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Abstract: Vegetation indices (VIs) can be useful tools to evaluate crop nitrogen (N) status. To be
effective, VIs measurements must be related to crop N status. The nitrogen nutrition index (NNI) is a
widely accepted parameter of crop N status. The present work evaluates the performance of several
VIs to estimate NNI in sweet pepper (Capsicum annuum). The performance of VIs to estimate NNI
was evaluated using parameters of linear regression analysis conducted for calibration and validation.
Three different sweet pepper crops were grown with combined irrigation and fertigation, in Almería,
Spain. In each crop, five different N concentrations in the nutrient solution were frequently applied by
drip irrigation. Proximal crop reflectance was measured with Crop Circle ACS470 and GreenSeeker
handheld sensors, approximately every ten days, throughout the crops. The relative performance of
VIs differed between phenological stages. Relationships of VIs with NNI were strongest in the early
fruit growth and flowering stages, and less strong in the vegetative and harvest stages. The green
band-based VIs, GNDVI, and GVI, provided the best results for estimating crop NNI in sweet pepper,
for individual phenological stages. GNDVI had the best performance in the vegetative, flowering,
and harvest stages, and GVI had the best performance in the early fruit growth stage. Some of the VIs
evaluated are promising tools to estimate crop N status in sweet pepper and have the potential to
contribute to improving crop N management of sweet pepper crops.
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1. Introduction

Vegetable crops production is characterized by nitrogen (N) losses and the associated
environmental problems [1–3]. The most common environmental problems include ground and
surface water contamination, eutrophication of surface water, and nitrous oxide (N2O) emission [4,5].
These problems are often a consequence of the high use of N fertilizer as a way to ensure optimal
growth and production [6], which generally exceeds the demand of the crops [3,7,8]. Knowing crop N
requirements and matching N supply to crop demand are requirements to reduce N contamination of
water bodies by intensive vegetable production [3,9,10]. Various tools are available for monitoring crop
N status [3,11]. A traditional tool is leaf nutrient analysis, which requires laborious and time-consuming
laboratory work, and which generally cannot characterize the temporal and spatial variability of N
status [12,13]. These are major drawbacks, because knowledge of temporal and spatial variability
of crop N status appreciably assists the matching of N supply to crop N requirements [14]. Optical
sensors are devices that provide rapid, effective, and nondestructive assessment of crop N status, in the
field [3,15]. They enable frequent assessment throughout a crop, and assessment of spatial variability.
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Amongst the proximal optical sensors, canopy reflectance sensors have two very positive features in
that they can measure large areas of a crop and have on-the-go measurement capability [16].

Crop reflectance measurements can be used to assess N status of field crops [11]. These measurements
are based on the differential reflection of wavelengths of radiation [3], which are absorbed and reflected
by the crop in different proportions, depending on crop N status [15]. Generally, the light wavelengths
used are in red, green, and near-infrared ranges [11]. More recently, the red-edge has been proposed
to overcome the reported saturation of the red band [17,18]. Using reflectance data of different
wavelengths, vegetation indices are calculated, which commonly combine reflectance data from 2–3
wavelengths [19].

Measurements of crop reflectance can be made with proximal sensors positioned relatively close
to the canopy, from several centimeters to a few meters away [15]. Due to the field of view of the
sensors, each individual measurement can integrate a large area of crop canopy [3,20]. Depending
on the sensor, continuous measurements can be made as the sensor passes along the crop canopy
(“on-the-go” measurement), thereby integrating large surface areas of crop canopy [15].

In order to use vegetation indices, calculated from canopy reflectance measurement, as a proxy of
crop N status, calibration is required. A commonly-used approach is to determine the relationship
between values of a given vegetation index and a measure of crop N status, such as the nitrogen
nutrition index (NNI) [13,21]. NNI is calculated by dividing the actual crop N content by the critical
crop N content [22,23], the latter being the lowest crop N content necessary for nonlimiting growth.
Values of NNI equal to 1 indicate optimal N nutrition [24], and any deviation from 1 indicates excess N
(i.e., NNI>1) or deficient N (i.e., NNI<1) crop status.

Numerous studies have reported that vegetation indices, obtained with canopy reflectance sensors,
are strongly related to crop biomass and yield [11,25,26]. Appreciably, fewer studies have assessed
the capability of vegetation indices, measured with proximal reflectance sensors, to assess crop N
status [27]. Most studies have been conducted in cereal crops such as wheat [12,27,28] and rice [29,30];
very few with vegetable crops such as sweet pepper. To use vegetation indices as estimators of
crop N status, it is necessary to derive a regression equation between the measured vegetation index
(independent variable) and crop NNI (dependent variable) [31]. This procedure requires firstly fitting
a regression equation between the vegetation index and crop NNI with a calibration dataset [27],
and secondly, it requires validation of this regression equation with an independent, validation dataset.

Environmental problems associated with the high use of N fertilizer in vegetable production
systems have been reported for diverse regions [5], such as southeastern (SE) Spain [32], SE United
States [6], and China [7,33]. Greenhouse production systems are major sources of vegetables [34].
Within greenhouse-based vegetable production systems, sweet pepper is one of the most important
vegetable crop [35]. In SE Spain, approximately 40,000 ha [36] of highly-concentrated greenhouses are
used for intensive vegetable production; 30,000 ha are located in the Almería province. This system is
characterized by high rates of N fertilizer and an excessive N supply [2,37] that are associated with
nitrate contamination of underlying aquifers [32]. There is increasingly strong pressure to improve crop
N management to reduce aquifer contamination from this vegetable production system. In Almeria,
sweet pepper is one of the most important crops; each year, it is grown on 8000 ha [38].

