remote sensin N
?J & bpy

Article

A Framework Based on Nesting of Convolutional
Neural Networks to Classify Secondary Roads in
High Resolution Aerial Orthoimages

Calimanut-Tonut Cira *¥, Ramon Alcarria’?, Miguel-Angel Manso-Callejo” and Francisco Serradilla

Universidad Politécnica de Madrid, 28031 Madrid, Spain; ramon.alcarria@upm.es (R.A.);
m.manso@upm.es (M.-A.M.-C.); fserra@eui.upm.es (ES.)
* Correspondence: cira.calimanut-ionut@alumnos.upm.es

check for
Received: 17 January 2020; Accepted: 25 February 2020; Published: 27 February 2020 updates

Abstract: Remote sensing imagery combined with deep learning strategies is often regarded as an
ideal solution for interpreting scenes and monitoring infrastructures with remarkable performance
levels. In addition, the road network plays an important part in transportation, and currently one of
the main related challenges is detecting and monitoring the occurring changes in order to update
the existent cartography. This task is challenging due to the nature of the object (continuous and
often with no clearly defined borders) and the nature of remotely sensed images (noise, obstructions).
In this paper, we propose a novel framework based on convolutional neural networks (CNNs) to
classify secondary roads in high-resolution aerial orthoimages divided in tiles of 256 x 256 pixels.
We will evaluate the framework’s performance on unseen test data and compare the results with
those obtained by other popular CNNs trained from scratch.

Keywords: road classification; convolutional neural networks; remote sensing; image analysis;
secondary transport routes; deep learning

1. Introduction

The road transport network is dynamic and complex in nature, and its detection and monitorization
has traditionally been a challenging task requiring multiple operators to manually identify objects
in aerial images. Since roads are frequently repaired and built, keeping road cartography up to
date is a challenging task for public agencies and the process of updating the existing support is
often costly and time-consuming because of the very large areas that need to be considered in the
process. Furthermore, the relevant authorities responsible for the management of public geographical
information periodically updates the existing cartographic support every two to three years.

We believe that recent advances in computer vision can enable the automation of the traditional
approach. In the remote sensing field, researchers achieved great results by applying transfer learning
from pretrained models on large datasets (e.g., ImageNet Large Scale Visual Recognition Challenge
(ILSVRC) [1]) to classify and detect geospatial objects. However, they focused mostly on objects with
clearly defined limits that are independent of the background (e.g., airplanes, buildings, ships). What
happens when we have to work with more difficult, continuous geospatial objects like secondary roads
where the borders are often not delimited (no markings of the edges or the centrelines) and are easily
confused with their surroundings?

We decided to approach the task of road extraction by beginning with a road classification subtask
in order to make the segmentation operation more efficient. It is known that semantic segmentation
is computationally expensive [2], but if we manage to successfully identify the presence of roads
beforehand, it will result in a faster and more efficient production model.

Remote Sens. 2020, 12, 765; doi:10.3390/rs12050765 www.mdpi.com/journal/remotesensing

http://www.mdpi.com/journal/remotesensing
http://www.mdpi.com
https://orcid.org/0000-0002-7713-7238
https://orcid.org/0000-0002-1183-9579
https://orcid.org/0000-0003-2307-8639
http://dx.doi.org/10.3390/rs12050765
http://www.mdpi.com/journal/remotesensing
https://www.mdpi.com/2072-4292/12/5/765?type=check_update&version=2

Remote Sens. 2020, 12, 765 2 of 22

In this paper, we focus on classifying secondary roads in aerial orthoimages with a declared
spatial resolution of 50 cm. We approach this task by proposing two variants of an ensemble model
formed by deep CNNs. The first variant is based on stacking weak learners and applying a combiner
algorithm that averages their predictions. The weak learners are modified versions of popular CNNs
(VGGNet [3], ResNet [4] and Inception-ResNet [5]) together with a CNN we built especially for this
purpose [6]. To find the best configurations of the base models, we trained the networks from scratch
(random initialization of weights) and applied transfer learning techniques to re-use the features
learned on ILSVRC (initialization from an already trained weight value).

The second variant of the framework comes from one of our previous works [7], where we
evaluated the appropriateness of transfer learning techniques for this task and discovered a significant
difference in performance metrics (7-10%) when testing the models on areas with different vegetation
coverage (drier and greener) separately. We approached this drawback by stacking a specialized model
trained on the dataset containing tiles from the area with lower performance metrics, a generic model
trained on the entire dataset, and a terrain type classifier, which acts as an arbitrary combiner algorithm
that infers the final prediction.

Our contributions are to be applied to geospatial object detection and classification in cartography
using remotely sensed data and are summarized as follows:

e We design a novel framework based on deep convolutional neural networks to classify secondary
roads in high resolution aerial orthoimagery. The solution integrates modified configurations
(focusing on improving the computational efficiency) of three of the most popular CNN
architectures for computer vision problems, together with a network especially built for this task;

e We contrast the performance of state-of-the-art CNN architectures and deep learning techniques
in recognizing secondary roads in high resolution aerial imagery under various scenarios;

e We study how different architectural tweaks and changes in default hyperparameters affect a base
model’s performance in the road classification task;

e Different from the previous works, we focus on challenging situations, where the borders of
the roads are easily confused with the surroundings (secondary transport routes). In addition,
the remotely sensed imagery often includes shadows and occlusions, further complicating the
classification operation;

e We carry our experiments on a new dataset composed of sampled locations with ground truth
labels obtained by dividing high resolution aerial imagery in tiles of 256 x 256 pixels and manually
annotating them.

The remainder of this article is organized as follows. Section 2 describes works related to road
detection and classification using remotely sensed data. Section 3 describes the dataset built for
this task. Section 4 introduces the architectures used as weak learners and provides details of our
proposed framework. Section 5 describes the experiments carried out to obtain the best possible
configurations. In Section 6, we present the performance metrics and conduct an extensive discussion
and statistical analysis. Lastly, Section 7 draws the conclusions of our work, the last section being
reserved for references.

2. Related Work

A wave of promising research was incentivised in the remote sensing community following the
success of deep CNN architectures in solving computer vision tasks. These networks are designed to
receive images as inputs and encode three important architectural features: (1) shared weights—by
forcing the neurons of one layer to share weights, the forward pass becomes the equivalent of
convolving a filter over the image to produce a new image (the convolution operation), (2) local
connectivity—neurons in one layer are only connected to neurons in the next layer that are spatially
close due to a smaller kernel size, and (3) representations—by using pooling and ReLU non-linearities,
we increase the model’s expressive power.

Remote Sens. 2020, 12, 765 30f 22

It is important to mention that the weights obtained from training popular CNN architectures
on ILSVRC (1.2 million images) are publicly available as pre-trained models. We can apply transfer
learning to customize these pre-trained models for a new task and take advantage of the learned
feature maps. Transfer learning works by initializing the weights of a network using the weights of an
already trained model on a large dataset, ensuring a good convergence most of the time [8]. The level of
generality of the representation extracted depends on the depth of the layer in the model: earlier layers
extract highly generic feature maps (such as edges, colours, textures), whereas layers that are higher
up extract more abstract features. Researchers in the field of remote sensing have successfully applied
transfer learning to repurpose the pre-learned features for land use analysis and object detection in
satellite imagery data.

A hot research area in this field is related to aerospatial objects detection: In [9], the authors
constructed a CNN for airport detection, focusing on harder examples by adding a mining layer to
automatically detect examples by their losses, obtaining F1-scores of maximum 0.9567 on the validation
set. The authors of [10] propose a framework based on deep CNNS5s to recognize ten types of aircrafts
using key-point annotations of the planes in the training stage, obtaining accuracy levels of maximum
95.6%. In [11], the structure of VGGNet was enhanced by replacing the FC layers with a full CNN to
improve the performance metrics in airplane and automobile detection, while reducing the number
of parameters.

Another important area of research is related to the task of building detection and mapping using
remote sensing imagery. In [12], a fine-tuned version of VGGNet is used to detect buildings and
recognize the roof types, obtaining quality rates higher than 83.3%. The authors of [13] evaluated the
performance of deep learning for roof segmentation on a dataset containing over 220,000 buildings
tagged in remote sensing images with a spatial resolution of 7.5 cm and obtained F1-scores of maximum
0.947. In [14], open-source data is used to conduct a comparative analysis between four different CNN
architectures pre-trained on large datasets to extract footprints of buildings across the United States,
obtaining precision scores higher than 95%.

Other works, such as [15], focused on transferring knowledge from the image scene classification
task to the geospatial object detection task using supervision from scene tags to classify nine different
categories (including bridges, ships, tennis courts). The authors of [16] implemented a deep CNN
comprised by two convolutional and two max-pooling layers followed by two FC layers to predict
labels for images captured by UAVs in real time, achieving accuracy levels of 93.6%. In [17], the authors
contrast the capabilities of VGG-16 and ResNet architectures in recognizing land use classes and
patterns in different urban environments from satellite imagery, obtaining accuracy levels of maximum
81.0%. The authors of [18] investigated the transfer of activations from CNNs pre-trained on ILSVRC to
scene classification tasks by extracting activation vectors from the FC layers and by encoding features
into global image features to improve the classification accuracies.

