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Abstract: The Alqueva reservoir (South of Portugal) in the Guadiana river basin constitutes the
most important water resource in southern Portugal for domestic and agricultural consumption.
We present a methodology developed to characterize spatial and temporal variations of Secchi
depth and diffuse attenuation coefficient (both related to dissolved/suspended particles and to
water transparency), using high spatial resolution satellite images from Sentinel-2 Multi-Spectral
Instrument (MSI). Empirical relations between satellite retrievals of surface reflectances and in situ
measurements of water parameters were defined and applied to the entire reservoir for spatial and
temporal analysis in the period July 2017–June 2019, useful in the identification of microalgae blooms
and rapid variations in water characteristics, which allowed us to differentiate five zones. Water
estimates with lower transparency and higher attenuation of radiation were found in the northern
area of Alqueva reservoir during the months characterized by higher water temperatures, with
Secchi depth monthly averages near 1.0 m and diffuse attenuation coefficient near or above 1.5 m−1.
Satellite retrievals of water with greater transparency in the reservoir were obtained in the southern
area in months with low water temperature and atmospheric stability, presenting some monthly
Secchi depth averages above 3 m, and diffuse attenuation coefficient below 0.8 m−1. January 2018
presented great transparency of water with a Secchi depth of 7.5 m for pixels representing the 95th
percentile and diffuse attenuation coefficient of 0.36 m for pixels representing the 5th percentile in the
Southern region.

Keywords: 6SV; Alqueva reservoir; microalgae; water quality; Sen2Cor; turbidity

1. Introduction

Lake ecosystems are vital resources for aquatic wildlife and human needs, representing 98% of
the liquid surface freshwater on the Earth’s surface. Many organisms depend on freshwaters for
survival, and humans frequently depend on lakes for many purposes such as drinking water, fisheries,
agricultural irrigation, industrial services or recreation. In a warming climate associated with the
increase of carbon dioxide concentration, changes are expected in precipitation patterns as the increase
of extreme precipitation events, as well as the global increase in air temperature [1–5]. For southern
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Portugal, Earth System models project a decrease in yearly mean precipitation (between -10% and -35
% for different scenarios) with an intensification of extreme precipitation, a significant increase of the
maximum and minimum temperatures in all seasons and an increase in annual average number of
heatwaves, much stronger and longer [6,7]. Lakes are sensitive to the impacts of climate change, and
the impacts include a wide range of negative consequences, such as changes in thermal stratification,
an acceleration of the eutrophication which favors periodic proliferation by cyanobacteria in many
freshwaters, increased turbidity, and changes in salinity [8–10]. In this context, many studies have
been carried out regarding the deterioration of water quality due to human influence, and its spatial
and temporal variations in rivers or water reservoirs [11–14].

Alqueva reservoir is important for water supply and agricultural irrigation in the Alentejo
(Southern Portugal), region with long periods of low precipitation associated with high values of air
temperature, normally between May and September, and drought periods that can last more than 2
consecutive years [15]. Shifts in precipitation variability and seasonal runoff induce severe effects on
water supply, water quality, and management of water resources in Southern Portugal. With warmer
air temperatures expected for the Alentejo region, and consequently warmer surface waters in lakes, a
favorable environment is created for the early growth of microalgae blooms, namely cyanobacteria,
leading to an acceleration of the eutrophication [16,17].

The traditional field-based methods to monitor water quality in inland waters are usually costly
and hardly allow adequate spatial and temporal analysis. Remote sensing could overcome these
constraints, allowing to monitor water quality in large inland waters where conventional monitoring
approaches tend to be limited [18]. From the launch of ERTS-1/Landsat-1 in August, 1972 up to and
beyond the post-2000 launches of MODIS and MERIS, the mapping of water quality parameters using
satellite images over inland lakes has exponentially increased [19–23]. Olmanson et al. [24] used the
Landsat archive for mapping lake water clarity of over 10,000 Minnesota lakes, showing the great
application to lakes of different dimensions and great agreement between satellite data and field
measurements of Secchi depth (SD) within Landsat paths (range of R2 between 0.71 and 0.96). In
addition to the high spatial resolution, allowing the analysis of water quality in several reservoirs,
remote satellite detection also allows for mapping water quality in lakes over the last 30 years [25]. The
Sentinel-2 mission from the European Space Agency (ESA) is a land monitoring constellation of two
satellites (S2A launched in June 2015 and S2B launched in March 2017) that provide high-resolution
optical imagery (spatial resolution between 10 m and 60 m, depending on the spectral band) and
presents a systematic global coverage of two to three days at mid-latitudes, which brought a great
opportunity to study inland reservoirs. Several studies have been done in recent years in the analysis
of water quality of inland waters using Sentinel-2 data, to measure water quality parameters of bodies
of water [26–31].

Satellite data is used over lakes and reservoirs aiming to evaluate surface parameters, nevertheless,
the satellite measures the signal of the surface plus the signal of atmosphere in-between. This
unnecessary part of the signal is commonly removed using atmospheric correction codes that correct
the top-of-atmosphere (TOA) signal, with respect to the atmospheric path, to obtain only the signal
from the surface. In this study, the atmospheric correction is performed using two models: Sen2Cor
and 6SV. Sen2Cor was developed by ESA for applications over land surfaces but it is also applied
over water surfaces, with several studies presenting good estimates of surface reflectances used for
monitoring water quality parameters in lakes and reservoirs, such as colored dissolved organic matter,
chlorophyll a, turbidity, or SD [23,27,32]. The 6SV is an advanced radiative transfer code capable
of accounting for radiation polarization in a mixed molecular–aerosol atmosphere being a vector
version of the 6S [33]. The 6S atmospheric correction has already been successfully used in lakes and
reservoirs [21,32,34–37].

Monitoring water quality using satellite remote sensing may involve relationships between surface
reflectances in certain spectral bands (or band combinations) and water parameters analyzed in the
laboratory or in situ. Potes et al. [21] developed a method to estimate concentrations of chlorophyll a
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and cyanobacteria in the Alqueva reservoir, combining surface reflectances using the MERIS satellite
and laboratory analyzes. In addition to these two parameters, the same author used MERIS satellite
images to obtain estimates of turbidity in the same artificial lake [22]. In the past two years (2017
and 2018), microalgae blooms have been identified in the Alqueva reservoir through satellite images
and in situ measurements, starting to develop in early summer in the northern region of Alqueva
and gradually spreading through all reservoir. In October, these blooms tend to disappear with the
normal decrease of air temperature and solar radiation, the beginning of precipitation and strong
winds, associated with the arrival of the first Atlantic atmospheric fronts. Potes et al. [23] reported
this situation, showing how an intense microalgae bloom vanished in early October of 2017 with the
increase of water mixing due to the influence of hurricane Ophelia progressing along the Portuguese
coast, causing significant precipitation, a decrease in the air temperature and inducing strong winds at
Alqueva reservoir.