Given the pressure to improve N management in greenhouse-based vegetable production [2,7]
and that sweet pepper is a major crop, information is required of tools and sensors that inform of
the N status of sweet pepper crops grown in greenhouses. Such tools will provide vital information
of the adequacy of ongoing N management, enabling optimal N fertilizer use and ensuring less
environmentally harmful N losses [3].

In the present work, eight vegetation indices, calculated from canopy reflectance measurements
obtained with two different proximal sensors, were evaluated to estimate crop N status of sweet pepper.
Firstly, calibration regression equations of each vegetation index to crop NNI were fitted. Secondly,
these regression equations were subsequently validated using a different dataset. Thirdly, using the
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validated equations between vegetation indices and crop NNI, sufficiency values were derived for
each vegetation index for optimal N nutrition, for the major phenological stages of sweet pepper crops.

2. Material and Methods

2.1. Site and Experimental Design

Three experiments with sweet pepper (Capsicum annuum cv. Melchor) were carried out in a plastic
greenhouse in Almería, southeast Spain. The greenhouses were located in the experimental station
of the University of Almería (36◦ 51′ 51” N, 2◦ 16′ 56” W, 92 m altitude). The first crop was grown
in 2014–2015, the second in 2016–2017, and the third in 2017–2018 (Table 1). All crops spanned a
summer-winter cycle. Further details of the greenhouse are in Padilla et al. 2014 [39] and 2017 [21].
The crops were grown in an artificial layered soil, known as “enarenado”, typical of commercial
greenhouse crops in SE Spain [2].

Table 1. Duration, beginning of nitrogen (N) treatments, concentration of mineral N (NO3
−–N +

NH4
+–N) applied in nutrient solutions, and mineral N amount applied in fertigation, in the three sweet

pepper crops. DAT: Days after transplanting.

Crop Cycle Duration
(Days)

Beginning of
N Treatments

Mineral N
Concentration
of Treatments
(mmol N L-1)

Amount of
Mineral N
Applied

(kg N ha-1)

2014–2015 12 August –
29 January 170 1 DAT

N1: 2.4
N2: 6.2
N3: 12.6
N4: 16.1
N5: 20.0

N1: 64
N2: 189
N3: 516
N4: 804
N5: 990

2016–2017 19 July –
24 March 248 9 DAT

N1: 2.0
N2: 5.3
N3: 9.7

N4: 13.5
N5: 17.7

N1: 88
N2: 302
N3: 561

N4: 1052
N5: 1320

2017–2018 21 July –
20 February 214 10 DAT

N1: 2.0
N2: 5.7
N3: 9.7
N4: 13.1
N5: 16.7

N1: 86
N2: 304
N3: 519
N4: 870

N5: 1198

The crops were established by transplanting 35-day old seedlings, in twin rows (0.8 m between
twin rows and 1.2 m between twin rows) and 0.5 m distance between plants within each line, with a
plant density of 2 plants m−2. Each experimental plot measured 6 by 6 m, giving a total of 72 plants
per replicate plot. There were three twin rows of plants, 6 m in length in each plot. The middle twin
row was used for canopy reflectance measurements.

Water and fertilizers were applied combined through fertigation, by using an above-ground drip
irrigation system. Each plant was planted close to an emitter. The fertigation was applied every
two–three days, depending on crop demand. The three experiments consisted of a fully randomized
block design, with five N treatments and four replicates per treatment. The N treatments were applied
by fertigation by using different nutrient solutions with increasing N concentration. All other macro and
micronutrients were applied in the nutrient solution to ensure they were not limiting. The treatments
were: Very deficient N (N1), deficient N (N2), conventional N (N3), excessive N (N4), and very
excessive N (N5) (Table 1). N was applied mostly (90%) as nitrate (NO3

−), the rest as ammonium
(NH4

+). The crop was physically supported which is typical for pepper production in this system.
Crop management followed local practices.
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2.2. Canopy Reflectance with Optical Sensors

Two active proximal reflectance sensors were used to measure canopy reflectance information
throughout the three crops. In the first crop, reflectance measurements were made weekly and in the
second and third crops every two weeks. The sensors used were the GreenSeeker handheld sensor
(Trimble Navigation Limited, Sunnyvale, CA, USA) and the Crop Circle ACS-470 (Holland Scientific
Inc., Lincoln, NE, USA). The measurements were made by positioning both sensors vertically and
parallel to the crop rows, so that the upper limit of the field of view was at the height of the most
recently fully expanded leaf [15].

The GreenSeeker includes two light sources, visible (660 nm—red light) and near-infrared (NIR)
(780 nm). This sensor measures the fraction of emitted lights reflected from the crop to calculate the
vegetation index NDVI which is explained in Table 2. The GreenSeeker handheld sensor was positioned
at 60 cm horizontal distance to the foliage; the field of view was an oval with a height of ≈ 25 cm.
The measuring mode was the individual measurement (“one-shot”). For each date of measurement,
eight marked plants were measured per replicate plot, and the mean value was determined.

Table 2. Vegetation indices calculated in the present study.

