Salinas spatial information
may be less important than that in the other two HSIs. Thus a lager value of λtv can make the clustering
result over smoothing, leading to a lower accuracy. Among the three constraints of Sketch-SSC-TV model,
the data fidelity term is most important for the Salinas. Overall, based on the results in Figure 8 our method
is robust and stable with respect to λ and λtv.

(a) (b)

(c)

Figure 8. Grid search of λ and λTV for Sketch-SSC-TV in three data sets: (a) Indian Pines (b) Pavia University
(c) Salinas.
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4.5.2. Effect of the Parameter n

n is the number of columns of the sketching matrix R, which decides the sketched dictionary size and
also the computation efficiency of the proposed method. We vary n in the range of {10, 20, 40, 70, 100, 140}
for the three large-scale HSIs. The results are reported in Figure 9, which shows that a larger n typically
can result in a better clustering result. The reason is that a larger sketched dictionary can better preserve
the original column space of the input data. For the Indian Pines and Salinas, the number of classes is 16.
When n = 10, the sketched dictionary cannot well represent the input data space, which results in the drop
of accuracy compared to that when n = 20. It is also revealed in Figure 9 that a small value of n (20 for
example) is able to obtain satisfying clustering performance in the three HSIs, which coincides with the
fact that the data of HSIs actually lies in a low dimensional subspace.

Figure 9. Performance of the proposed method with respect to n.

4.5.3. Effect of the Parameter k

We investigate the effect of the number of neighbours k on the clustering performance of our method
by varying k in the range of {5, 10, 15, 20, 30, 50} for the three large-scale HSIs. The results shown in
Figure 10 reveal that a larger k yields a higher clustering accuracy in general. The accuracy curves with
k < 20 rise more significantly than those with k ≥ 20 in the three HSIs. When k ≥ 20, the accuracy becomes
much more stable. Based on the results, we set the value of k to 30 in this paper.

Figure 10. Performance of the proposed method with respect to the number of neighbours k in K-nearest
neighbors (KNN) graph.



Remote Sens. 2020, 12, 775 28 of 32

4.6. Experimental Convergence Analysis

Figure 11 shows the squared Frobenius norm of the differences in Z and U values in each two
subsequent iterations: ‖Zr+1 − Zr‖2

F and ‖Ur+1 −Ur‖2
F. We refer to these distances between the values of

Z and U in two successive iterations as updating errors. The results show that the updating errors after a
sufficient number of iterations tend to a very small value, meaning that the solutions of Z and U become
stable eventually. Moreover, on all three datasets, the updating errors decline monotonically after certain
iterations. Thus, we have limr→∞ µ(Zr+1 − Zr) = 0 and limr→∞ µ(Ur+1 −Ur) = 0, where µ is a constant.
This empirically demonstrates that the conditions in Theorem 1 are satisfied for all three analysed datasets,
and it is thus reasonably to assume that they will be satisfied in a similar manner for most other HSIs in
practice. It can be observed that the updating errors of Z and U in some datasets are zero at the beginning,
which is mainly caused by the small values of Ar+1 + Yr

2/µ in (18) and HA(r+1)T
+ Yr

3/µ in (22) at the first
several iterations, leading to the output of zero matrices in the thresholding operatorR4(·). After certain
number of iterations, their values increase and the output of thresholding operator is no longer zero,
resulting in a temporary increase of updating errors, as shown in Figure 11. But finally they tend to a value
that is close to zero.

Figure 11. The evolution of the errors ‖Zr+1−Zr‖2
F (top row) and ‖Ur+1−Ur‖2

F (bottom row) with respect
to the number of iterations for three datasets: Indian Pines (left), Pavia University (middle) and Salinas (right).

The diagrams in Figure 12 show the evolution of the objective function values with respect to the
number of iterations. The results reveal that the objective function is monotonically decreasing to a
stable level in the three data sets, demonstrating the practical convergence of our optimization algorithm.
Especially, the curves in Figure 12a,c drop sharply in the first few iterations and then become saturated.
The results coincide with the aforementioned theoretical convergence analysis.

(a) (b) (c)

Figure 12. The evolution of the objective function of the proposed model with respect to the number of
iterations for three datasets: (a) Indian Pines, (b) Pavia University and (c) Salinas.
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5. Conclusions

In this paper, the problem of large-scale HSIs clustering based on the SSC model is addressed for
the first time, and a novel clustering method, namely Sketch-SSC-TV, is proposed to incorporates a
random projection based sketching technique to significantly reduce the number of optimization variables.
In addition, a TV-norm constraint on the sparse coefficient matrix promotes the dependencies between
neighbouring pixels, which enhances the block-diagonal structure of the similarity matrix, improving
thereby the performance of spectral clustering. We derived an efficient solver based on the ADMM
algorithm for the resulting model and also we proved its convergence property theoretically. Unlike the
traditional SSC-based methods which cannot be applied on large-scale HSIs due to extremely high
computational burden, the proposed method is not only applicable on big data sets but also able to achieve
a high level of clustering accuracy. The extensive experimental results clearly demonstrate that our method
outperforms the state-of-the-art clustering methods.
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