The main motivation of the present work is to explore reliable remote sensing methods for full
spatial cover and continuous monitoring of key physical parameters, which affect the water quality of
inland water bodies such as Alqueva reservoir. Within the multidisciplinary project ALOP (ALentejo
Observation and Prediction systems), among other physical-chemical and biological variables, the
Secchi depth and diffuse attenuation coefficient (KD) were measured, two parameters closely linked
to the water transparency and the dissolved/suspended particles in the water. Nevertheless, this
analysis is spatially and temporally limited. In order to derive reliable remote detection methods for
continuous monitoring and adequate spatial coverage of physical parameters affecting the water quality
of reservoirs such as Alqueva, data obtained from Sentinel-2 missions (Multi-Spectral Instrument
(MSI)) was used. In addition to the high spatial resolution of 10-60 m, it presents a high re-visitation,
with systematic global coverage in the Alqueva reservoir region of two to three days, considering
the two twin satellites in operation. Landsat also has a high spatial resolution (30 m), but much
shorter temporal resolution, with 16 days difference between each image, and this revisit time may
be problematic for the detection of short events [38]. MODIS has high revisitation (every 1–2 days),
but lower spatial resolution of 250–1000 m. Thus, Sentinel-2 represents the best choice for satellite
monitoring of Alqueva reservoir compared with these two satellites.

SD and KD also control the vertical distribution of the absorption of solar radiation in the water
column and thus play a relevant role in the air-water surface energy balance. For this reason, these
parameters are used in numerical weather prediction, so their mapping from satellite remote sensing
will contribute to improving the representation of lakes in operational forecasting systems, as shown
in Potes et al. [22].

The main objective of this work is to develop a method based on satellite remote sensing to
estimate SD and KD and subsequently analyze the spatial and temporal variations of these parameters
in the period July 2017-June 2019 at Alqueva reservoir. These studies may also be relevant for the
identification of areas with different patterns of water characteristics and their categorical relation with
meteorological data.

2. Study Area and Data

2.1. Study Area

The study area presented in this paper is the Alqueva reservoir, located in the south of Portugal
(Alentejo region) along 83 km of the main course of the Guadiana River. It constitutes the largest
artificial lake in the Iberian Peninsula with a capacity of 4.150 hm3 and a surface area of 250 km2 at the
full storage level of 152 m.

According to Köppen climate classification, this region is identified by type Csa—hot summer
Mediterranean climate, featured by a temperate climate with dry and hot summers. The Alentejo
region is characterized by relevant irregularity of inter-annual precipitation, with average accumulated
precipitation of the order of 500 mm. It is normal that this region presents two summer months, July and
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August, with nearly no precipitation and maximum temperatures above 30 ◦C in most of the days, and
heat waves with temperatures near or greater than 40 ◦C, accompanied by very low relative humidity.
The ALOP project aims to develop multifunctional activities in the field of interactions between the
atmosphere, water and ecosystems, covering, among other tasks, meteorological observation. Three
meteorological stations were installed in 2017, MontanteP station on a platform in the middle of the
reservoir, and two stations on both margins, BarbosaM and Cid AlmeidaM (Figure 1). Figure 2 shows
the great irregularity in accumulated monthly rainfall presenting periods of several consecutive months
with very scarce precipitation (less than 25–50 mm). Data is obtained from a meteorological station,
installed in March 2017 (Cid AlmeidaM station), in the East margin of the reservoir.

Figure 1. Alqueva reservoir and position of the sites used in this study.

Figure 2. Monthly rainfall and air temperature in Alqueva for the period of April 2017–June 2019. Data
from Cid Almeida meteorological station.
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2.2. Data Collection

2.2.1. Diffuse Attenuation Coefficient and Secchi Depth Measurements

Since February 2016 periodic measurements of KD and SD have been made in the Alqueva
reservoir. The measurements were carried out approximately every 1-2 months at various points in the
Alqueva reservoir to monitor their temporal and spatial variations. Figure 1 shows the map with the
location of the measurement sites. AlamosP, MontanteP, MouraoP and LucefecitP represent floating
platforms installed in the deeper areas of the reservoir, and far from the margins. MontanteA, EstrelaA,
LuzA, CampinhoA and MonsarazA represent anchorages, located in the margins of the reservoir.

In order to ensure adequate illumination, these measurements were limited to the daylight period
between 10:00 a.m. and 4:00 p.m. UTC. In this study, the measurements of KD in water were made
using the method described in Potes et al. [39]. According to this method, the measurements of
underwater downwelling spectral irradiance were performed with the use of a portable FieldSpec
(Analytical Spectral Devices; Boulder, CO, USA) together with an optical fiber linked to a hemispherical
tip (180◦). Then, an exponential fit was applied through the spectral profile and depth to obtain the
spectral diffuse attenuation coefficient (KD). The spectral KD, with 1 nm resolution, is averaged for the
spectral region 400–700 nm in order to obtain a value corresponding to the Photosynthetically Active
Radiation (PAR) region, thus the KD used in this work is the KD (PAR). SD was measured only on clear
days, at the shaded side of the anchorages or platforms to avoid direct sunlight reflections from the
water surface. Two SD values were measured, each by a different person, to minimize deviations due to
the observer, and the averaged SD value was used. A slight deviation between each SD measurement
of approximately 0.14 m on average was observed.

The SD measures the transparency of the water and the values obtained in the study period ranged
between 0.4 m and 7 m. KD measures the absorption and dispersion of the radiation by the particles
present in the water, and the values ranged between 0.4 m−1 and 2.4 m−1. The extreme values of low
SD and high KD in the water coincide with a microalgae bloom in September 2017. Otherwise, the
values of SD and KD related with the highest transparency were recorded in periods without rainfall,
with a stable atmosphere and water temperature below 22 ◦C. The value of 7.0 m for SD was measured
on 1 March 2019 and this measurement was by far the highest SD, with a previous maximum of 5.0 m.
This impressive record for this reservoir should have been caused by a set of circumstances, such as
the little precipitation in the previous month (February presented precipitation below average and no
days of intense precipitation), mild temperatures (maximum between 15 ◦C and 20 ◦C), and very low
wind speed both in the measurement day and in the previous days.