Index Acronym Equation Reference

Normalized Difference
Vegetation Index NDVI NIR−RED

NIR+RED Sellers [40]

Green Normalized
Difference Vegetation Index GNDVI NIR−Green

NIR+Green Ma et al. [41]

Red Ratio of Vegetation
Index RVI NIR

Red Birth and McVey [42]

Green Ratio of Vegetation
Index GVI NIR

Green Birth and McVey [42]

Red Edge Normalized
Difference Vegetation Index RENDVI

NIR−Red Edge
NIR+Red Edge

Gitelson and Merzlyak [43]

Chlorophyll Index CI NIR
Red Edge Gitelson et al. [44]

Canopy Chlorophyll
Content Index CCCI RENDVI−RENDVImin

RENDVImax−RENDVImin Fitzgerald et al. [28]

MERIS Terrestrial
Chlorophyll Index MTCI

NIR−Red Edge
Red Edge−Red

Dash and Curran [45]

The Crop Circle ACS-470 used filters at 550 nm (green), 670 nm (red), 760 nm (near infrared;
NIR), and 730 nm (red edge). The sensor was positioned at a 45 cm horizontal distance. The field
of view was a rectangle of ≈ 26 (vertical) × 5 (horizontal) cm. The measurements were made in two
separate passes. Each pass consisted of a 4 m transect in each line of plants in the middle twin row of
each plot. In the first pass, green, red, and NIR filters were used; in the second pass, red edge, red,
and NIR filters were used. Measurements were collected at a frequency of 10 readings per second.
On-the-go measurements were made by walking at approximately 1.5 km h−1. In total, 200 individual
measurements were collected per plot. Data were stored in a portable GeoSCOUT GLS-400 data logger
(Holland Scientific, Inc.). The vegetation indices shown in Table 2 were calculated from reflectance
values of individual wavelengths.

2.3. Crop Sampling and NNI Determination

In each of the crops, periodical aboveground biomass samplings (approximately every 14 days)
were made to determine dry matter (DM). For each replicate plot in each sampling, two complete
plants were selected and removed. The dry weights of different components of the plants (stem,
leaf, and fruit) were recorded by oven-drying until constant weight at 65 ◦C. In each replicate plot,
the fruit production and pruned material were recorded throughout the crop in eight marked plants.
Subsamples of dry material were ground prior to analysis of N content (%N) in a Dumas-type elemental
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analyzer (Rapid N, Elementar, Analysensysteme GmbH, Hanau, Germany). The amount of N was
calculated by multiplying the %N by the dry matter mass of the corresponding component.

The NNI was calculated using the critical N curve derived for greenhouse-grown sweet pepper
crop: Critical N = 4.71·DM−0.22 (Alejandra Rodríguez, University of Almeria, unpublished data).
The NNI was calculated by dividing the N content measured in the crop by the critical N content.
The NNI value for each reflectance measurement day was by interpolating DM and crop N content
values between two consecutive biomass samplings [46].

2.4. Data Analysis

Data of reflectance measurements and NNI were grouped and analyzed for phenological stage.
Four main phenological stages were considered for sweet pepper, according to de Souza et al. [47], as:
(1) Vegetative, (2) flowering, (3) early fruit growth, and (4) harvest. The definition of the phenological
stages is in de Souza et al. [47]. Within each phenological stage, several canopy reflectance measurements
and biomass samplings were conducted. To integrate data of the various measurements within each
phenological stage, integrated NNI and vegetation indices values were calculated, according to Lemaire
and Gastal [24] and Padilla et al. [21], as:

Integrated index =
1
D

.
∑

(V.ds) (1)

where D was the duration of the phenological stage, V was the value of NNI or vegetation index for
each day of measurement, and ds was the duration between two successive measurements [47].

Predictive regression functions were evaluated to estimate NNI of sweet pepper for each of the
eight vegetation indices assessed in the current work. For each phenological stage of the three crops;
data of integrated vegetation indices and the corresponding integrated NNI were pooled. This created a
single pooled data set of 60 data points for each vegetation index in each phenological stage considering
the three crops together. The 60 data points, for each phenological stage were randomly separated into
two groups: Forty data points (2/3 of total data) for the calibration dataset, and 20 data points (1/3 of
total data) for the validation dataset. With the calibration dataset, simple linear regression analyses
were conducted with the integrated vegetation index as the independent variable (x variable) and
NNIi as the dependent variable (y variable). The software CurveExpert Professional®2.2.0 software
(Daniel G. Hyams, MS, USA) was used. Validation of the equations that related each integrated
vegetation index with NNIi, for each phenological stage, was then conducted with the validation
dataset. Validation consisted of calculating the predicted NNIi from the calibration equation for each
combination of vegetation index and phenological stage. Predicted NNIi values were then compared
with the NNIi values of the validation dataset. Linear regression analysis was made between observed
NNIi (independent variable) and predicted NNIi (dependent variable) and the root mean square error
(RMSE) of the NNI estimation was determined. The RMSE was calculated as:

RMSE =

√∑n

1

(Ei −Oi)
2

n
(2)

where n is the number of samples, Ei is the estimated value of the relationship, and Oi is the observed
value [48].

The performance of the different vegetation indices was evaluated according to Xin-feng et al.,
2013 [49]; this procedure considers both the calibration and validation results. Coefficient of
determination (R2) and RMSE values of the linear regression of the calibration dataset, and the
R2 and RMSE values, absolute values of slope-1, and absolute values of intercept of the linear regression
of the validation dataset were used [49]. Slope-1 is the absolute value of the slope after subtracting one
from the slope of the linear regression. The use of this parameter effectively normalizes slope values
and enabled ranking of all integrated vegetation indices from lowest to highest values.
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The performance of each vegetation index was calculated (i) by sorting R2 in decreasing order
and RMSE in ascending order for the calibration and validation datasets separately, and (ii) the sorting
of absolute slope-1 and absolute intercept values in ascending order for the validation dataset [49].
The best performing vegetation index was that which had the lowest sum of these six factors [49].
Additionally, the performance of the validation regression equation of the different vegetation indices,
in each phenological stage, was assessed by comparing the relative error (RE) between observed and
estimated NNIi values. The relative error was calculated as:

RE:
RMSE

Oi
(3)

where Oi is the average of observed values.
Sufficiency values of each vegetation index, for each phenological stage, were calculated from the

regression equations of the calibration datasets. The equations of calibration for each phenological
stage were solved for NNI = 1, according to Lemaire et al. [23].