Hutchison et al. were among the first to approach the challenge of road detection in urban
environments using deep learning. In [19], they used supervised methods to build a model for this task,
and later applied unsupervised training to generate filters that improved the predictions of the model.

In [20], a CNN consisting of five convolution layers followed by a GAP layer is proposed to extract
roads from publicly available urban road datasets. The inputs were aerial images of 1500 x 1500 pixels
in size with a spatial resolution of one meter, and the performance metrics were as high as 81.6%. In the
end, they used spatial features of adjacent pixels to enhance multi-class prediction.

The authors of [21] recognized the complexity of road detection in real-world applications while
evaluating the performance of the most popular CNN architectures in road detection and segmentation
using satellite imagery. They obtained precision levels of a maximum 71.69% by applying data
augmentation, filtering and post-processing techniques.

Inspired by residual learning, the authors of [22] developed a deep-residual network similar to
U-Net for the semantic segmentation of roads and tested it on a public roads dataset. The performance
metrics increased by 1%, while the number of parameters decreased by %, when compared to U-Net.

Remote Sens. 2020, 12, 765 40f 22

Recently, the authors of [23] proposed RoadNet (composed on three CNN following the VGGNet
architecture) to analyse urban scenes and predict road surfaces, edges, and centrelines. The three CNNs
were concatenated and used receptive fields of 1 x 1 pixels in size, obtaining F-scores of maximum 93.9%.

In [24], this challenge is approached from a spatio-temporal perspective by adding a temporal
processing block on top of existing networks, achieving accuracy levels over 90%. In [25], the authors
proposed a model based on VGGNet to learn the features of road boundaries by integrating RGB
images street scenes, the semantic contour and the location in a neural network for autonomous
driving applications.

3. Dataset

The variables studied in this paper are pixel values of high-resolution aerial orthophotos.
The imagery used was issued by state agencies and has a declared spatial resolution of 0.50 m
(one pixel covers an area of 50 X 50 cm on the ground) and a planimetric RMSE < 1 m [26].

These data were captured using calibrated high-resolution digital photogrammetric cameras
equipped with 3-band RGB sensors (eight bits per band) and is georeferenced in ERTS89 Geodesic
Reference System. The photograms were acquired in optimal meteorological conditions (clear sky with
no clouds during specific hours and east-west orientation of the flight to minimize the errors caused by
the sun). According to its producer, the imagery is orthorectified to ensure matching between contiguous
photograms, radiometrically corrected to make effective use of all the bits (homogeneous intensity
and balanced histograms) and has topographic corrections applied using terrestrial coordinates of
representative points. Considering the low flight altitude, the effect of the atmosphere conditions is
considered negligible; therefore, no atmospheric corrections were applied.

The data needed for the supervised learning process were obtained by labelling these orthoimages
divided in tiles using a cartographic viewer based on Web Map Service (WMS) [27]. The task involved
performing a visual comparison of the most recent orthoimages available with the existing cartographic
support. For consistency reasons, we used the same zoom-level during the operation, each tile covering
an area of 128 x 128 meters. We took into account representative areas of Spain (Galicia, Navarre, Balearic
Islands, Segovia, Ciudad Real, Albacete, Murcia, Huelva) that may influence a network’s capability in
identifying secondary roads for the whole national territory. The labelled tiles were merged into the
correspondent category (samples extracted from each collection can be seen in Figures 1 and 2). These
categories will allow the CNNSs to learn about the existence/non-existence of roads in a new given tile.

Figure 1. Tiles extracted from the dataset tagged with “No road” label.

Remote Sens. 2020, 12, 765 5o0f 22

Figure 2. Tiles extracted from the dataset tagged with “Road exists” label.

The dataset created contains 18,000 tiles and occupies a disk volume of approximately 2.62 GB.
We are working towards making it openly available once we increase its size. Each image has a height
of 256 pixels, a width of 256 pixels (for a total of 65,536 pixels = 0.07 Megapixels) and a depth of three
colour channels (RGB). Each pixel in the Red/Green/Blue channel is represented by a number between
0 and 255, where 255 represents the maximum brightness (white) and 0 means no brightness (black).

The difference in performance metrics found in [7] made us build additional subsets with the
criteria of similar background colours (areas with dense vegetation/Mediterranean areas) for the second
variant of the ensemble model (based on specialized models). We also doubled the size of the dataset
used in [6] to expose the models to more aspects of the classes, and balanced the classes to avoid the
common machine learning problem where a model starts to predict new observations to the majority
class to achieve high accuracy. The tiles’ distribution can be seen in Table 1.

Table 1. Distribution of the labelled tiles.

Category 0 “No Road” Category 1 “Road Exists”
Dataset
Areas with Drier Total Areas with Drier Total
Dense Vegetation (Mediterranean) Areas Dense Vegetation (Mediterranean) Areas
Total 4500 4500 9000 4500 4500 9000
Percentages 25.00% 25.00% 50.00% 25.00% 25.00% 50.00%

4. Framework

Our framework involves model nesting (and more specifically, ensembling) where, given a set
of models, we ensemble them using stacking techniques to combine the predictions of the models
and build a new model. The reasoning behind using an ensemble is that by stacking multiple models
(called base models or weak learners) representing different hypotheses, we can find a better hypothesis
that might not be contained within the hypothesis space of the models from which the ensemble is
built. In [28], the author identified three main reasons causing this situation: (1) having insufficient
input data (statistical), (2) difficulties for the learning algorithm to converge to the global minimum
(computational), and (3) representational, where the function /* cannot be represented by any of the
hypothesis proposed.

A popular form of stacking involves computing the outputs of base models, performing a
prediction for each model and averaging their predictions inside the ensemble. In this technique,

Remote Sens. 2020, 12, 765 6 of 22

M
the sub-models contribute equally to a combined prediction, i (x) =1/M Y, yu (x). Firstly, all the
=1

algorithms fused into the ensemble are trained using the available data and tﬂen a combiner algorithm
is used to make a final prediction using the predictions of the other models as inputs. The specific
steps are: (1) generate M weak learners, each with its own initial values (by training them separately),
and (2) combine these models in an ensemble where we average their predictions for every instance of
the dataset to compute .

We built the ensemble by combining base models as diversely as possible (Figure 3). We took
into consideration the network built in [6], together with modified versions of the most popular CNN
architectures for computer vision tasks. This way, we can leverage their strengths and minimize their
weaknesses to obtain a classifier with a lower classification error.

/) . \
Built CNN
Modified
VGGNet
y Average
Modified)
Inception-
\ ResNet) Ensemble-Vy

Figure 3. The first variant of the ensemble model (average voting of four weak learners).

|, Prediction
(probability score)

Modified
ResNet

Next, we will describe the four base model architectures fused into the ensemble model. Three
of these networks are the best performing models on ILSVRC, each based on different architectural
patterns (structural blocks and connection schemes). It is important to note that these networks will be
modified during the experiments in order to find the best possible configuration for each architecture.

4.1. CNN Built from Scratch

For the first base model, we opted for a CNN formed by a stack of convolutional layers containing
filters with a receptive field of 3 x 3 followed by max-pooling layers with 2 X 2-pixel windows. We chose
this particular architecture for its simplicity, computational efficiency and flexibility.

In a multilayer convolutional network, the input to the second layer is the output of the first
layer, and when we use multiple filters on the same image, we carry out the convolution for each of
them separately, piling up the results one on top of the other, and combining them into feature maps.
The resulting tensor is finally reshaped to flatten out the spatial dimensions into a one-dimensional
feature vector that can be fed into the classifier.

At the end of the network, we have two FC layers: the first contains 512 units, while the second
contains one unit (where it performs the 2-class classification). In between these FC layers, we added a
dropout layer with a rate of 0.5 to avoid overfitting.

In Figure 4, we can see how a tile is processed through this particular base model.

Remote Sens. 2020, 12, 765 7 of 22

256x256@3 1x9216 512 units Output

)
127x127@32
62x62@64 6x6@256

Input (RGB tile)

Road

No road

(X) Conv + RelU + Conv+RelU+ ~ Conv+RelU+ Flatt FCFC
Max-pooling Max-pooling Max-pooling atten
P FEATURE LEARNING CLASSIFICATION
< L >

Figure 4. The proposed CNN processing a random tile of 256 X 256 pixels.

4.2. VGGNet-Like Network

The second component of the ensemble is a modified version of VGGNet represented by a stack
of convolutional blocks formed by two convolutional layers followed by one max-pooling layer.
We propose this configuration for its compact architecture. The chosen kernel size is 3 x 3 and the
max-pooling step is performed over a 2 x 2-pixel window. After each convolutional block, we added a
dropout layer with a rate of 0.25 for a more aggressive control of the overfitting.