2.2.2. Sentinel-2 data

The Sentinel-2 mission consists of a constellation of two polar-orbiting satellites, Sentinel-2A and
Sentinel-2B, each one equipped with an optical imaging sensor (MSI). Sentinel-2A was launched on
23 June 2015 and Sentinel-2B followed on 7 March 2017. These twin polar-orbiting satellites allow a
high 2-3 days revisit time for Alqueva reservoir since July 2017. MSI data are acquired in 13 spectral
bands in the visible and near-infrared and have very high spatial resolution, with three bands at 60 m,
six bands at 20 m and four bands at 10 m (Table 1). The dataset used in this study is the Sentinel-2
Level-1C product, which is composed of 100 km × 100 km tiles in the UTM/WGS84 projection and
provides the Top-Of-Atmosphere (TOA) reflectance. The Sentinel-2 tiles were downloaded from the
Copernicus Open Access Hub, free and open access to Sentinel-2 data in SENTINEL-SAFE format
(https://scihub.copernicus.eu/dhus/#/home).

https://scihub.copernicus.eu/dhus/#/home
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Table 1. The central wavelength, bandwidth and spatial resolution of the 13 bands of the Multi-Spectral
Instrument (MSI) instruments onboard Sentinel-2A and 2B.

Band Number
S2A S2B

Central
Wavelength (mm)

Bandwidth
(mm)

Central
Wavelength (mm)

Bandwidth
(mm)

Spatial Resolution
(m)

1 442.7 27 442.2 45 60
2 492.4 98 492.1 98 10
3 559.8 45 559.0 46 10
4 664.6 38 664.9 39 10
5 704.1 19 703.8 20 20
6 740.5 18 739.1 18 20
7 782.8 28 779.7 28 20
8 832.8 145 832.9 133 10

8a 864.7 33 864.0 32 20
9 945.1 26 943.2 27 60

10 1373.5 75 1376.9 76 60
11 1613.7 143 1610.4 141 20
12 2202.4 242 2185.7 238 20

3. Methodology

The process of developing an empirical remote sensing model for monitoring of spatial and
temporal variations of SD and spectral KD during the period July 2017 - June 2019 was preceded by
application of an atmospheric correction to images of the top of the atmosphere (TOA) in order to obtain
surface spectral reflectance. Then the atmospherically corrected spectral reflectances obtained were
validated (Section 3.1) and subsequently, regression techniques were used to develop relationships
between field-measured parameters and water reflectance (Section 3.2).

3.1. Atmospheric Correction Validation

Satellite remote sensing of the surface in the visible and near-infrared is strongly affected by the
presence of the atmosphere. Due to the low reflectance of water surfaces, the accurate removal of
atmospheric effects is essential. Initial satellite data is provided at the top of the atmosphere (TOA),
which is affected by atmospheric constituents through absorption and scattering processes. However,
the analysis of water surface properties from remote sensing techniques requires the removal of the
atmospheric effects, to obtain surface reflectances (or radiances). In the visible spectral region, in the
absence of clouds, the main atmospheric effects that need to be corrected are aerosols, water vapor and
ozone. In the solar spectrum, the atmospheric gaseous absorption is principally due to oxygen, carbon
dioxide, methane, nitrous oxide, ozone and water vapor, but only the last two are not constant and
depend on the time and location. The water vapor contribution affects mainly wavelengths greater
than 700 nm and ozone presents a significant absorption between 550 and 650 nm. Therefore, the
effect of ozone and water vapor can be accounted for since they have a great influence on the visible
region, between 400 nm and 750 nm, the region of the spectrum used to estimate surface parameters at
Alqueva reservoir.

In this paper, two atmospheric correction methods were assessed, applied to images acquired by the
Multi-Spectral Instrument (MSI) on-board the European Space Agency’s Sentinel-2A and Sentinel-2B:

i) 6SV which is a vector version of the 6S (Second Simulation of a Satellite Signal in the Solar
Spectrum) radiative transfer code [40].

ii) Sen2cor, which is a processor provided by ESA for Sentinel-2 Level 2A product generation [41].
6SV is a new version of old 6S and is available at http://6s.ltdri.org and a summary of the code

validation can be found in Kotchenova et al. [42] and in Kotchenova et al. [43]. The 6SV is an advanced
radiative transfer code developed by the MODIS LSR SCF (Land Surface Reflectance Science Computing
Facility).

http://6s.ltdri.org
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The atmospheric correction processor Sen2Cor was developed by Telespazio VEGA Deutschland
GmbH on behalf of ESA. Sen2Cor is a Level-2A processor to correct the Sentinel-2 Level-1C
Top-Of-Atmosphere (TOA) products for the effects of the atmosphere in order to deliver a Level-2A
Bottom-Of-Atmosphere (BOA) reflectance product. ESA not only provides the bottom of atmosphere
reflectance based on the implementation of the Sen2Cor algorithm, but also additional products as
Quality Indicators for cloud and snow probabilities, Aerosol Optical Thickness (AOT), Water Vapour
(WV) and Scene Classification (SC). Obregón et al. [44] presented a validation of aerosol optical
thickness (AOT) and integrated water vapor (IWV) products provided by ESA obtained from Sentinel
MSI, and for this purpose used a significant number of stations over Europe and adjacent regions,
between March 2017 and December 2018. The results showed the high reliability of the WV estimates,
with normalized root mean square errors (NRMSE) of 5.33% and R2 of 0.99. The comparison showed
lower agreement, nonetheless reliable, for AOT with NRMSE of 9.04% and R2 of 0.65. The AOT at 550
nm and WV provided by ESA Sen2Cor were used here as inputs for the 6SV radiative transfer code.

The TOA reflectances were all resampled to 60 m resolution, with downsampling of 10 m and
20 m data (Table 1) by block averaging and corrected using the 6SV considering the corresponding
spectral response functions characterizing the Sentinel-MSI bands. A new version of the Sentinel-2A
spectral functions, correcting the responses for bands 1 and 2 released after 15 January 2018 (https:
//earth.esa.int/web/sentinel/missions/sentinel-2/news/; last accessed 21/07/2019) was used. 6SV accounts
for the adjacency effects due to reflection from contiguous pixels. However, in almost all its area,
the reservoir is wide comparatively to MSI spatial resolution, and surrounded by soil or very
low vegetation. We have assumed that the surface (all water pixels in the reservoir) behave as a
homogeneous Lambertian reflector. 6SV accounts for a wide variety of sensor characteristics and
atmospheric conditions. The 6SV used to correct the MSI images over Alqueva region, allows to
account for the various effects of the atmosphere, namely the ozone and water vapor columns, aerosol
optical thickness (AOT) at the reference wavelength of 550 nm, aerosol characterization (type and
concentration), spectral/geometrical conditions, and in addition ground reflectance (type and spectral
variation). The input parameters for the 6SV process to model the atmospheric effects are shown in
Table 2.

Table 2. Input parameters of 6SV model applied to Sentinel-2 MSI.