3. Results

3.1. Phenological Relationships Between Integrated Vegetation Indices and Integrated NNI (NNIi),
for Calibration Dataset

For the calibration data, the relationships between most of the integrated vegetation indices and
NNIi, in each phenological stage, were highly significant (Table 3, Figure 1). In the vegetative stage,
the coefficients of determination (R2) of these relationships were generally low; averaged across all
vegetation indices, the R2 of the vegetative stage was 0.45 ± 0.05. In the vegetative stage, the R2 ranged
from 0.19 to 0.50 for most of the vegetation indices, except the GNDVIi which had a R2 value of 0.63
(Table 3). In the flowering stage, the coefficients of determination were slightly higher than in the
vegetative stage, with an average R2 value for all vegetation indices of 0.52 ± 0.03 and a range from
0.38 to 0.65 (Table 3). The highest R2 values were obtained in phenological stage corresponding to
early fruit growth, where the average R2 value across all vegetation indices was 0.71 ± 0.04, with a
range from 0.52 to 0.84 (Table 3). The harvest stage had the lowest R2 values of all phenological stages
for all vegetation indices considered together, the average was 0.27 ± 0.02, with a range from 0.19 to
0.42 (Table 3).

Comparing the performance of different vegetation indices to estimate NNI throughout the crops,
the integrated vegetation indices that were based on the green band (GNDVI and GVI) had higher and
more consistent R2 values in the first three phenological stages, which were the vegetative, flowering,
and early fruit growth stages. The R2 values for GNDVIi were 0.63, 0.65, and 0.62 for the vegetative,
flowering, and early fruit growth stage, respectively. For GVIi, the R2 values were 0.56, 0.60, and 0.63,
respectively, for the same phenological stages (Table 3). The R2 values of RVIi, CIi, and CCIi vegetation
indices were low (R2 < 0.50) and very similar in the vegetative and flowering stages but increased
in the early fruit growth stage (Table 3). For the rest of the integrated vegetation indices evaluated,
the R2 values increased from the vegetative to early fruit growth stages, being lowest in the harvest
stage (Table 3). Sufficiency values of each integrated vegetation index, for each phenological stage,
were calculated from the regression equations of the calibration datasets. The equations of calibration
for each phenological stage were solved for NNI = 1.
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Table 3. Equations, coefficient of determination (R2), and root mean square error (RMSE) of linear regressions between integrated vegetation indices (x variable) and
integrated nitrogen nutrition index (NNIi, y variable) at different phenological stages, for calibration data (n = 40). Significance of regressions are indicated with
asterisks close to R2 values. ***, p < 0.001; **, p < 0.01). Abbreviations for vegetation indices are in Table 2.

Vegetative Flowering Early Fruit Growth Harvest
Index Equation R2 RMSE Equation R2 RMSE Equation R2 RMSE Equation R2 RMSE

NDVIiGS NNIi = 1.314x - 0.024 0.27*** 0.139 NNIi = 7.225x - 5.368 0.63*** 0.121 NNIi = 7.393x - 5.530 0.52*** 0.151 NNIi = 1.443x - 0.260 0.42*** 0.135
NDVIi NNIi = 2.268x - 0.726 0.48*** 0.118 NNIi = 6.347x - 4.495 0.54*** 0.137 NNIi = 7.277x - 5.340 0.65*** 0.131 NNIi = 1.395x - 0.233 0.27*** 0.151

GNDVIi NNIi = 2.431x - 0.562 0.63*** 0.099 NNIi = 3.872x - 1.817 0.65*** 0.118 NNIi = 4.135x - 2.117 0.62*** 0.135 NNIi = 1.294x + 0.014 0.32*** 0.146
RVIi NNIi = 0.061x + 0.422 0.48*** 0.117 NNIi = 0.069x + 0.002 0.46*** 0.147 NNIi = 0.088x - 0.319 0.68*** 0.125 NNIi = 0.026x + 0.608 0.22** 0.156
GVIi NNIi = 0.144x + 0.290 0.56*** 0.108 NNIi = 0.167x - 0.091 0.60*** 0.126 NNIi = 0.170x - 0.236 0.63*** 0.135 NNIi = 0.067x + 0.510 0.27*** 0.151

RENDVIi NNIi = 3.891x - 0.288 0.51*** 0.114 NNIi = 4.308x - 0.659 0.38*** 0.151 NNIi = 7.820x - 2.170 0.82*** 0.094 NNIi = 1.718x + 0.279 0.19** 0.175
CIi NNIi = 0.923x - 0.855 0.48*** 0.118 NNIi = 1.055x - 1.356 0.50*** 0.142 NNIi = 1.517x - 2.609 0.83*** 0.092 NNIi = 0.425x + 0.005 0.30*** 0.148