The first component of the classifier is a FC layer with 512 neurons connected to a final single unit
layer. In between the classifying layers, we added a dropout layer with a rate of 0.5. We also reduced
the number of filters/convolution when compared to the standard network. By applying these changes
to the original architecture, we drastically reduced the number of parameters from 169 million to a
little over 4.5 million. This architecture is described in Table 2.

Table 2. Description of the modified VGGNet architecture.

Block1 Block2 Block3 Block4 Block5 Output Block
Conv (3x3,32) Conv(3x3,64) Conv(3x364 Conv(3x3,64) Conv(3x3,128) Flatten
Conv (3x3,32) Conv(3x3,64) Conv(3x3,64 Conv(3x364) Conv(3x3,128) FC (512)

Maxpool (2 x2) Maxpool (2 x2) Maxpool (2x2) Maxpool(2x2) Maxpool (2 x2) Dropout (0.5)
Dropout (0.25) Dropout (0.25) Dropout (0.25) Dropout (0.25) Dropout (0.25) FC (1, sigmoid)

4.3. Modified ResNet

The Residual blocks (introduced by He et al. in [4]) allow for the training of very deep networks by
introducing modules called residual models. These blocks address the degradation problem observed
when training deep neural networks by allowing the gradient to flow through the alternate shortcut
path, ensuring the movement of information from earlier layers in the model to latter layers.

Our implementation consists of a modified version of ResNet50, where we stack Convolutional
and Identity blocks on the residual connections (that allow the flow of information while enabling
the learning of an identity function). Compared to the original ResNet50, we reduced the number
of filters/convolutions and changed the activation functions from ReLU [29] to PReLU [30] and
LeakyReLU [31]. Our top block includes a GAP layer with a 2 x 2-pixel window (replacing the
window area with the average value instead of the maximum value) followed by a Flatten layer
and a FC layer with a softmax activation (where the classification is performed). By applying these
changes, the number of total parameters dropped from 25.6 million to 5.9 million, resulting in a more
efficient computation.

Details about the modified VGG50 network can be seen in Table 3.

Remote Sens. 2020, 12, 765 8 of 22

Table 3. Description of the modified ResNet-50 Architecture.

Stage Structure Output Size (Volume)

1 Conv (7 X 7, 32, stride = 1) + BN + Activation Input = 256 x 256 x 3
Maxpool (3 x 3) Output= 85 x 85 x 32
ConvBlock (3 x 3, [32,32,64], stride = 1)

2 2 x (ID_block (3 x 3, [32,32,64]) 85x 85x 128
ConvBlock (3 x 3, [64,64,256], stride = 2)

3 3 x (ID_block (3 x 3, [64,64,256]) 43 %43 %256
ConvBlock (3 x 3, [128, 128, 256], stride = 2)

4 4 x (ID_block (3 x 3, [128, 128, 256]) 22%22x512
ConvBlock (3 x 3, [256, 256, 1024], stride = 2)

5 2 x (ID_block (3 x 3, [256, 256, 1024]) T X 1024

Outout Global Average Pooling (2 X 2) f;;gox 1024
p FlattenFC (n classes, softmax) 5 !
ConvBlock:

Conv (1 x 1, [Filter], stride = 1) + BN + Activation BN = Batch Normalization
Conv (KernelSize, [Filter], stride = 1) + BN + Activation

Conv (1 x 1, [Filter]) + BN

Shortcut = Conv (1 X 1, [Filter], stride = s) + BN

Add (Shortcut + ID_block) + Activation

ID_block:

Conv (1 x 1, [Filter], stride = 1) + BN + Act, stride = s
Conv (KernelSize, [Filter], stride = 1) + BN + Act
Conv (1 x 1, [Filter], stride = 1) + BN

Add (ID_block + Shortcut) + Act

4.4. Inception-ResNet

In 2015, Inception-v2 and Inception-v3 [32] proposed a number of upgrades over the original
Inception architecture to increase the accuracy and reduce the computational complexity: Inception-v2
introduced factorization (factorizing convolutions into smaller convolutions: traditional 7 X 7 convolution
into three 3 x 3 convolutions), while Inception V3 added Batch Normalization-auxiliary (in which the
FC layer is also-normalized, not just the convolutions; batch normalization reduces the amount by
what the hidden unit values shift around and allows each layer of a network to learn by itself with a
higher degree of independency).

Inception-ResNet [5] was introduced the following year, together with the fourth iteration of
Inception (v4). Here, the authors focused on making the modules more uniform and simplifying some
of them, while adding Residual blocks to enable the gradient flow through shortcuts added to main
path. This architecture obtained the highest score at ILSVRC 2016.

Given the increased complexity of this architecture, we only modified the classifier added on
top of the convolutional base and applied transfer learning techniques while tweaking the standard
hyperparameters. The classifier added on top consists of a GAP layer over a 2 X 2-pixel window, a FC
layer with 512 neurons using ReLU activation function, a Dropout layer with a rate of 0.5 and a final
FC layer of size 1 using sigmoid activation function.

4.5. Ensemble-V?2

On the other hand, as stated in the introduction, we wanted to address the significant difference in
performance found in [7] when testing the models on data with different vegetation coverage separately.
We propose a second variant of the ensemble model (Figure 5) using a specialized model on the subset
only formed by tiles from the area with the lower performance metrics and a generic model trained
on the entire dataset. Their predictions will be fed into a terrain type classifier (which will act as an

Remote Sens. 2020, 12, 765 9 of 22

arbitrary combiner algorithm) that infers the type of vegetation the tile contains and decides which of
the two predictions will be the final one. In other words, the ensemble will use a network to infer the
type of vegetation coverage in a tile and, based on that result, will decide the final prediction.

Input / \

Specialized
Model

N Model
(X) \

Figure 5. The second variant of the ensemble model inferring the prediction using a terrain type classifier.

yinferred Prediction

Terrain type .
(probability score)

classifier

Ensemble-\/y

5. Experiments

The goal is to learn a classifier that can input an image represented by a feature vector (tensor)
X and predict whether the corresponding label is 1 or 0. The learning process is done using
convolution operations, which preserve the relationship between pixels by learning image features
(moving from discriminating features at a local level in the earlier layers towards generalizing these
features at a global level in the later layers). Convolution (*) is an operation on two functions
S[i,jl = (K=I)(1i, j) = X Y. I(i—m, j—n)K(m,n), where the first argument is referred to as the input

(the function I is a 2-D ;nrrnay with two indices (1, n) of the spatial coordinates of pixels), the second
argument is referred as the kernel, while the output S is referred as a feature map. We can say that S is
produced by convolving filter K of dimensions 1, n across all the input I of dimensions i, j. In the case
of RGB images, we have to add one more index of the different colour channels (resulting a 3-D tensor);
software implementations usually work in batch mode, so we have to add a fourth axis indexing the
samples in the batch (4-D tensors) [33].

In our case, a single training example is represented by a pair (x, y), where x is an 3-D feature
vector and y (the label) is either O or 1. Our dataset (Table 1) comprises of n = 18,000 samples
(x(l), y(l)), ey, (x(”), y(”)) with dimensions of 256 x 256 x 3. We split our dataset by randomly
assigning the tiles into the following three sets:

e A full training set of 14,400 tiles (80% of the data) and five training subsets containing 90% of the
full training set (12,960 tiles) with their corresponding labels were used to perform the weights
initialization. The five subsets represent variations of the training population and were used to
repeat the experiments and to conduct a statistical analysis of the performance metrics;

e A validation set (10% of the data) was formed by 1800 tiles and used for tuning the
model’s hyperparameters and comparing how changing them would affect the model’s
predictive performance;

e A testset (10% of the data) containing 1800 tiles to evaluate the performance of the models on
unseen data.

According to the literature conventions [34,35], we have also considered other data splits, but
the initial results were lower (as seen in Table 4) when compared to the 80%-10%-10% split described
above, so we decided to carry on the experiments only with the data split allowing for more training
data. The other mentioned splits favour higher ratios of validation and testing data and could be the
preferable approach when dealing with very large datasets, but are not desired when tackling complex
classification tasks with limited datasets.

Remote Sens. 2020, 12, 765 10 of 22

Table 4. Results of the initial tests.

Data Split Metric Initial Results (Each Column Represents a Trained Configuration)

Loss 0.2219 0.2411 0.2123 0.2233 0.1601 0.1816

Accuracy 0.9262 0.9271 0.9264 0.9331 0.9409 0.9391

50%-25%-25% Precision 0.8829 0.9158 0.8693 0.8379 0.8554 0.8686
Recall 0.8916 0.8604 0.9107 0.8613 0.8569 0.8431

F1 score 0.8800 0.8873 0.8895 0.8494 0.8561 0.8557

Loss 0.2139 0.2087 0.1729 0.1901 0.1696 0.1678

Accuracy 0.9372 0.9355 0.9433 0.9361 0.9406 0.9394

60%-20%-20% Precision 0.9028 0.8978 0.9137 0.9099 0.9137 0.9096
Recall 0.8978 0.9078 0.9056 0.8867 0.8944 0.8944

F1 score 0.9003 0.9028 0.9096 0.8981 0.9040 0.902

Loss 0.1560 0.1811 0.1624 0.1468 0.1733 0.1551

Accuracy 0.9511 0.9461 0.9483 0.9533 0.9367 0.9472

80%-10%-10% Precision 0.9133 0.9068 0.9198 0.9216 0.8938 0.9244
Recall 0.9133 0.9078 0.9044 0.9011 0.8978 0.8967

F1 score 0.9133 0.9073 0.912 0.9112 0.8958 0.9103

We implemented the framework and the base models presented in Section 4 in the open-source
Python deep learning library Keras [36] (with TensorFlow 1.14 [37] as backend) using an NVIDIA
2060 GPU mounted on a system with a 12-core Intel I7-8700 CPU and 16 GB RAM.