Source Parameters

Input type Sentinel-2 MSI TOA reflectance

Geometrical Conditions Sentinel-2 MSI
Solar Zenith angle, Solar Azimuth angle (◦)

View Zenith angle, View Azimuth angle (◦)

Month, Day

Atmospheric Conditions (User) Product of SEN2COR Water vapour (g/cm2)

Ozone Monitoring (OMI) Ozone (cm-atm)

Aerosol Model (Type) - Continental

Aerosol Model (Concentration) Product of SEN2COR Aerosol Optical Thickness at 550 nm

Effect of the altitude
Water level Target (km)

- Sensor aboard a Satellite

Spectral bands Sentinel-2 MSI Spectral function responses

Ground Reflectance - Homogeneous Lake Water

Satellite-derived water spectral reflectances were compared with surface spectral reflectance
measurements at Alqueva selected sites, obtained with a portable spectroradiometer FieldSpec
UV/VNIR (ASD, Inc), aiming at validating the results obtained with the atmospheric correction
methods. In situ measurements were performed as close as possible to the satellite overpass (maximum
difference of 1 day).

https://earth.esa.int/web/sentinel/missions/sentinel-2/news/
https://earth.esa.int/web/sentinel/missions/sentinel-2/news/


Remote Sens. 2020, 12, 768 8 of 26

The spectroradiometer measures the intensity of the light field across a given point, so reflectance
is calculated as the ratio between the energy leaving the sample by reflection and the energy incident
on the sample (obtained from the measurement with the white reference panel). Since the calculation
is a ratio, energy units cancel out. In fact, to calculate reflectance with the spectroradiometer, although
it is calibrated, there is no need for radiometric calibration. The electrical current signals are converted
into computer type digital numbers (DN). The reflectance is then calculated as the ratio between
the raw DN of the energy reflected from the sample and the raw DN of the energy incident on the
sample (obtained from white reference measurement) as described by ASD [45]. Measurements were
made with the 10◦ field-of-view. In order to ensure correct reflectance measurement, the illumination
should be practically the same for the lake and white reference measurements, so the measurement
of the white plate was made immediately prior to the measurement of the lake, in order to avoid
large variations of sun incidence in both measurements. In situ values were obtained by averaging
25 spectra selected to represent the Alqueva water reflectance. The mean satellite reflectance was
calculated using a 2 × 2 pixel box close to each sampling station to perform a direct comparison with
in-situ measurements. Statistical indicators have been used in this study to obtain an appropriate
assessment of the atmospheric correction methods: The Bias error, which is a measure of the overall
error or systematic error, check the average bias of the data, e.g., if positive indicates that the estimated
values are overestimated compared to those observed and if negative are underestimated:

Bias =
1
N

∑
(X −Xmeas), (1)

where N corresponds to the total number of data, X are estimations of satellite data and Xmeas

corresponds to in situ measurements.
The mean absolute error (MAE) is an average of the absolute errors:

MAE =
1
N

∑ ∣∣∣(X −Xmeas)
∣∣∣. (2)

The mean absolute percentage error (MAPE) is defined as the mean of absolute differences between
estimates (satellite-derived) and observations and measures the size of the error in percentage terms:

MAPE =
1
N

∑∣∣∣∣∣Xmeas −X
Xmeas

∣∣∣∣∣× 100. (3)

The root mean square error (RMSE) gives a measure of the accuracy existing between estimated
values (satellite retrievals) and the corresponding surface measurements:

RMSE =

√
1
N

∑
(Xmeas −X)2. (4)

The normalized value of the previous statistic indicator RMSE has been calculated to compare
estimations of satellite and ground-based measurements, where a small value of NRMSE identifies a
good agreement with the field observations:

NRMSE (%) =
RMSE

mean(meas)
× 100, (5)

where mean (meas) corresponds to the average of observations.
The Nash–Sutcliffe efficiency (NSE) is a normalized statistic that determines the relative magnitude

of the residual variance compared to the measured data variance:

NSE = 1 −
∑
(Xmeas −X)2∑

( Xmeas −mean(meas) )2 . (6)
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Another statistical indicator used is the correlation coefficient which indicates the direction and
strength of a linear relationship between two variables. This parameter, which shows how much the
model can describe the data, should be close to 1 for an ideal situation of perfect match between both.

Figure 3 shows a comparison between the measured and satellite-derived water reflectance for
the first five bands, with 6SV and Sen2Cor. Tables 3 and 4 shows the statistical indicators obtained for
each of the two atmospheric correction methods considered.

Figure 3. Comparison between in situ and MSI reflectances after atmospheric correction. The dashed
line indicates the y = x, the solid lines (red and green) show the best-fits and the vertical error bars
represent the standard deviations corresponding to the four selected pixels.

Table 3. Statistical indicators between the measured and satellite-derived water reflectance for the
6SV method.

N= 25 Bias MAPE (%) Correlation RMSE R2 NSE

B1 0.0005 29 0.83 0.0039 0.69 0.51
B2 0.0010 22 0.89 0.0036 0.79 0.72
B3 0.0014 19 0.96 0.0044 0.92 0.91
B4 0.0017 30 0.92 0.0034 0.84 0.72
B5 0.0022 51 0.94 0.0037 0.88 0.79

Table 4. Same as in Table 3 but for the Sen2Cor method.

N= 25 Bias MAPE (%) Correlation RMSE R2 NSE

B1 0.0046 85 0.74 0.0102 0.55 -2.29
B2 0.0026 36 0.85 0.0056 0.73 0.33
B3 -0.0007 23 0.92 0.0059 0.85 0.83
B4 -0.0026 44 0.84 0.0047 0.70 0.47
B5 -0.0024 54 0.92 0.0040 0.85 0.75

Sen2cor method presents several cases of null reflectances for band 1 (443 nm), band 4 (665 nm)
and band 5 (704 nm), and generally worse statistical indicators than the radiative transfer code 6SV. The
cases of null reflectances are often associated with situations of very clean waters causing the Sen2Cor
to excessively correct the visible bands (Figure 3). Martins et al. [32] also reported this situation with
MSI-corrected reflectances using Sen2Cor, obtaining a better match with in situ measurements over
brighter lakes, rather than dark lakes.
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With 6SV method, the bias is positive for all bands and the red solid line always above the dashed
line y = x, denoting on average an overestimation of the calculated reflectances in relation to the
measurements. In contrast, with Sen2Cor atmospheric correction process, there is overestimation in
bands 1 and 2, and underestimation in the remaining bands of the visible region. Note the large error
associated with the Sen2Cor process in band 1 of the MSI instrument, which despite having some null
reflectances, has a positive bias, with several estimated values much higher than those observed, with
a very high MAPE of 85% and worst correlation, RMSE and bias for this region of the spectrum. The
very weak accuracy of the Sen2Cor method in band 1 is also proven by NSE = - 2.3, which, being
lower than 0, indicates unreliable satellite estimations. Regarding the Sen2Cor atmospheric correction
process only in band 3 (NSE = 0.83) and band 5 (NSE = 0.75) the satellite data fits with some accuracy
the observations. As for the 6SV atmospheric correction, excluding band 1 from MSI (NSE = 0.51), this
method features good accuracy, with NSE greater than 0.7 for all analyzed bands, indicating a good
match between estimates and observed reflectances. The atmospheric correction performed using
the 6SV method presents better statistical results compared to Sen2Cor for all analyzed bands, e.g.,
higher correlation and lower MAPE values, smaller deviations from the straight line to line y = x (also
showing a lower bias) and even much lower RMSE values. With 6SV there are higher correlations,
greater than 0.8 for all bands, and values lower than or equal to 30% of MAPE, except MSI band 5, with
an associated MAPE of 51%. Excellent results are obtained for band 3 with a correlation coefficient
of 0.96, MAPE below 20%, and NSE of 0.91, the nearest value to the perfect match of estimated vs
observed data (NSE = 1). This excellent correction of the 6SV method to band 3 is essential, because
high microalgae densities are present in the Alqueva reservoir for several months, which yield high
reflectances in this region of the spectrum.