CCCIi NNIi = 1.655x + 0.124 0.45*** 0.122 NNIi = 1.445x + 0.193 0.44*** 0.150 NNIi = 2.484x - 0.680 0.83*** 0.092 NNIi = 0.726x + 0.522 0.23** 0.155
MTCIi NNIi = 0.473x + 0.269 0.19** 0.147 NNIi = 0.998x - 0.469 0.46*** 0.147 NNIi = 1.533x - 1.538 0.84*** 0.088 NNIi = 0.440x + 0.285 0.23** 0.156
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Figure 1. Linear regressions between each integrated vegetation index and integrated nitrogen nutrition
index (NNIi) for the four vegetative stages, for calibration data (n = 40). Circle: Vegetative; Triangle:
Flowering; Square: Early fruit growth; and Diamond: Harvest stage. Panel (a) shows normalized
index vegetation index (NDVI) measured with GreenSeeker sensor and the other panels (b–i) show
indices calculated with the Crop Circle sensor. Results of regression are in Table 3. Abbreviations for
vegetation indices are in Table 2.

3.2. Validation of the Phenological Relationships Between Vegetation Indices and NNIi

Validation of the relationships established with the calibration dataset was made with an
independent and different dataset. For all of the vegetation indices analyzed, the vegetative stage
had the worst validation results. In this stage, the average R2 and RMSE values for all indices were
0.46 ± 0.05 and 0.123 ± 0.006, respectively (Table 4). The validation results, for all vegetation indices,
improved in the flowering and early fruit growth phenological stages. In these stages, the average R2

and RMSE values for all indices were 0.63 ± 0.04 and 0.127 ± 0.006, for the flowering stage, and were
0.87 ± 0.02 and 0.120 ± 0.008, for the fruit growth stage, respectively (Table 4). In the harvest stage,
validation results were intermediate (Table 4), with average R2 and RMSE values for all indices of 0.59
± 0.09 and 0.125 ± 0.002, respectively.
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Table 4. Results of validation analysis for each vegetation index at different phenological stages. Equations, coefficient of determination (R2), and root mean square
error (RMSE) of linear regression between observed NNIi values (x variable) and predicted NNIi values (y variable), for validation dataset (n = 20). Significance of
regressions are indicated with asterisks close to R2 values. ***, p < 0.001; **, p < 0.01; ns: Not significant. Abbreviations for vegetation indices are in Table 2.

Vegetative Flowering Early Fruit Growth Harvest
Index Equation R2 RMSE Equation R2 RMSE Equation R2 RMSE Equation R2 RMSE

NDVIiGS NNIi_Pred = 0.503x + 0.468 0.55*** 0.109 NNIi_Pred = 0.895x + 0.061 0.67*** 0.132 NNIi_Pred = 1.088x - 0.146 0.70*** 0.147 NNIi_Pred = 0.532x + 0.432 0.58*** 0.119
NDVIi NNIi_Pred = 0.489x + 0.468 0.33** 0.135 NNIi_Pred = 0.946x + 0.017 0.69*** 0.132 NNIi_Pred = 1.342x - 0.398 0.89*** 0.130 NNIi_Pred = 0.439x + 0.522 0.57*** 0.124

GNDVIi NNIi_Pred = 0.806x + 0.193 0.55*** 0.121 NNIi_Pred = 0.905x + 0.092 0.78*** 0.099 NNIi_Pred = 1.215x - 0.240 0.89*** 0.094 NNIi_Pred = 0.483x + 0.489 0.62*** 0.118
RVIi NNIi_Pred = 0.530x + 0.431 0.49** 0.117 NNIi_Pred = 0.730x + 0.255 0.65*** 0.120 NNIi_Pred = 1.256x - 0.292 0.87*** 0.111 NNIi_Pred = 0.402x + 0.571 0.64*** 0.124
GVIi NNIi_Pred = 0.676x + 0.323 0.59*** 0.106 NNIi_Pred = 0.826x + 0.185 0.76*** 0.100 NNIi_Pred = 1.189x - 0.190 0.91*** 0.079 NNIi_Pred = 0.452x + 0.527 0.62*** 0.121

RENDVIi NNIi_Pred = 0.568x + 0.404 0.55*** 0.109 NNIi_Pred = 0.518x + 0.461 0.41** 0.153 NNIi_Pred = 1.427x - 0.468 0.86*** 0.145 NNIi_Pred = 0.37x + 0.565 0.58*** 0.139
CIi NNIi_Pred = 0.502x + 0.471 0.46** 0.122 NNIi_Pred = 0.716x + 0.275 0.59*** 0.131 NNIi_Pred = 1.418x - 0.466 0.90*** 0.132 NNIi_Pred = 0.444x + 0.525 0.60*** 0.121