In all the experiments, we applied data augmentation techniques on the training set, including
random horizontal and vertical flipping of the input images, random rotations, random horizontal and
vertical translations and random zooms to avoid overfitting and allow the model to generalize better,
given that it never sees the same tile twice. To avoid losing important information around the edges of
the tile, we used small augmentation parameters. To fill out the pixels created after these operations
outside the boundaries of the input, we used the ‘nearest neighbour” interpolation technique. An
example of data augmentation applied to a random tile can be seen in Figure 6. It is important to
note that the batches of augmented tensor image data used for training were generated in-memory in
real-time and were not stored on the disk.

Figure 6. Data augmentation applied to a random tile.

In the experiments, we used stochastic gradient descent to optimize the network’s loss (cost)
function (a standard binary-class cross-entropy). As activation functions, we generally used ReLU
non-linearity for the convolutional layers and the first FC layer and sigmoid for the last FC layer
(encoding the probability of a class or the other).

Remote Sens. 2020, 12, 765 11 of 22

For training, we used small learning rates (from 1 X ¢=® up to 1 X ¢72) to ensure a stable learning
process and chose a standard number of 100 epochs for an initial observation of the network’s behaviour
(this number was subsequently increased or decreased depending on the network’s convergence).
The goal of the experiments was to identify the classifiers with the lowest classification error for each
of the architectures proposed.

In the case of the CNN formed by stacked convolutional layers followed by max-pooling layers
(presented in Section 4.1), we modified the number of filters/convolutions, the network’s depth (to
obtain feature maps of different sizes), and we increased the size of the kernel from 3 x 3 to 5 x 5.
The optimizer used in all scenarios was Adam [38] (considered to be the fastest to converge [39]) with
a learning rate of 1 x e™*.

In the case of the VGGNet-like architecture (proposed in 4.2), we gradually increased the number
of convolutional blocks from three to five and applied a different number of filters/convolution blocks
(from [32, 64, 64] to [32, 64, 64, 64, 128]). We also used different optimizers to study their impact on
the learning process: Adam with learning rates (Ir) of 1 x e73/1 x ¢4, the standard SDG [40] (with a
learning rate of 1 X ¢72, decay of 1 X ¢~ and Nesterov Momentum [41] of 9 X e~! as proposed by the
authors of [3]) and an RMS props optimizer [42] with a learning rate of 1 X e~. The classifier was also
modified by choosing different number of units in the first FC layer (256 and 512) and by using a GAP
layer instead of Flatten before the FC layers [43].

Furthermore, we also applied transfer learning techniques (especially fine-tuning, where we
unfreeze a portion of the layers from a frozen convolutional base and retrain them together with
the classifier added on top). In [7], we observed that pre-trained models are sensible to changes,
their performance changing depending on where we start to update the weights—retraining starting
from a network’s early levels lowered the performance (updating the weights damaged the features
learnt [44]); therefore, we only fine-tuned the upper convolutional blocks.

In the case of ResNet, we trained the architecture proposed in Chapter 4.3 after modifying the
number of layers/convolution and using different activation functions (ReLU, PReLU and LeakyReLU).
Given the complex nature of Inception-ResNet, we only applied transfer learning techniques: feature
extraction (retraining the classifier added on top) and fine-tuning for the last convolutional blocks
with learning rates of 1 X ™ and 1 x ¢™®. Finally, we trained the original networks from scratch for
comparison. The training scenarios described above are presented in Table 5.

Table 5. Training scenarios.

Base Filters/Conv Size of the Last FC Units Optimizer and

N Architecture Configuration (Block) Feature Map (Classifier) Learning Rate Other Aspects
1 4 x convolutional [32, 64, 128, 128] 14 x 14 x 128
. blocks
[1 -
2 5 5 x convolutional 3, o) 155 128 128] 6%6x128
B0 blocks
=
3 z 5 x convolutional 15, 04 195 128,256] 66256 512,1 Adam (Ir =1xe7)
Z blocks P
] :
4 E 5 x convolutional 3, o) 158 256 51] 6%6x512
a blocks
5 5 convolutional 5, ¢4 128 128,256] 4 x4x256 Filter size =5 x 5
blocks
6 - ilzcck"snv"hm"“al 32, 64, 64] 28 % 28 X 64 256,1
2 SDG (Ir=1xe2,
I . — —5
7 g Axconvolutional 15 oy oy 64 12x 12 x 64 512,1 decay =1xe™,
\Z/ blocks Nesterov momentum
; =9xel)
8 g 5xconvolutional 5, o) 0464 108 8x8x128 512,1
> blocks
~
s = 4 i;cfs“""l‘““’“al [32, 64, 64, 64, 128] 8x8x128 512, 1
8 g Adam (Ir=1xe™)
0 7 5 x convolutional [32, 64, 64, 64, 128] 8 x8x 128 256, 1

blocks

Remote Sens. 2020, 12, 765 12 of 22
Table 5. Cont.
o Base N . Filters/Conv Size of the Last FC Units Optimizer and
Architecture Configuration (Block) Feature Map (Classifier) Learning Rate Other Aspects
11 Fine-tuning the last Adam (Ir = 1x¢7%)
12 a2 convolutional block 5101 VR — (= 1xcd) Glol{al Ayerage ’
g (ImageNet weights) Default g _Adamr=1xe) Eloo ing instead o
13 g configuration [3] 8% 8x512 RMSprop (Ir =1xe7%) atten
=
& No weights (from _ ” MSRA [30]
14 scratch) 3] Adam (Ir=1x¢7%) initialization
15 Activation = ReLU
Activation = Leak
16 B Modified ResNet Described in Table 3 Adam (Ir =1 xe™%) crvation = Leaky
2 ReLU
2 - 0000000000
17 g Activation = PReLU
No weights (from Default) _ ”
18 scratch) configuration [4] 882048 4] Adam (Ir =1x¢™)
19 - Feature Extraction Adam (Ir = 1 xe™%)
2 bttt e 7
20 % Fine-tuning the last Adam (Ir = 1 x ¢6) qubal Average
& module Default 512,1 Pooling instead of
< - -) . 6% 6x 1536 Flatten
”n 8 Fine-tuning the last configuration [5] Adam (Ir=1xe73)
o 2 modules
- 9
5 No weights (from - !
z scratch) [51 Adam (Ir =1 xe7%) -
23 ggiil:\nt [: Average Described in Figure 3 _
— Ensemble]
24 Variant II Described in Figure 5

Specialized model

6. Results and Discussion

After selecting the weights using the training and validation sets, we evaluated the generalization
capacity of the models using the test set containing unseen data (with a support of 900 tiles for each
class) and obtained the confusion matrices (or error matrices) of the classification operation (an example
can be found in Figure 7).

no road

Actual class

300

road
200

100

Predicted class

Figure 7. Confusion matrix obtained by the best performing configuration (Ensemble-V1—based on
average voting of weak learners).

From the confusion matrices, we calculated the following performance metrics: precision
(the number of true positive predictions divided by the total number of positive class values), recall
(the number of true positive predictions divided by the number of true positives and false negatives)
and F1 score (indicating the balance between the precision and the recall). The last metric is the Area
Under the Receiver Operating Characteristic Curve (ROC-AUC) computed from prediction scores.
This measure tends towards 1.0 when only a little precision has to be sacrificed to get a high recall,
and towards 0.5 for the opposite case, and shows how much a model is capable of distinguishing
between classes.

Remote Sens. 2020, 12, 765 13 of 22

To statistically analyse the results, we repeated the training and evaluation of the configurations
described in Table 5 using the five training subsets (containing 12,960 tiles randomly obtained from the
full training set).

After an initial evaluation of the proposed configurations, we selected the best performing ones
and stacked them as described in Figures 3 and 5. This way, the first variant of ensemble model
averages their predictions of the models resulting from training scenarios 2, 11, 15 and 20. For the
second variant of the ensemble, we selected three weak learners: a generic model (configuration 4,
trained on the whole dataset) and a specialized model (based on configuration 11 retrained on a dataset
containing only tiles from the Mediterranean areas, where it obtained a AUC-ROC score of 0.9697),
together with a terrain type classifier trained to infer the ensemble’s prediction based on the vegetation
coverage in a tile (based on configuration 2, which obtained an accuracy score of 0.9628, with a loss of
0.0989 on the validation set). Here, given the prediction of the specialized model in classifying roads
in Mediterranean areas and the prediction of a generic mode, we are left with the one inferred by
the classifier trained to detect the type of vegetation coverage in a tile (the generic prediction if the
classifier detects green areas or the prediction of specialized weak learner in the opposite case).