It is verified that the best atmospheric correction method for the Alqueva reservoir is achieved
with the 6SV method using the WV and AOT 550 products from Sen2Cor. This method was then used
to accurately estimate water parameters.

3.2. Empirical Algorithms

In situ measurements of SD and KD were related to the atmospherically corrected surface spectral
reflectances obtained from MSI (using 6SV - Section 3.1), through regression algorithms. The average
reflectance of the four closest pixels to the measurement site was calculated. The time gap between
in-situ measurements and the satellite overpass affects the reflectance comparison and, in this context,
several studies report between 3 to 8 days as the maximum time lag used between on-site measurements
and satellite images for a correct comparison, with stable meteorological conditions and in the absence
of algal blooms [24,27,46]. In the present study, due to the presence of algae in a large period of the year,
and in order to reduce the error associated with rapid variations in water characteristics, only satellite
images with maximum differences of 1 day were selected in relation to in situ measurements [47].
This time difference is considered a reasonable compromise for a reservoir of large dimensions as
Alqueva, aiming at obtaining a dataset that ensures the robustness of the empirical algorithms. The
data used to develop the regression algorithms refers to the period of April 2016–October 2017. The
data used for the validation corresponds to a different period, between November 2017 and June
2019. The best algorithm of SD was found empirically by deriving a regression model for different
combinations of bands in the visible region, selecting the best fit according to the first, with the greatest
R2 and second, with the lowest values of NRMSE. Only bands in the visible region were used, up to
704 nm (corresponding to band 5 of the MSI instrument), because the Alqueva reservoir has several
days with very low reflectance for higher wavelengths, corresponding mainly to periods of the year
and areas with low turbidity and biological activity. Several empirical algorithms available from
the literature were tested for the Alqueva reservoir, with a poorer performance with respect to the
algorithm proposed here as shown in Table 5. Rotta et al. [48] proposed an algorithm for KD retrieval
applied to Nova Avanhandava Reservoir, using the 660 nm band. In this work the equivalent MSI band
(band 4) is used, adjusting the linear regression coefficients to Alqueva reservoir, yielding Equation
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(8). The results of R2 and NRMSE obtained for the Alqueva reservoir with the algorithm proposed by
Rotta et al. [48] are presented in Table 6.

Table 5. Statistical parameters obtained for the application of Secchi Depth algorithms from the
literature and that proposed in this study, to the Alqueva reservoir.

Algorithms Equation R2 NRMSE (%)

Verdin, J.P. [49] 1
(0.665+35.6×B4) 0.69 28

Lavery et al. [50] 2.5 – (0.56 × B4) – (0.42 × B2
B4 ) 0.60 53

Wu et al. [51] EXP(1.3-(0.27×B2)-(0.65×B4)) 0.69 71

Bonansea et al. [52] 1.25 – 0.44×B4 + 0.11× B2
B4 0.65 84

Rotta et al. [48] 2.0709 ×
(

B3
B4

)
-1.2697 0.1 72

Jesús Delegido et al. [53] 4.7134 × ( B2
B3 )2.5569 0.29 51

Page et al. [54] EXP(2.437×B2
B4 − 2717.82×

(B4× B5) − 2.469)
0.56 102

Proposed algorithm 0.024 × B2
B3×B4 + 0.72 0.86 17

Table 6. Same as in Table 5 but for the diffuse attenuation coefficient.

Algorithms Equation R2 NRMSE (%)

Rotta et al. [48] 67.4155 × B4 +0.3978 0.81 33

Proposed algorithm 54.3 × B4 + 0.32 0.82 21

The scatter plots, with the best fit for each algorithm, are shown in Figure 4. Both relations are of
linear type, with high coefficients of determination: R2 of 0.86 for the SD algorithm and R2 of 0.82 for
the KD algorithm. The NRMSE is equal to 17% and 21% for the SD and KD algorithms respectively.

SD =
(
0.024 ×

B2
B3× B4

)
+ 0.72 (7)

KD = 54.3× B4 + 0.32. (8)

Figure 4. Scatter plot between parameters of water quality (SD on the left and KD on the right) and the
bands of MSI. Shown also is the linear regression obtained.
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4. Results and Discussion

4.1. Validation of Algorithms of Water Quality Parameters

The results obtained with the algorithms presented in Section 3.2 were validated for a different
period, between November 2017 and June 2019, through the comparison of the satellite retrievals with
the measurements obtained from in situ water sampling.

The algorithms presented in Section 3.2 were applied to the four nearest pixels with respect to
the sites where the measurements were taken and the mean value was computed. In Figure 5 the
relationships between estimated SD/KD and the corresponding data measurements, is shown.

Figure 5. Scatter plot of predicted versus observed SD (left) and KD (right). The dashed line indicates
the y=x, and solid line (blue) show the best-fit lines. The vertical error bars represent the standard
deviations corresponding to the four selected pixels.

A good agreement is verified between estimations and measurements, presenting high correlation
coefficient values, with r = 0.95 and r = 0.89 for SD and KD respectively. Data spread is also small,
with NRMSE of 15% for SD algorithm and NRMSE of 19% for KD algorithm. The high NSE for the SD
algorithm (NSE = 0.794) indicates a good fit between observations and estimations. The MAE shows
good results, with 0.4 m for SD and 0.12 m−1 for KD. This means that on average there was a deviation
of less than half a meter for SD, which is a small deviation value if considered that the validation
values range between 1.5 m and 7.0 m. As for the KD, there is also a reduced MAE for the range of
measured values. Most of the errors associated with the measurements are overestimated for the KD
(Positive bias) and underestimated for SD, of 0.081 m−1 and - 0.36 m respectively. In the validation
of the SD algorithm, it is verified that the absolute value of the Bias (0.36 m) is practically equal to
the MAE (0.4 m), meaning that deviations to the observed data are practically all of underestimation
satellite retrievals in relation to the observed data. The validation of the KD algorithm only presents
2 points below the y=x line, which demonstrates that for almost all cases analyzed, when there is a
deviation from satellite estimates in relation to the observations, data are overestimated. Thus we
can conclude that although the average associated errors are reduced, a lower transparency of water
(Lower SD) is expected from the atmospheric correction method presented for Alqueva reservoir and a
lower attenuation of radiation in water (Higher KD) compared to observation data.