CCCIi NNIi_Pred = 0.294x + 0.661 0.17ns 0.159 NNIi_Pred = 0.612x + 0.379 0.54*** 0.136 NNIi_Pred = 1.296x - 0.337 0.87*** 0.120 NNIi_Pred = 0.377x + 0.581 0.55*** 0.129
MTCIi NNIi_Pred = 0.250x + 0.718 0.49** 0.131 NNIi_Pred = 0.652x + 0.338 0.55*** 0.136 NNIi_Pred = 1.305x - 0.356 0.89*** 0.120 NNIi_Pred = 0.398x + 0.561 0.58*** 0.126
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Generally, for the vegetative stage, the slope of linear regression between observed and predicted
NNIi values was appreciably different to one for all of the vegetation indices evaluated; the average
slope value for all indices was 0.513 ± 0.057 (Table 4). The exception was the GNDVIi that had a slope
of 0.806. Compared to the 1:1 line, there was a tendency for all vegetation indices except GNDVI to
overestimate NNI values for NNI values < 0.9, and a tendency to underestimate NNI, for NNI values
>0.9 (Figure 2, green circles). In the flowering stage, the slopes of the regression between observed and
predicted NNIi values were closer to one for all of the vegetation indices evaluated (average value of
0.756± 0.049), and particularly so for NDVI (0.946) and GNDVI (0.905) (Table 4). Compared to the 1:1
line, all of the vegetation indices except for NDVI and GNDVI tended to overestimate NNI values at
NNI values <1, and underestimate NNI at NNI values >1 (Figure 2, red triangles). In the early fruit
growth stage, slopes of linear regression between observed and predicted NNIi values were slightly
above 1 for all of the vegetation indices evaluated (average value of 1.282 ± 0.036) (Table 4). Compared
to the 1:1 line, all vegetation indices underestimated NNI values at the whole range of NNI observed
in the early fruit growth stage (Figure 2, blue squares). In the harvest stage, the slopes of the regression
between observed and predicted NNIi values were close to 0.5 for all vegetation indices evaluated
(average value of 0.433± 0.018) (Table 4). Compared to the 1:1 line, all vegetation indices overestimated
NNI values, at NNI values < 0.9, and underestimate NNI, at NNI values > 0.9 during the harvest stage
(Figure 2, grey diamonds).

Figure 2. Relationships between observed integrated Nitrogen Nutrition Index (NNIi) and predicted
NNIi for the four phenological stages, for validation data (n = 20). Circle: Vegetative; Triangle:
Flowering; Square: Early fruit growth; and Diamond: Harvest stage. Panel (a) shows NDVI measured
with GreenSeeker sensor and the other panels (b–i) show indices calculated with Crop Circle sensor.
Dotted line represents the 1:1 line. Results of regression are in Table 4. Abbreviations for vegetation
indices are in Table 2.
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The relative error (RE) of the validation analysis for all vegetation indices evaluated in each
phenological stage are presented in Figure 3. For the vegetative, flowering, and early fruit growth
stages, RE ranged from 8% to 17%, with average RE values, for all indices, of 12.9% ± 0.59%, 13.2% ±
0.66% and 12.4% ± 0.78%, respectively. In the harvest stage, the RE ranged from 12% to 15%, with an
average value of 13.5% ± 0.21% for all indices. The vegetation indices GVI and GNDVI had consistently
lower RE values in most of the phenological stages (average RE values across phenological stages
of 10.7% ± 1.03% and 11.3% ± 0.81%, respectively), followed by the RVI index (averaged RE values
across phenological stages of 12.4% ± 0.40%). The GVI had the lowest RE in the vegetative, flowering,
and early fruit growth stages (Figure 3). In contrast, the RENDVI index was the vegetation index with
highest RE values throughout the four phenological stages (average value of 14.5% ± 1.09%).

Figure 3. Relative error of linear relationships between observed integrated Nitrogen Nutrition
Index (NNIi) values and predicted NNIi for each vegetation index at different phenological stages,
for validation data (n = 20). Veg: Vegetative stage; Fl: Flowering stage; FG: Early fruit growth stage;
Hv: Harvest stage. Abbreviations for vegetation indices are in Table 2.

3.3. Performance of Vegetation Indices

The classification of vegetation indices based on R2 and RMSE of linear regression analysis of the
calibration and validation datasets, and on the slope and intercept values of linear regressions of the
validation dataset, showed that six (NDVI, RVI, RENDVI, CI, CCCI, and MTCI) of the nine vegetation
indices evaluated had their best performance in the early fruit growth stage (Table 5). For NDVI, RVI,
CI, CCCI, and MTCI, the flowering stage, was the phenological stage in which the second best results
were obtained, for these indices, which were only slightly inferior to those in the early fruit growth
stage. The RENDVI index was the exception, where the second best performance was in the vegetative
stage (Table 5). For the three remaining vegetation indices (NDVIGS measured with GreenSeeker,
GNDVI, and GVI), the best performance was in the flowering stage, followed by the early fruit growth
stage. The worst performance for most of the vegetation indices occurred in the harvest stage, followed
by the vegetative stage (Table 5).
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Table 5. Ranking of best performing phenological stage for each vegetation index. Performance was
evaluated using R2 and RMSE of linear regression of calibration and validation datasets, and slope and
intercept of linear regression of validation dataset. Numbers in brackets show the performance of each
phenological stage. The best performance is the one which has the lowest value.

Best
Performance NDVIGS NDVI GNDVI RVI GVI RENDVI CI CCCI MTCI

1st Flowering
(10)

Early fruit
growth (10)

Flowering
(9)

Early fruit
growth (8)

Flowering
(10)

Early fruit
growth (10)

Early fruit
growth (11)

Early fruit
growth (6)

Early fruit
growth (7)

Early fruit
growth (10)

2nd Early fruit
growth (14)

Flowering
(12)

Early fruit
growth (14)

Flowering
(14)

Vegetative
(17)

Vegetative
(11)

Flowering
(13)

Flowering
(16)

Flowering
(14)

3rd Harvest
(16)

Vegetative
(18)

Vegetative
(15)

Vegetative
(15)

Harvest
(23)

Flowering
(19)

Vegetative
(19)

Harvest
(18)

Harvest
(17)

4th Vegetative
(20)

Harvest
(20)

Harvest
(22)

Harvest
(23)

Harvest
(20)

Harvest
(20)

Vegetative
(20)

Vegetative
(22)

For each phenological stage, the performance of the vegetation indices was compared to one
another in Table 6. In the vegetative, flowering, and harvest stages, the best performing index was
GNDVI. In early fruit growth stage, the best performing index was GVI. The performance of various
indices, in this ranking was not constant in the different stages (Table 6). For example, in the vegetative
stage, the second and third best performing vegetation indices were GVI and RENDVI, respectively,
but RENDVI was one of the worst performing indices in the other three stages. Similar results were
obtained for MTCI, which was the second-best performing index in the early fruit growth stage but was
amongst the last positions in the other three stages. Overall, considering the four stages together, the
best performing vegetation index was GNDVI, followed by GVI. The vegetation indices that performed
worse were CCCI and MTCI (Table 6).