The performances of the configurations were afterwards compared using one-way analysis of
variance (ANOVA) with the performance metric as the dependent variable and the configurations as
the levels of a fixed factor. To test the null hypothesis that the performances of all configurations are
the same, the F statistic is computed from the ANOVA table and reported in Table 6 for each of the
performance metrics. The alternative hypothesis is that at least one of the configurations has a different
performance than the others.

Table 6. Mean (M) and standard deviation (SD) of the performance metrics obtained by the configurations

described in Table 5.
Config. Accuracy Loss Precision Recall F1 AUC-ROC
N® M SO M SD M SD M SD M SD M SD
1 0931 0.003 0.183 0.006 0907 0.017 0891 0.026 0.899 0.006 0.949 0.002
2 0940 0.006 0.164 0.014 0912 0.010 0897 0.007 0922 0.035 0.952 0.003
3 0938 0.004 0166 0.012 0913 0.010 0892 0.016 0902 0.005 0.950 0.003
4 0940 0.007 0.170 0.012 0913 0.008 0.892 0.021 0902 0.008 0.950 0.003
5 0936 0.005 0.184 0.006 0903 0.011 0.894 0.007 0.898 0.005 0.943 0.001
6 0941 0.005 0.178 0.022 0903 0.005 0905 0.008 0904 0.004 0.948 0.004
7 0945 0.002 0162 0.010 0914 0.004 0899 0.003 0906 0.002 0.948 0.003
8 0943 0.007 0164 0.019 0.893 0.047 0898 0.012 0906 0.006 0.948 0.003
9 0943 0.003 0.157 0.006 0914 0.009 0.896 0.006 0905 0.002 0.949 0.003
10 0943 0.002 0.157 0.002 0909 0.009 0903 0.007 0906 0.002 0.948 0.002
11 0945 0.002 0.169 0.013 0919 0.012 0917 0.014 0918 0.013 0.967 0.002
12 0945 0.004 0.190 0.017 0912 0.007 0909 0.008 0911 0.008 0.964 0.002
13 0928 0.026 0.281 0.034 0939 0.018 0941 0.021 0940 0.019 0.956 0.009
14 0939 0.008 0.157 0.015 0916 0.017 0913 0.020 0914 0.018 0.967 0.001
15 0923 0.008 0.201 0.026 0919 0.006 0917 0.007 0921 0.006 0.952 0.003
16 0920 0.029 0.189 0.027 0920 0.018 0918 0.020 0922 0.018 0.946 0.006
17 0917 0.014 0.219 0.035 0922 0.009 0922 0.011 0924 0.009 0.948 0.003
18 0910 0.012 0.218 0.022 0929 0.020 0934 0.024 0932 0.022 0956 0.003
19 0.863 0.011 0.403 0.031 0946 0.006 0958 0.006 0952 0.006 0.931 0.002
20 0.862 0.003 0326 0.011 0954 0.003 0965 0.003 0960 0.003 0.938 0.003
21 0.875 0.032 0389 0.111 0953 0.009 0962 0.011 0958 0.010 0.930 0.021
22 0934 0.013 0.172 0.031 0.939 0.002 0942 0.002 0.941 0.002 0962 0.004
23 0956 0.002 0.132 0.008 0966 0.006 0945 0.005 0.955 0.002 0.991 0.001
24 0946 0.003 0.156 0.014 0953 0.012 0938 0.018 0946 0.004 0.984 0.002
Total 0928 0.028 0.204 0.076 0924 0.023 0919 0.027 0923 0.023 0953 0.015
F-statistic 22.738 29.680 8.768 15.042 14.423 34.520
p-value 1 0.000 0.000 0.000 0.000 0.000 0.000

1A p-value smaller than 0.05 implies that null hypothesis is to be rejected at a level of significance of 5% and there is
a significant difference in performance between the configurations.

Remote Sens. 2020, 12, 765 14 of 22

In Table 6, we observe that all p-values are smaller than 0.001; therefore, the configurations are
significantly different in each of the performance metrics. However, the analysis of variance F-statistics
and their p-values does not reveal which configurations are different from the others when there is
a significant difference. To have a detailed comparison of the performance of the configurations in
different metrics, Figure 8 shows the boxplots of the performances for different configurations.

AT IEAL "”5' i .
i‘ P
$) ! L
I » ;§lgéiq¢-?* -*mé, ! -

1 2 3 45 6 7 8 9 1011121314 1516 17 1819 20 21 22 23 24 1 2 3 4 5 6 7T 8 9 101112131415 16 17 16 19 20 21 22 23 24

Accuracy
Loss

Configuration Configuration
1.00
Lo i b
05 l o i i - " e
i ‘ o I .]
g L B - B =
S BR E RN RS & 3 i
s © = & ‘ i
1 23 45678 91011121314 15186 1718192021 222324 8 9 1011213141516 171819 2021 2223 24
Configuration Configuration
1.00
b
o L]
T *
96 L 9 ¥ i g]
] . o 0 -
o o 7 - *
* i 8 Pt jeate * g
T ow ~ — Tom L - ¥ I
g o
Ry) ’
Rl
90 i'*.ii**?T
123 45678 010111213141516 1718192021 222324 12 345 6 7 8 91011121314 1516 17 16 19 20 21 2223 24
Configuration Configuration

Figure 8. Boxplots of performance measures of obtained by the configurations described in Table 5.

Figure 8 shows that the two versions of the ensemble (configurations 23 and 24) obtained the highest
overall accuracies, precisions and AUC-ROC scores, while obtaining the lowest losses. The lowest
accuracies, ROC-AUC scores and the maximum losses are observed when applying transfer learning
(feature extraction and fine-tuning) to Inception-ResNet (configuration 19, and 20 and 21). Among
Inception-ResNet base architecture, configuration 22 (where we trained the network from scratch)
obtained a significantly higher accuracy compared to configurations 19, 20 and 21. The maximum
average recall and F1 score is observed for configuration 20, closely followed by 21, while the lowest
recall and F1 score is observed for configuration 1.

The accuracies obtained by configurations 1 — 14 are similar, with small variations in the 93.1-94.5%
interval. The lowest precision was obtained by configuration 6, while the precisions for configurations
1-12, 14-17 are very similar. Except for configurations 11-14 and 22, all other configurations have very
similar AUC-ROC values (between 0.935-0.945).

Configuration 13 has a significantly higher recall and F1-score compared to the other VGGNet
architecture configurations. We can see that by fine-tuning VGGNet's pre-trained weights, we obtained

Remote Sens. 2020, 12, 765 15 of 22

the highest single results. One reason for this might be the VGGNet’s compact architecture, designed
to gradually increase the semantic complexity. It is important to note that VGG16 trained from scratch
(configuration 16) only converged when applying He normal (MSRA) initializer [35] to the first FC layer.

Next, to formally analyse the pairwise comparison of performances of the configurations in
terms of AUC-ROC (the metric score preferred and considered one of the most appropriate for image
classification tasks in [45]), we present the post-hoc test results for AUC-ROC using Tukey’s HSD test.
Tukey’s HSD test statistic compares two configurations at a time using a ¢-test adjusted for overall
variability of the data. The post-hoc tests are designed in such a way that it maintains the level of
significance or the probability of type I error at 5% with all pairwise comparisons taken together.
Table 7 reports the homogenous subsets of configurations in terms of AUC-ROC score.

Table 7. Homogenous subset of configurations with post-hoc tests for area under curve (AUC)-receiver
operating characteristic (ROC).

Config. Homogeneous Subsets
N°® 1 2 3 4 5 6 7 8
21 0.930
19 0.931
20 0.938 0.938

5 0.943 0.943 0.943
16 0.946 0.946 0.946
10 0.948 0.948 0.948
8 0.948 0.948 0.948
6 0.948 0.948 0.948
7 0.948 0.948 0.948
17 0.948 0.948 0.948

9 0.949 0.949 0.949

1 0.949 0.949 0.949

3 0.950 0.950 0.950 0.950

4 0.950 0.950 0.950 0.950

2 0.952 0.952 0.952 0.952

15 0.952 0.952 0.952 0.952

13 0.956 0.956 0.956 0.956

18 0.956 0.956 0.956 0.956

22 0.962 0.962 0.962

12 0.964 0.964

14 0.967

11 0.967

24 0.984

23 0.991
Sig. 0.057 0.051 0.436 0.395 0.077 0.061 0.179 0.907

Configurations within a homogenous subset are not significantly different from each other at
a 5% level of significance. For example, configurations 21, 19, 20 and 5 do not have significantly
different AUC-ROC scores. However, configurations that are not common in two homogenous subsets
are significantly different. For example, configurations 23 and 24 (the ensemble variants) are not
significantly different from each other but have significantly higher AUC-ROC compared to all other
configurations. These post-hoc test results asserts our observations in Figure 8 boxplots.