4.2. Relation between Secchi Depth/Diffuse Attenuation Coefficient and Microalgae Bloom

In addition to validating the algorithms (comparing with independent data) it is also important
to investigate how the SD and KD vary spatially in the entire reservoir. One of the useful and
relevant applications of Sentinel-2 is the identification and monitoring of rapid variations of microalgae
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blooms in the lakes through, for example, RGB image composites using three bands of MSI with 10
m of resolution: 492 nm (blue), 560 nm (green) and 665 nm (red). Figure 6 presents two examples
of RGB images showing the beginning of a microalgae bloom development in July 2018 and the
presence of microalgae in most of the reservoir in the end of September 2018 with measurements of
chlorophyll a and turbidity of 10.19 µg/L and 2.22 NTU, respectively, on 6 September 2018 (nearest
in situ measurement available). Chlorophyll a determination was based in molecular absorption
spectroscopy and the equations developed by Lorenzen [55], according to the standard methods
NP 4327:1996 [56] and EN ISO 10260:1992 [57]. Turbidity was determined using the nephelometric
method [58].

Figure 6. RGB Image showing the evolution of microalgae bloom for 16 July 2017 (left) and for 22
September 2017 (right) in the Alqueva reservoir.

Figure 7 represents the spatial distribution of SD and KD for 22 September 2017 obtained using
the algorithms developed. The presence of algae in water tends to decrease the transparency of water.
Therefore, under these conditions, a decrease in SD (associated with decreased water transparency)
and an increase in the KD of water is expected due to an increase of solar radiation extinction in the
water column (absorption plus scattering). This is precisely what is shown in Figure 7, with high KD
and low SD values in the northernmost area of the reservoir, where the presence of algae in the RGB
image (Figure 6) is evident, whilst there is no evidence of microalgae in the RGB image in the south
and west of the reservoir. Figure 7 shows very high values of KD and low SD between Campinho and
Monsaraz (see Figure 1), and on the right margins of the reservoir. The areas in the westernmost branch
and south area of the reservoir, presented the highest SD and lowest KD values, with values of SDs
greater than 2 m and KDs less than 1.0 m−1. This will probably be associated with the non-propagation
of the algae bloom to these locations, thus having smaller dissolved and suspended particles, more
transparent water (greater SD) and less extinction of solar radiation in the water column.
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Figure 7. Secchi depth (left) and diffuse attenuation coefficient (right) maps for the Alqueva reservoir
on 22 September 2017.

4.3. Seasonal and Spatial Distribution

The seasonal variation of the studied water parameters in Alqueva reservoir was evaluated using
all Sentinel-2 MSI data available between July 2017 and June 2019. During this period and considering
the use of the two satellite (S2A and S2B) overpasses in Alqueva region, it was possible to achieve
at least 1 usable image per month. After atmospheric correction of the satellite images following the
methodology described in Section 3.1, the empirical relations obtained (Equations (7) and (8)), were
applied to the atmospherically corrected satellite measurements, obtaining full coverage of daily SD
and KD in the reservoir during the period July 2017-June 2019.

In order to obtain a good distribution of the variables under study, an accurate identification of
water pixels is essential. One of the advantages of the Sen2Cor output is the Scene classification (SC)
product used to classify pixels, e.g., water, land, clouds. In this work, only water pixels were extracted
from the images and used for atmospheric correction with 6SV. Occasional errors were found in the
Sen2Cor classification, with water classification attributed to some pixels presenting effects of sunglint
or cloudy shades. Various water body mapping approaches have been developed to identify water
bodies in multispectral images. The Modified Normalized Difference Water Index (MNDWI) uses the
green and Shortwave-Infrared (SWIR) bands and is one of the most popular methods [59]. In summary,
to have a better mask of water pixels in the Alqueva reservoir, two conditions were imposed: Water
scene Classification from Sen2Cor and positive values of MNDWI.

As for the seasonal analysis, the year was divided into 3 periods: July-October (JASO),
November-February (NDJF), and March–June (MAMJ). JASO corresponds to the period of the
highest air and water temperatures and with a great probability of microalgae blooms occurrence;
NDJF is the coldest period and MAMJ is the period where the reservoir starts stratification.

For spatial characterization, the reservoir was divided into different areas with similar patterns of
water characteristics. Only days with 100% of water pixels in the reservoir were considered, in order to
calculate SD and KD averages counting the same sample of days for each pixel of the reservoir. In
order to find patterns of water characteristics, not only the mean values are important, but also the
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values corresponding to the days with extremes of SD and KD. Thus, the values corresponding to the
5th percentile and 95th percentile of SD and KD for each pixel were calculated.

It should be noted that the 5th percentile represents days with lower water transparency for SD
and less attenuation of solar radiation in water for KD (for lower KD, more solar radiation penetrates
in the water column, meaning more clear water). Figure 8 presents the 5th percentile (left panels),
average (middle panels) and 95th percentile (right panels) of SD for the three different periods and
Figure 9 presents the same parameters for the KD.

Figure 8. Spatial distribution of Secchi Depth shown from November to February (top), March to June
(middle), and July to October (bottom) in Alqueva reservoir, for the period July 2017–June 2019.
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Figure 9. Same as in Figure 8 but for the diffuse attenuation coefficient.