Table 6. Ranking of best performing indices for each phenological stage. Performance was evaluated
using R2 and RMSE of linear regression of calibration and validation datasets, and slope and intercept
of linear regression of validation dataset. Numbers in brackets show the performance of each index.
The best performance index is the one which has the lowest value.

Best Performance Vegetative Flowering Early Fruit Growth Harvest Whole Crop

1st GNDVI (12) GNDVI (9) GVI (20) GNDVI (12) GNDVIi (60)
2nd GVI (13) NDVIGS (18) MTCI (22) NDVIGS (13) GVIi (73)

GVI (18)
3rd RENDVI (20) NDVI (19) CCCI (26) CI (21) NDVIiGS (98)
4th RVI (25) RVI (32) GNDVI (27) GVI (22) CIi (117)

CI (32) RVI (27)
5th NDVIGS (29) MTCI (40) CI (31) NDVI (33) RVIi (121)
6th CI (33) CCCI (48) NDVI (37) RVI (37) NDVIi (131)
7th NDVI (42) RENDVI (54) NDVIGS (38) MTCI (38) MTCIi (147)
8th MTCI (47) RENDVI (42) CCCI (46) RENDVIi (164)
9th CCCI (49) RENDVI (48) CCCIi (169)

3.4. Sufficiency Values of Vegetation Indices

Sufficiency values of each vegetation index for each phenological stage were derived from the
calibration equations. Figure 4 shows the dynamics of sufficiency values of each vegetation index
throughout the four phenological stages. The sufficiency values of the best performing vegetation
indices ranged 0.64–0.76 for GNDVI, and 4.93–7.36 for GVI. The largest difference between sufficiency
values, for most of the vegetation indices evaluated, was between vegetative and flowering stages.
On average, the relative increase in sufficiency values from the vegetative to the flowering stage was
approximately 10% for NDVI, measured both with Crop Circle and GreenSeeker sensors, and for
GNDVI, RENDVI, and CI. There were much larger relative increases for RVI and GVI, which were
34% and 25% higher in the flowering stage compared to the vegetative stage. In contrast, the smallest
differences in sufficiency values between these two stages were for the CCCI and MTCI indices,
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with values of approximately 5%. Generally, the sufficiency values for the early fruit growth stage
were similar to those for the flowering and harvest stages; except for GVI, CCCI, and MTCI which
were on average 13% higher in the early fruit growth stage compared to the flowering stage.

Figure 4. Sufficiency values of integrated vegetation indices calculated for NNI = 1 over different
phenological stages: Veg: Vegetative; Fl: Flowering; FG: Early fruit growth; and Hv: Harvest.
Abbreviations for vegetation indices are in Table 2. Panel (a) shows NDVI measured with GreenSeeker
sensor and the other panels (b–i) show indices calculated with Crop Circle sensor.

4. Discussion

In sweet pepper, the R2 and RMSE of linear regressions between vegetation indices and crop NNI
were variable between phenological stages throughout the crop and between the eight vegetation
indices evaluated. The best performance of vegetation indices for estimation of crop NNIi, in terms of
R2 and RMSE values, was in the early fruit growth stage. Using these criteria, the worst performance
for estimating NNIi was in the harvest stage, followed by the vegetative stage, for most of the
vegetation indices evaluated. Similar variability of performance of vegetation indices, throughout a
crop, was reported by Hatfield and Prueger [50], in maize and soybean. In that research, the relative
performance of different vegetation indices for estimating leaf chlorophyll content differed as the
growing season progressed. Similarly, Yu et al. [29] found in rice that some red edge-band based
vegetation indices had better performance to estimate plant N concentration after the heading stage.
In wheat, performance of vegetation indices varied across growth stages, with better results after
flowering was reported by Li et al. [51].

According to the analysis of R2 and RMSE values of linear relationships between vegetation
indices and NNIi, for the calibration dataset, vegetation indices based on reflectance of the green
band (i.e., GNDVI and GVI) had consistently higher R2 values and lower RMSE values throughout
most of the phenological stages of the crop (average R2 value of 0.62 in the three first phenological
stages). These results indicate that vegetation indices based on reflectance of the green band estimated
crop NNIi with more accuracy than the rest of vegetation indices evaluated. In rice, Cao et al. [30]
also found that the best indices to estimate NNI, in the different parts of the crop cycle, were mainly
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green band based indices. In the present study, there was an exception in the early fruit growth stage,
where vegetation indices based on reflectance of red edge band (i.e., RENDVI, CI, CCCI, and MTCI)
had higher R2 values (average R2 value across these four indices of 0.83) than green band based
vegetation indices such as GNDVI and GVI. These results are consistent with Yu et al. [29], who found
that the red edge based vegetation indices were more sensitive to plant N concentration particularly
after the heading stage in rice, whereas green based vegetation indices were more sensitive to plant N
concentration in the rest of stages.