On the other hand, by plotting the training time, the number of parameters and the number of
epochs before convergence (Figure 9) and crossing the data with data from Table 5, we can study the
effect of the hyperparameters on the training behaviour.

Remote Sens. 2020, 12, 765 16 of 22

1,200 200,000,000
1,000 Training time / epoch
0 400 + = Epochs until convergence 150,000,000
U
'g«‘ N® trainable parameters E
= o000 100,000,000 &
= 3
E 400 o
= 50,000,000 £
200
0 0

1 2 3 4 5 6 7 8 9 1011 12 13 14 15 16 17 18 19 20 21 22

Configuration

Figure 9. Graph showing the relationship between the training time, the number of parameters and
epochs before convergence for the configuration.

We can observe that the training time was highly dependent on the number of trainable parameters,
which in turn is dependent on the depth of the networks, the number filters applied in each layer,
and the number of units in the classifier.

Changing the activation functions (configurations 15-17) increased the number of parameters from
6 to 17 million, while not significantly improving the results. A higher number of convolutional blocks
and a higher number of units in the classifier allowed the networks to better learn the characteristics
of the secondary roads with the downside of higher computational needs. Increasing the size of
the filters (from 3 X 3 to 5 X 5—configuration 5) did not improve the results and resulted in a more
pronounced overfitting behaviour. Using the Adam optimizer resulted in a convergence twice as fast
when compared to SDG (configurations 6-9) and 1.5 times faster when compared to RMSprop [46]
(configuration 13).

Next, we compared the performances of the configuration grouped on their base architectures
using one-way analysis of variance (ANOVA) with the performance metric as the dependent variable
and the base architecture as the levels of a fixed factor.

To test the null hypothesis that the performances of all architectures are the same, the F-statistic
is computed from the ANOVA table and reported in Table 8 for each of the performance metric.
The alternative hypothesis is that at least one of the architectures has a different performance than
the others. We can observe that all p-values are smaller than 0.001; therefore, the base architectures
are significantly different in each of the performance metrics. However, the analysis of variance with
F-statistics and their p-values do not reveal which architectures are different from the others when
there is a significant difference. To have a detailed comparison of the performance of the architectures
in different metric, Figure 10 shows the boxplots of the performances for the base architectures.

Table 8. Mean (M) and standard deviation (SD) of the performance metrics obtained by the configurations
described in Table 5 grouped by their base architectures.

. Accuracy Loss Precision Recall F1 AUC-ROC
Base Architecture
SD M SD M SD M SD M SD M SD
Built CNN 0937 0.006 0174 0.013 0910 0.011 0893 0.016 0.905 0.018 0.949 0.004
VGG-like CNN 0943 0.004 0.164 0.015 0907 0.022 0900 0.008 0.905 0.003 0.948 0.003
VGGNet 0939 0.014 0.199 0.054 0921 0.017 0920 0.020 0921 0.018 0.964 0.006
Resnet50 0917 0.017 0.207 0.028 0923 0.014 0923 0.017 0925 0015 0951 0.005
Inception-ResNet 0.883 0.035 0.322 0.109 0948 0.008 0.957 0.011 0953 0.010 0.940 0.016
Ensemble-V1 0956 0.002 0.132 0.008 0966 0.006 0945 0.005 0955 0.002 0.991 0.001
Ensemble-V2 0946 0.003 0.156 0.014 0953 0.012 0938 0.018 0946 0.004 0.984 0.002
Total 0928 0.028 0.204 0.076 0924 0.023 0919 0.027 0923 0.023 0953 0.015
F-statistic 32.480 23.600 27.736 46.689 39.445 49.889
p-value ! 0.000 0.000 0.000 0.000 0.000 0.000

1 A p-value smaller than 0.05 implies that null hypothesis is to be rejected at a level of significance of 5% and there is
a significant difference in performance between the configurations.

Remote Sens. 2020, 12, 765 17 of 22

il
HIH
i
4k

T e “
g -
»
g 4 °
<
° 30
o
om -i- ﬁ * -
=
10
CNN VGG.CMN VGGnst ResnstsD [r)(:;:a:‘h';r\ Ensemble Ensambls o VGG-CMM VGGnet Resnet50 Inception Ensemble Ensemble
eshiet Vi V2 ashlat Vi V2
Base Architecture Base Architecture
100

[

80

Precision
Recall

% ++;f;l§ R R

CNN VGG-CNN VGGnat Resnat50 Inception- Ensemble Ensemble CHN VGG-CHN VGGnel Resnets0 Inception Ensemble Ensemble
Reshet V1 V2 Reshet vi v2

V2

Base Architecture Base Architecture

o 98

94

F1
g
HEll—

4o
HE
AUC -RoC
Ik
HH
» o b
—lH
I

92 92
o
e
68 88
CNN VGG-CNN VGGnet Resnet50 Inception- Ensemble Ensemble CNM VGG-CNN VGGnet Resnetio Inception: Ensemble Ensemble
Reshat V1 v2 ResNat Vi v2
Base Architecture Base Architecture

Figure 10. Boxplots of performance measures for different base architectures.

To formally analyse the pairwise comparison of performances of the architectures in terms of
AUC-ROC scores, we present the post-hoc test results using Tukey’s HSD test in Table 9. Tukey’s HSD
test statistic compares two architectures at a time using a t-test adjusted for the overall variability of
the data. Architectures within a homogenous subset are not significantly different from each other at
5% level of significance.

Table 9. Homogenous subset of configurations with post-hoc tests for AUC-ROC.

Homogenous Subset
Base Architecture 8

1 2 3 4
Inception-ResNet 0.940
VGG-like CNN 0.948 0.948
Built CNN 0.949 0.949
Resnet50 0.951
VGGNet 0.964
Ensemble-V2 0.984
Ensemble-V1 0.991

Sig. 0.158 0.988 1.000 0.346

Remote Sens. 2020, 12, 765 18 of 22

We can see again that the ensemble architectures do not have significantly different AUC-ROC
scores among themselves, but they have significantly higher AUC-ROC scores compared to all
other architectures. They are followed by VGGNet, which has a significantly higher AUC-ROC
score than ResNet50, Built CNN, VGG-liked CNN and Inception-ResNet, but significantly lower
AUC-ROC score compared to Ensemble V1 and V2. VGG-like CNN, CNN and ResNet50 architectures
are not significantly different in AUC-ROC among themselves but ResNet50 has a significantly
higher AUC-ROC than Inception-ResNet. These post-hoc test results asserts our observations in
Figure 10 boxplots.

We can observe significant improvements; the two variants of the ensemble obtain considerably
lower error rates when compared to the weak learners evaluated separately. The classifier with the
lowest classification errors (Ensemble-V1, based on average voting between four models) obtained an
increase in performance metrics by the order of 3—4%. These values are remarkable considering the
computational optimization of the weak learners stacked (Figure 10).

Ensemble-V2 (Figure 5) used a weak learner to detect the vegetation coverage in a tile and, based
on that probability, it decided on the use of the prediction provided by the generic base model or the
prediction of the base model specialized in classifying roads in Mediterranean areas. This architecture
obtained improvements of 2-3% when compared to the single generic model (configuration 11).
We believe this value can be further improved by increasing the size of the subset used for training the
base model specialized in detecting roads in areas with Mediterranean vegetation coverage (the current
3600 tiles/category can be considered insufficient). These models were exported to hdf5 format and
can be later deployed in production.

By constructing an ensemble, the learning algorithms were able to learn about the complexity of
the road characteristics by leveraging the weaknesses of each architecture to find a better hypothesis and
improve the performance metrics. On the other hand, even though we reduce the risk of choosing the
wrong classifier, we noticed a lack of sufficient data, especially when trying to build a specialized model.
We consider that, in order to progress correctly in the design and evaluation of CNN architectures,
it is essential to have a larger data set taking into account the complexity of the road detection task
(geometry, soil types, difference in size).

Regarding the transfer learning operation, we found that by initializing the network from
pre-trained weights, the performance metrics were greatly improved (by the order of 8-10%) when
compared to random initialization. This enabled a better convergence, even though our task was very
different from the original one, and proved the effectiveness of the operation. When using transfer
learning it is important to apply stronger regularization to control the overfitting behaviour, which
occurs when the model has too many degrees of freedom and starts overcomplicating the true structure
of the data [47], resulting in models unable to perform well on testing data.

We have mentioned earlier that the characteristics learned by CNN are a representation of real
visual concepts. We can visualize the activations produced by performing several convolutions to
understand how the input image was decomposed into the features the network learned. For example,
in Figure 11, we can visualize activations produced by one of the configurations and see how it
“learned” that a road is probably a straight, continuous line. After running a linear activation through
a nonlinear activation function (detector stage, e.g., ReLU), we use a pooling function to modify the
output of the layer further and reduce its dimensions. We can see that the networks trained for road
classification are able to detect even secondary roads that are almost indistinguishable by humans.
In the image below, we can see that the model correctly identified the main road and started to mark a
potential second road, that is much more difficult to perceive.