As can be seen in Figure 8 and Figure 9, on the days representative of the 5th percentile for
KD and 95th percentile for SD there is a greater spatial heterogeneity in the period July–October
(JASO), comparatively to the other two analyzed periods. This fact is related to the beginning of the
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development of microalgae blooms that usually occur in the northern region of the reservoir mainly
by the Guadiana River (Figure 1), usually introducing organic and inorganic matter leading to an
increase of biological activity. Only at the end of Summer, these microalgae blooms fill almost the entire
reservoir. The southern area of the reservoir, further away from the origin of the microalgae blooms,
has the lowest values of KD and the highest SD values. For the other two periods (MAMJ and NDJF),
there are also higher SD and lower KD values in the southern region of the reservoir and in larger areas
and away from the margins, that are shifting towards the north, with a decrease in SD and an increase
in KD. As for the reservoir extensions, to the west and east, they have similar water characteristics to
the southern region from November to February, but different patterns in the other periods analyzed.
The differences between these regions in the period MAMJ are mainly related to several days of heavy
precipitation in spring 2018, as shown in the following section. In the July–October period, more
turbidity and lower/higher values of SD/KD respectively were detected in the east and west branches
compared to the adjacent southern area, likely to be associated with the shorter distances between
margins, with weaker winds in these locations due to less exposure, and thus higher biological activity
was expected (Figures 8 and 9—JASO panels). It is observed that in the reservoir in these two years,
lower/higher values of SD/KD, respectively, were detected in the July–October period compared to the
other two periods, obtaining for almost all reservoir average values of SD lower than 2.5 m and KD
over 1 m−1. The maps representing the days with the lowest/highest values of SD/KD respectively (5th
percentile to SD and 95th percentile to KD) in the MAMJ and NDJF periods are very similar to the
average map in the JASO period, also showing the great deterioration in these months of formation and
dissipation of these blooms. Thus, distinct areas in the Alqueva reservoir were selected considering:
(1) spatial variation of SD and KD; (2) areas with different widths; (3) geometry, namely the orientation
of the lake margins. The selection of the defined areas is presented in five different regions, presented
in Figure 10.

Figure 10. Selection of areas according to seasonal variation of water quality parameters, width and
geometry of the reservoir.

4.4. Spatio-Temporal Variability for Period July 2017 – June 2019

The monthly evolution of SD and KD during the period of July 2017–June 2019, for each selected
region of the Alqueva reservoir (Figure 11) was analyzed. When at least one of the regions defined in
Section 4.3 less than 50% of water pixels (due to clouds, sunglint or smoke), the satellite image was
rejected. To obtain a monthly estimation for each region, the average of all images for each month was
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calculated for all water pixels within each area (Figure 11). Water pixels were considered according to
the criteria explained in Section 4.3.

Figure 11. Monthly average of SD (top) and KD (bottom) for each reservoir region.

In order to examine conditions that may contribute to changes in water parameters in the reservoir,
meteorological data from Cid Almeida station (at the east margin of MontanteP) were used, and
compared with estimations of SD and KD, for the 24 months in the period July 2017–June 2019. The
meteorological parameters used in this analysis were the monthly wind speed, monthly precipitation,
and monthly water and air temperatures. The monthly mean evolution of wind speed, air temperature
and water temperature are presented in Figure 12.

Figure 12. Monthly average of water temperature, air temperature and wind speed at the
Alqueva reservoir.

In the period July 2017–June 2019, 3 critical periods are identified in terms of SD and KD:
August–October (2017), March 2018 and August–October (2018). The variation in the monthly
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estimates obtained for each region of SD and KD values is consistent with measurements. The values
obtained show higher KD and lower SD values in these periods. Lower KD and higher SD values
were estimated in colder months, with lower water temperature, and no significant rainfall events. An
excellent relationship between the diffuse attenuation coefficient and turbidity has been identified in
several studies (e.g., [60–63]) and also in the Alqueva reservoir with r2 = 0.95 [39]. Since SD is directly
related to turbidity, a strong indication of the quality of the estimations of SD and KD for the Alqueva
reservoir is that the increase in one of the parameters is related to the decrease in the other.

Typically, in the Alqueva reservoir, critical water quality periods are associated with the usual
long and dry summer months, with very high maximum temperatures, typically between 30 ◦C and
43 ◦C, inducing the formation of microalgae blooms in the reservoir [64,65]. It is identified that the
northern area, between Lucefécit and Monsaraz (Figure 1), presents worse water quality in practically
every month, which agrees with that reported by Palma et al. [66] and Palma et al. [67]. Algae blooms
in recent years at the Alqueva reservoir developed in the north of Alqueva in July/August, as seen in
the example in Figure 9. This is also observed by the estimates of KD and SD in July 2017 and July
2018 (Figure 11), with a significant difference between KD and SD between the northern area and the
remaining reservoir regions. As summer progresses, algae expand to the south of the reservoir, with
a maximum in September, with this month’s SD averages estimations below 1.9 m for all areas, and
KD of water over 1.2 m−1. The western region of the reservoir, on the other hand, is the area furthest
away from the region with the highest presence of algae in the warmer months (North area), however,
locally in Summer cases, the development of these microalgae blooms is also possible. For instance, in
September 2018, a month with weaker winds and a very hot previous month (August 2018 was the
hottest month of the study period), led to the increase in microalgae densities also in this region of the
reservoir, with estimations of SD and KD very close to the values of the northern region. This different
behavior of the two September’s in the evolution of algae on the reservoir and the different estimations
of KD/SD can also be seen in the RGB images of the Figure 13, September 19 (2017) without evidence of
algae, and September 19 (2018) with great presence of algae in the westernmost area of the reservoir.
Except for the West area, the remaining regions of the reservoir behaved similarly in the July–October
period for the two years analyzed. During March 2018, SD and KD estimations were like those
obtained in the microalgae blooms (August–October), this was due to exceptional rain events. It was
recorded nine days with precipitation exceeding 10 mm and almost 200 mm accumulated (Figure 2),
a value much higher than average precipitation for March in the Alqueva region. The periods with
the highest/lowest SD/KD respectively were December 2017–February 2018 and February–April 2019,
periods with low air and water temperatures, associated with anticyclonic weather prevailing on most
days, and monthly cumulative rainfall lower than 50 mm, except April 2019. Despite an accumulated
rainfall of 70 mm in April 2019, this amount was scattered for 14 days, without heavy precipitation
events, with daily precipitation lower than 15 mm. The month which presented the best SD/KD on
average was January 2018, with very low KD estimations, of 0.4 m−1 for the West area and 0.5 m−1 for
the South and East area. The best SD estimations were obtained, with average values of 4.0 m and 4.1
m for the East and South areas, respectively. Comparatively, for North and Central regions relevant
differences are noticed, with modest SD values of 2.1 m and 2.8 m, respectively. This fact shows that
the northern region, between Lucefécit and Monsaraz, presents degraded water quality and may even
have large disparities compared with other areas for the same period.
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Figure 13. RGB Images showing a microalgae bloom for 19 September 2017 (left) and for 19 September
2018 (right) in the Alqueva reservoir.

Alqueva reservoir was classified as eutrophic based on mean total phosphorus (>35 µg P L−1) and
chlorophyll a (>8 µg L−1) concentrations [64]. In this study, according to the monthly average of SD in
the reservoir, the SD exceeds the limits for the eutrophic status in the northern and central regions of
the reservoir for all analyzed months, considering the limit values of the trophic state of lakes and
reservoirs [68]. In the Center, West and South regions, some months are already at or very close to the
mesotrophic level (SD > 3.0 m), especially in the months with low rainfall and lower lake temperatures.