Vegetation indices based on reflectance in the green band and in the red edge band are very
sensitive to leaf and crop greenness [41,52,53]. They have been preferred over red band based reflectance
indices as indicators of crop N status [11,21,25] because of higher sensitivity, particularly of the red
edge band at high chlorophyll levels contents [43]. In the present study, vegetation indices based on
reflectance in the green band were more sensitive to estimate crop N status than vegetation indices
based on the red edge band in all phenological stages, except for the early fruit growth stage when
green pepper fruits developed and enlarged. It is possible that the abundance of green tissues in this
stage, formed by green pepper fruits and leaves, caused some degree of saturation of the green band
but not of the red edge band.

To validate the calibration linear regression equations (derived from the calibration data set) that
estimated crop NNIi values from integrated vegetation index measurements, the same calibration
linear regression equations were used to estimate NNIi values from the validation data set for each
vegetation index. The NNIi values estimated, with this procedure, were compared with the integrated
measured NNI values, by linear regression analysis. For most of the vegetation indices evaluated,
there was a deficient validation of the regression equations in the vegetative and harvest stages,
and more successful validation in the flowering and early fruit growth stages. This interpretation
is based on the slope of linear regression between observed and predicted NNIi values, and on the
calculated relative error.

In the vegetative and harvest stages, the slopes of linear regression diverged appreciably from
one and the relative errors were very different to 0% which would represent perfect validation of
regression equations [54–56]. In contrast, in the flowering and early fruit growth stages, all indices
had slopes and relative errors closer to 1 and 0%, respectively. The reason for this poor calibration in
the vegetative and harvest stages may be associated to characteristics of the crop canopy in these two
stages. In the vegetative stage, the plants are small and have low foliage density, which could affect
reflectance measurements by the inclusion of background noise [11,15]. Johansen and Tømmervik [57]
and Wang et al. [58] reported a lack of precision with NDVI until the plant canopy achieved adequate
coverage. In the harvest stage, mottling and discoloration of older leaves, because of crop age, can affect
reflectance measurements, as has been reported for cucumber [46].

Validation results (slopes of linear regression between observed and predicted NNIs values,
and relative errors) were consistent with the evaluation conducted taking into account results of
regression of both calibration and validation datasets [49]. There was a clear tendency for better
performance of most vegetation indices in the early fruit growth stage, followed by the flowering
stage. The performance of most vegetation indices was worse in the vegetative and harvest stages,
most likely due to the characteristics of the crop canopy in these two stages, insufficient foliage density
in the vegetative stage, and aging foliage in the harvest stage, as discussed previously.

Analyzing the performance of each vegetation index to estimate NNI within each phenological
stage, GNDVI was the best index in three of four phenological stages (vegetative, flowering, and
harvest), and GVI was the best performing vegetation index in the other stage (early fruit growth).
This is in agreement with Padilla et al. [21] and de Souza et al., [59] who reported these two indices (i.e.,
GNDVI and GVI) to be more strongly related to NNI in cucumber. Likewise, green vegetation indices
of processing tomato were more strongly related to leaf N content than red vegetation indices [60].
Very similar results were also obtained in broccoli [61].
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The RENDVI and CCCI were the worst performing indices. The poor performance of CCCI
index, in the present study, in the vegetative stage is inconsistent with the results obtained in maize
by Li et al. [62]. Li et al. [62] reported that CCCI successfully excluded the effect of soil reflectance
when crop cover was low. The different results with CCCI in our study and that of Li et al. [62] may
be due to the measurement procedures and the structure of the different crops. In the current study,
measurements were made from the side of the crop, and in maize from above. Moreover, the pepper
crops in the current study were vertically supported. It is possible that CCCI was influenced by the
small areas of empty background, between adjacent pepper plants, that were exposed by vertically
supporting the plants.

Comparing the sufficiency values obtained, for maximum dry matter production between the
different phenological stages, it was possible to derive a unique sufficiency value for the complete crop
cycle for CCCI of 0.61 and for MTCI of 1.57 because the relative differences between phenological stages
were small (Figure 4). For the other indices, such as RVI and GVI, the relative difference between the
sufficiency value of vegetative and flowering stages were too large (around 30%) to be able to derive a
unique sufficiency value for the complete crop cycle. For the rest of the indices evaluated (NDVIGS,
NDVI, GNDVI, RENDVI, and CI), the relative difference between vegetative and flowering stages was
approximately 10%. In the current work, it was considered not possible to calculate a unique sufficiency
value for the whole crop cycle for sweet pepper for the NDVI, GNDVI, RVI, GVI, and RENDVI indices.
However, in cucumber, it was possible to calculate a unique sufficiency value for the entire crop cycle
because of the relative constancy of sufficiency values throughout the cycle [21]. Overall, the sufficiency
values derived for sweet pepper were higher than those derived for cucumber [21], for equivalent
indices. This difference may be due to the relatively high chlorophyll content and greenness of sweet
pepper crops compared to other vegetable and cereal species [63].

5. Conclusions

The present work evaluated the capacity of different vegetation indices to estimate crop NNI in the
vegetative, flowering, early fruit growth, and harvest phenological stages of sweet pepper. There were
differences in the performance of the indices within individual phenological stages and between stages.
The best performance of all indices was in the early fruit growth and the flowering stages. The best
performing indices to assess crop N in sweet pepper were the green band based indices GNDVI and
GVI which had the best results for all phenological stages.
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