Remote Sens. 2020, 12, 765 19 of 22

Figure 11. An example of activations (outputs of convolutional layers) learned by configuration 3.

7. Conclusions and Future Lines of Research

Ensembling multiple models proved to be a powerful technique to boost the performance of our
deep learning system for continuous objects detection in aerial images. We saw that by nesting two
or more weak learners (modified versions of popular CNN architectures), our framework built for
the road classification task obtained an increase of 2-3% in performance (achieving AUC-ROC scores
superior to 0.99) when compared to the base architectures. The results prove the effectiveness of model
nesting techniques; at the end of the training process, the proposed framework achieved significantly
better generalization scores on unseen data. These high performance scores (the first variant of the
ensemble reached accuracy levels of 0.9661 when trained on the full dataset) can also be considered an
indicator of the appropriateness of approaching the road extraction task with a classification subtask.

The generalization scores show a low level of overfitting and prove that the characteristics needed
for recognizing the labels were included in the training dataset. However, we consider that a production
model used to detect roads will require a bigger initial dataset with much more variation in the data.
We plan to design a crowdsourcing project aimed at generating a larger dataset by deploying a web
application in which volunteers can learn about the objective and impact of their contributions.

Next, we will start working on the segmentation operation, applying it only to the tiles where
transport routes were detected. We also plan to develop a post-processing technique to join road
geometries from adjacent tiles and apply topological rules to fill out the missing parts and obtain
continuous vectors.

Author Contributions: In this study, Conceptualization, C.-1.C.; Data curation, C.-1.C.; Formal analysis, C.-1.C.;
Funding acquisition, M.-A.M.-C. and ES.; Investigation, C.-.C. and R.A.; Methodology, C.-I.C. and R.A.; Project
administration, R.A., M.-A.M.-C. and ES.; Resources, R.A., M.-A.M.-C. and FS.; Supervision, R.A.,, M.-AM.-C.
and ES.; Validation, C.-L.C., R.A., M.-AM.-C. and ES.; Visualization C.-1.C.; Writing—original draft, C.-1.C.;

Writing-review & editing, C.-1.C., R.A., M.-A M.-C. and ES. All authors have read and agreed to the published
version of the manuscript.

Funding: This research received funding from the Cartobot project, in collaboration with Instituto Geografico
Nacional (IGN), Spain.

Acknowledgments: We thank all Cartobot participants for their help in generating the dataset.

Conflicts of Interest: The authors declare no conflict of interest.

Remote Sens. 2020, 12, 765 20 of 22

References

1.

10.

11.

12.

13.

14.

15.

16.

17.

18.

Russakovsky, O.; Deng, J.; Su, H.; Krause, J.; Satheesh, S.; Ma, S.; Huang, Z.; Karpathy, A.; Khosla, A.;
Bernstein, M.; et al. ImageNet Large Scale Visual Recognition Challenge. Int. . Comput. Vis. 2015, 115, 211-252.
[CrossRef]

Sirotkovic, J.; Dujmic, H.; Papic, V. Image segmentation based on complexity mining and mean-shift
algorithm. In Proceedings of the 2014 IEEE Symposium on Computers and Communications (ISCC), Funchal,
Portugal, 23-26 June 2014; pp. 1-6.

Simonyan, K.; Zisserman, A. Very Deep Convolutional Networks for Large-Scale Image Recognition.
In Proceedings of the Contribution to International Conference on Learning Representations (ICLR),
San Diego, CA, USA, 7-9 May 2015.

He, K.; Zhang, X.; Ren, S.; Sun, J. Deep Residual Learning for Image Recognition. In Proceedings of the 2016
IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27-30 June 2016;
pp. 770-778.

Szegedy, C.; loffe, S.; Vanhoucke, V.; Alemi, A. Inception-v4, Inception-ResNet and the Impact of Residual
Connections on Learning. In Proceedings of the Thirty-First AAAI Conference of Artificial Intelligence,
San Francisco, CA, USA, 4-9 February 2017.

Cira, C.-I.; Alcarria, R.; Manso-Callejo, M.-A; Serradilla, F. A Deep Convolutional Neural Network to Detect
the Existence of Geospatial Elements in High-Resolution Aerial Imagery. Proceedings 2019, 19, 17. [CrossRef]
Cira, C.-I; Alcarria, R.; Manso-Callejo, M.-A.; Serradilla, F. Evaluation of Transfer Learning Techniques with
Convolutional Neural Networks (CNNs) to Detect the Existence of Roads in High-Resolution Aerial Imagery.
In Applied Informatics; Florez, H., Leon, M., Diaz-Nafria,]. M., Belli, S., Eds.; Springer International Publishing:
Cham, Switzerland, 2019; Volume 1051, pp. 185-198, ISBN 978-3-030-32474-2.

Chollet, F. Deep Learning with Python; Manning Publications Co.: Shelter Island, NY, USA, 2018;
ISBN 978-1-61729-443-3.

Cai, B,; Jiang, Z.; Zhang, H.; Zhao, D.; Yao, Y. Airport Detection Using End-to-End Convolutional Neural
Network with Hard Example Mining. Remote Sens. 2017, 9, 1198. [CrossRef]

Zuo, J.; Xu, G,; Fu, K; Sun, X.; Sun, H. Aircraft Type Recognition Based on Segmentation with Deep
Convolutional Neural Networks. IEEE Geosci. Remote Sens. Lett. 2018, 15, 282-286. [CrossRef]

Ding, P.; Zhang, Y.; Deng, W.-].; Jia, P; Kuijper, A. A light and faster regional convolutional neural network
for object detection in optical remote sensing images. ISPRS]. Photogramm. Remote Sens. 2018, 141, 208-218.
[CrossRef]

Alidoost, F,; Arefi, H. A CNN-Based Approach for Automatic Building Detection and Recognition of Roof
Types Using a Single Aerial Image. PFG]. Photogramm. Remote Sens. Geoinf. Sci. 2018, 86, 235-248. [CrossRef]
Chen, Q.; Wang, L.; Wu, Y.; Wu, G.; Guo, Z.; Waslander, S.L. Aerial Imagery for Roof Segmentation:
A Large-Scale Dataset towards Automatic Mapping of Buildings. ISPRS]. Photogramm. Remote. Sens. 2019,
147, 42-55. [CrossRef]

Yang, H.L.; Yuan, J.; Lunga, D.; Laverdiere, M.; Rose, A.; Bhaduri, B. Building Extraction at Scale Using
Convolutional Neural Network: Mapping of the United States. IEEE |. Sel. Top. Appl. Earth Obs. Remote Sens.
2018, 11, 2600-2614. [CrossRef]

Li, Y,; Zhang, Y.; Huang, X.; Yuille, A.L. Deep networks under scene-level supervision for multi-class geospatial
object detection from remote sensing images. ISPRS |. Photogramm. Remote Sens. 2018, 146, 182-196. [CrossRef]
Sheppard, C.; Rahnemoonfar, M. Real-time scene understanding for UAV imagery based on deep
convolutional neural networks. In Proceedings of the 2017 IEEE International Geoscience and Remote
Sensing Symposium (IGARSS), Fort Worth, TX, USA, 23-28 July 2017; pp. 2243-2246.

Albert, A.; Kaur, J.; Gonzalez, M.C. Using Convolutional Networks and Satellite Imagery to Identify
Patterns in Urban Environments at a Large Scale. In Proceedings of the 23rd ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining—KDD 17, Halifax, NS, Canada, 13 September 2017;
pp. 1357-1366.

Hu, E; Xia, G.-S.; Hu,]J.; Zhang, L. Transferring Deep Convolutional Neural Networks for the Scene
Classification of High-Resolution Remote Sensing Imagery. Remote Sens. 2015, 7, 14680-14707. [CrossRef]

http://dx.doi.org/10.1007/s11263-015-0816-y
http://dx.doi.org/10.3390/proceedings2019019017
http://dx.doi.org/10.3390/rs9111198
http://dx.doi.org/10.1109/LGRS.2017.2786232
http://dx.doi.org/10.1016/j.isprsjprs.2018.05.005
http://dx.doi.org/10.1007/s41064-018-0060-5
http://dx.doi.org/10.1016/j.isprsjprs.2018.11.011
http://dx.doi.org/10.1109/JSTARS.2018.2835377
http://dx.doi.org/10.1016/j.isprsjprs.2018.09.014
http://dx.doi.org/10.3390/rs71114680

Remote Sens. 2020, 12, 765 21 of 22

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.
37.

38.

39.

Hutchison, D.; Kanade, T.; Kittler, J.; Kleinberg,]. M.; Mattern, E.; Mitchell,].C.; Naor, M.; Nierstrasz, O.;
Pandu Rangan, C.; Steffen, B.; et al. Learning to Detect Roads in High-Resolution Aerial Images. In Computer
Vision—ECCYV 2010; Daniilidis, K., Maragos, P., Paragios, N., Eds.; Springer: Berlin/Heidelberg, Germany,
2010; Volume 6316, pp. 210-223. ISBN 978-3-642-15566-6.