The southern area of the reservoir presents the best SD/KD values in practically every month
analyzed, being expected that two of the main reasons are the widest area between margins (along with
the central region) and the longest distance to the North area, where the worst values of the reservoir
were found. The central area, between Campinho and Monsaraz, although also with a very large area,
presents much highest KD/lowest SD, compared to the southern area for most of the months.

In addition to the monthly average, the 5th and 95th percentiles were calculated to get estimations
for pixels representing water with greater and less transparency in each region. This is important to
identify possible extreme values in each region and results are presented in Figures 14 and 15.
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Figure 14. The 95th percentile and 5th percentile for SD (top) and for KD (bottom) respectively.

Figure 15. The 5th and 95th percentiles for SD (top) and KD (bottom), respectively.

Figure 14 shows the monthly average of pixels representing the highest SD and lowest KD values,
and Figure 15 the opposite, that is, less transparent water (lower SD) and with greater radiation
attenuation in the water (higher KD).

According to Figure 14, January 2018 features estimates of the highest SD and lowest KD values,
with KD below 0.4 m−1 in the South, West and East areas, and very high SD values with 6.5 m to
the east and 7.5 m to the south. These extreme values of SD and KD are very similar to the in situ
extremes measured in the Alqueva reservoir. It should be noted that beyond January 2018 there are
other months with a few days presenting SD (95th percentile) > 5.0 m, but which are very smooth on
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average for months with large variations in water characteristics. February 2019 presents the smallest
spatial variation of KD, that is, representing the smallest spatial variations of dissolved and suspended
particles in water, with great uniformity. As an example, note the westernmost area of the reservoir in
February 2019, with 90% of the KD values between 0.71 m−1 and 0.83 m−1. The atmospheric stability in
this month, with few precipitation days, and very light winds (Figure 12) should explain this very small
spatial variation in the reservoir, characterizing this month as one of the greater transparency periods
analyzed between July 2017 and June 2019. Distinctly, November 2018 was the second month in the
period analyzed with the highest monthly accumulated precipitation, over 100 mm, and one of the
months with the highest average wind, with the largest differences between the 5th percentile and 95th
percentile, that is, a greater spatial variation. In the eastern region, SD has a value of 4.1 m (Figure 14)
corresponding to 95th percentile (very high value) that is very far from the pixels corresponding to the
5th percentile with low values of only 1.6 m (Figure 15).

It can be seen from Figure 15 that September, in both years analyzed, and March 2018 are the
months with the most extreme values of KD and SD. In March 2018, the most extreme KD values were
obtained, with a value of 3.31 m−1 corresponding to the 95th percentile, e.g., 5% of the pixels in this
area with estimated KD of 3.31 m−1 or higher. The largest areas (South and West), present for this
month the lowest KD values corresponding to 95th percentile and the largest SD corresponding to the
5th percentile, not only on average (Figure 11), as well as for the extreme values. Still, for March 2018,
the values for each area show a significant spatial variation in water physical parameters, much higher
than for September in both years. This should be explained by the fact that in summer, the spatial
variation of algae shows a smaller variation between shores and deeper areas of the reservoir, which is
not the case for heavy rainfall, as in March 2018, with much higher values near the margins compared
with deeper areas. The slightest differences between the values corresponding to the 5th percentile and
95th percentile, means that the area is homogeneous in water characteristics. For example, in relation
to SD in the Northern region, if 90% of the pixels in March 2018 vary spatially between 0.9 m (5th
percentile) and 2.0 m (95th percentile), in September 2018, they exhibit great spatial uniformity, with
90% of the pixels for this month presenting estimates between 0.8 m and 1.1 m.

5. Conclusions

The methodology developed in this work aimed to characterize spatial and temporal variations
of water quality parameters in the Alqueva reservoir, using high spatial resolution images from
Sentinel-2 MSI, which can be useful in other lakes with comparable trophic status. A reliable method
of atmospheric correction was obtained with the radiative transfer code 6SV, using water vapor
and AOT at the reference wavelength of 550 nm, obtained from Sen2Cor. Empirical relationships
between satellite retrieved surface spectral reflectances and KD/SD measurements were obtained and
subsequently validated, obtaining high correlation coefficients and low NRMSE values below 20%
for the two analytically defined algorithms. In general, the southern area of the reservoir (between
Montante e Campinho) features the highest SD and lowest KD values in the analyzed period. The
western (Between Montante and Álamos) and eastern sections (Alcarrache) of the reservoir presented
slightly lowest SD and highest KD values, compared to the southern part of the reservoir, especially
during or immediately after extreme precipitation events, and in the August–October period. Every
month, the northern region, between Lucefecit and Monsaraz, presents more turbid water and with
greater attenuation of radiation in the water. As for the temporal variations, the Alqueva reservoir
presented the lowest SD and highest KD values in August–October period and March 2018 compared to
the other periods of the year. Between August and October, there is the usual formation of microalgae
blooms in the reservoir, inducing average estimated SD between 1.9 m in Central area and 1.0 m to
North area (September of 2017). The mean values of KD also denote more attenuation of radiation in
water in this time of the year, with values between 1.02 m−1 in the southernmost area of the reservoir
and 2.27 m−1 in the North area.
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With exception of months with excessive precipitation and with the presence of microalgae, higher
values of SD and low KD were obtained noting the SD of 7.5 m for pixels representing 95th percentile
and 0.36 m of KD for pixels representing 5th percentile in South region to January 2018. These extremes
obtained from the satellite are very close to the extremes measured in the field. A strong indicator
of the correctness of the methodology presented is the good agreement between the evolution of SD
estimations and KD with the evolution of meteorological parameters/water temperature. The highest
KD/lowest SD was observed in the highest water temperature/March 2018 (very rainy month), with a
smaller spatial variation of these parameters for months of low wind speed.

Highest KD and lowest SD were observed in the warmest months/highest water temperature,
and in March 2018, they presented monthly accumulated precipitation of around 200 mm. On the
other hand, estimations of the highest SD and lowest KD values were obtained in the months of lower
monthly accumulated precipitation, coupled with lower air and water temperatures. A smaller spatial
variation of these parameters is presented, for months of low wind speed, as is a clear example of
February 2019, the month with lower monthly wind intensities. The months with the highest monthly
rainfall, such as March 2018 and November 2018, show much greater spatial variations of SD and KD
due to the large difference in values between margins compared to deeper zones.

The observations show high spatial and temporal heterogeneities in SD and KD. This means that
the use of spatial and temporal constant values in NWP models (as at present) may lead to errors in the
surface energy budget over water and subsequently in surface temperature forecasts. The methodology
and the empirical relationships found in this work show that it will be possible to get global maps
from satellite remote sensing for use in NWP models.
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