Alshehhi, R.; Marpu, PR.; Woon, W.L.; Mura, M.D. Simultaneous extraction of roads and buildings in remote
sensing imagery with convolutional neural networks. ISPRS J. Photogramm. Remote Sens. 2017, 130, 139-149.
[CrossRef]

Henry, C.; Azimi, S.M.; Merkle, N. Road Segmentation in SAR Satellite Images with Deep Fully-Convolutional
Neural Networks. IEEE Geosci. Remote Sens. Lett. 2018, 15, 1867-1871. [CrossRef]

Zhang, Z.; Liu, Q.; Wang, Y. Road Extraction by Deep Residual U-Net. IEEE Geosci. Remote Sens. Lett. 2018,
15, 749-753. [CrossRef]

Liu, Y; Yao, J.; Lu, X,; Xia, M.; Wang, X.; Liu, Y. RoadNet: Learning to Comprehensively Analyze Road
Networks in Complex Urban Scenes from High-Resolution Remotely Sensed Images. IEEE Trans. Geosci.
Remote Sens. 2019, 57, 2043-2056. [CrossRef]

Luque, B.; Morros,].R.; Ruiz-Hidalgo, J. Spatio-temporal Road Detection from Aerial Imagery using CNNs.
In Proceedings of the 12th International Joint Conference on Computer Vision, Imaging and Computer
Graphics Theory and Applications, Porto, Portugal, 27 February—1 March 2017; pp. 493-500.

Wang, Q.; Gao, J.; Yuan, Y. Embedding Structured Contour and Location Prior in Siamesed Fully Convolutional
Networks for Road Detection. IEEE Trans. Intell. Transp. Syst. 2018, 19, 230-241. [CrossRef]

Instituto Geografico Nacional Plan Nacional de Ortofotografia Aérea. Available online: https://pnoa.ign.es/
caracteristicas-tecnicas (accessed on 25 November 2019).

Gomez-Barrén, J.P.; Alcarria, R.; Manso-Callejo, M.-A. Designing a Volunteered Geographic Information
System for Road Data Validation. Proceedings 2019, 19, 7. [CrossRef]

Dietterich, T.G. Ensemble Methods in Machine Learning. In Multiple Classifier Systems; Springer:
Berlin/Heidelberg, Germany, 2000; Volume 1857, pp. 1-15, ISBN 978-3-540-67704-8.

Sun, Y.; Wang, X.; Tang, X. Deeply learned face representations are sparse, selective, and robust. In Proceedings
of the 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Boston, MA, USA,
7-12 June 2015; pp. 2892-2900.

He, K.; Zhang, X.; Ren, S.; Sun, J. Delving Deep into Rectifiers: Surpassing Human-Level Performance on
ImageNet Classification. In Proceedings of the 2015 IEEE International Conference on Computer Vision
(ICCV), Santiago, Chile, 7-13 December 2015.

Maas, A.L.; Hannun, A.Y.; Ng, A.Y. Rectifier Nonlinearities Improve Neural Network Acoustic Models.
Available online: https://ai.stanford.edu/~{}amaas/papers/relu_hybrid_icml2013_final.pdf (accessed on
31 January 2020).

Szegedy, C.; Vanhoucke, V.; Ioffe, S.; Shlens,].; Wojna, Z. Rethinking the Inception Architecture for Computer
Vision. In Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
Las Vegas, NV, USA, 27-30 June 2016; pp. 2818-2826.

Goodfellow, I.; Yoshua, B.; Courville, A. Deep Learning; MIT Press: Cambridge, MA, USA, 2016.

Xu, Y.; Goodacre, R. On Splitting Training and Validation Set: A Comparative Study of Cross-Validation,
Bootstrap and Systematic Sampling for Estimating the Generalization Performance of Supervised Learning.
J. Anal. Test. 2018, 2, 249-262. [CrossRef] [PubMed]

May, R.J.; Maier, H.R.; Dandy, G.C. Data splitting for artificial neural networks using SOM-based stratified
sampling. Neural Netw. 2010, 23, 283-294. [CrossRef] [PubMed]

Chollet, F. Others Keras. 2015. Available online: https://keras.io (accessed on 15 November 2019).

Abadi, M.; Agarwal, A ; Batham, P; Brevdo, E.; Chen, Z,; Citro, C.; Greg, S.C.; Davis, A.; Dean, J.; Devin, M.;
et al. TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. In Proceedings of the 12th
USENIX Symposium on Operating Systems Design and Implementation (OSDI "16), Savannah, GA, USA,
2—4 November 2016.

Kingma, D.P; Ba,]. Adam: A Method for Stochastic Optimization. In Proceedings of the Contribution to
International Conference on Learning Representations (ICLR), San Diego, CA, USA, 7-9 May 2015.

Chen, X; Liu, S.; Sun, R.; Hong, M. On the Convergence of a Class of Adam-Type Algorithms for Non-Convex
Optimization. In Proceedings of the Contribution to International Conference on Learning Representations
(ICLR), New Orleans, LA, USA, 6-9 May 2019.

http://dx.doi.org/10.1016/j.isprsjprs.2017.05.002
http://dx.doi.org/10.1109/LGRS.2018.2864342
http://dx.doi.org/10.1109/LGRS.2018.2802944
http://dx.doi.org/10.1109/TGRS.2018.2870871
http://dx.doi.org/10.1109/TITS.2017.2749964
https://pnoa.ign.es/caracteristicas-tecnicas
https://pnoa.ign.es/caracteristicas-tecnicas
http://dx.doi.org/10.3390/proceedings2019019007
https://ai.stanford.edu/~{}amaas/papers/relu_hybrid_icml2013_final.pdf
http://dx.doi.org/10.1007/s41664-018-0068-2
http://www.ncbi.nlm.nih.gov/pubmed/30842888
http://dx.doi.org/10.1016/j.neunet.2009.11.009
http://www.ncbi.nlm.nih.gov/pubmed/19959327
https://keras.io

Remote Sens. 2020, 12, 765 22 of 22

40.

41.

42.

43.

44.

45.

46.

47.

Bottou, L.; Curtis, EE.; Nocedal, J. Optimization Methods for Large-Scale Machine Learning. SIAM Rev.
2018, 60, 223-311. [CrossRef]

Sutskever, I.; Martens, J.; Dahl, G. On the Importance of Initialization and Momentum in Deep Learning. 9.
Available online: https://www.cs.toronto.edu/~{}fritz/absps/momentum.pdf (accessed on 17 January 2020).
Hinton, G.E.; Srivastava, N.; Swersky, K. Lecture 6d—A separate, adaptive learning rate for each connection.
In Slides of Lecture Neural Networks for Machine Learning; 2012; Available online: https://www.cs.toronto.edu/
~{}hinton/coursera/lecture6/lec6.pdf (accessed on 15 November 2019).

Hijazi, S.; Kumar, R.; Rowen, C. Using Convolutional Neural Networks for Image Recognition. 2015, 12.
Available online: https://ip.cadence.com/uploads/901/cnn_wp-pdf (accessed on 17 January 2020).
Kornblith, S.; Shlens, J.; Le, Q.V. Do Better ImageNet Models Transfer Better? In Proceedings of the
2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Long Beach, CA, USA,
15-20 June 2019; pp. 2656-2666.

Ferris, M.H.; McLaughlin, M.; Grieggs, S.; Ezekiel, S.; Blasch, E.; Alford, M.; Cornacchia, M.; Bubalo, A.
Using ROC curves and AUC to evaluate performance of no-reference image fusion metrics. In Proceedings
of the 2015 National Aerospace and Electronics Conference (NAECON), Dayton, OH, USA, 15-19 June 2015;
pp. 27-34.

Xu, B.; Wang, N.; Chen, T.; Li, M. Empirical Evaluation of Rectified Activations in Convolutional Network.
In Proceedings of the International Conference on Machine Learning (ICML) Workshop, Lille, France,
6-11 July 2015.

Yosinski, J.; Clune, J.; Bengio, Y.; Lipson, H. How transferable are features in deep neural networks? In
Proceedings of the 27th International Conference on Neural Information Processing Systems, Montreal, QC,
Canada, 8-13 December 2014; pp. 3320-3328.

@ © 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
@ article distributed under the terms and conditions of the Creative Commons Attribution

(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1137/16M1080173
https://www.cs.toronto.edu/~{}fritz/absps/momentum.pdf
https://www.cs.toronto.edu/~{}hinton/coursera/lecture6/lec6.pdf
https://www.cs.toronto.edu/~{}hinton/coursera/lecture6/lec6.pdf
https://ip.cadence.com/uploads/901/cnn_wp-pdf
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Related Work
	Dataset
	Framework
	CNN Built from Scratch
	VGGNet-Like Network
	Modified ResNet
	Inception-ResNet
	Ensemble-V2

	Experiments
	Results and Discussion
	Conclusions and Future Lines of Research
	References

