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Abstract: Olive cultivation over the past few years has spread across Mediterranean countries with
Spain being the world’s largest olive producer among them. Because olives are a major part of the
economy for such countries keeping records of their tree count and crop yield is of high significance.
Manual counting of trees over such large areas is humanly infeasible. To address this problem, we
propose an automatic method for the detection and enumeration of olive trees. The algorithm is a
multi-step classification system comprising pre-processing, image segmentation, feature extraction,
and classification. RGB satellite images were acquired from the Spanish territory and pre-processed
to suppress the additive noise. The region of interest was then segmented from the pre-processed
images using K-Means segmentation, through which statistical features were extracted and classified.
Promising results were achieved for all classifiers, namely Naive Bayesian, Support Vector Machines
(SVMs), Random Forest and Multi-Layer Perceptrons (MLPs), at various division ratios of data
samples. In a comparison of all the classification algorithms, Random Forest outperformed the rest
by an overall accuracy of 97.5% at the division ratio of 70 to 30 for training to testing.

Keywords: olive; image segmentation; image classification; centroid selection; Jaccard analysis; very
high-resolution imagery

1. Introduction

Olive fruit possesses high agricultural significance, being a major part of the economy for countries
such as Spain, Italy, Greece, and Turkey. Today, Spain is the leader of olive production, producing
5,276,899 metric tons of olives on over 2.4 million hectares of dedicated land. Over the last 25 years,
consumption of olive oil has increased by 73% and is anticipated to exceed the production by 13% this
year [1].

The production and distribution of economically significant crops need to be recorded and
maintained for both agriculturists and economists. Manual collection of data over large areas is
humanly infeasible, time-consuming, and prone to human error. Advancements in the field of image
processing and the availability of very high resolution (VHR) imagery has led to automatic detection
and counting [2], which aim to achieve the above-mentioned goal.

Automatic detection of olive trees has remained a challenging topic for researchers. Various basic
image pre-processing techniques including image segmentation [3], blob detection [4–6], and template
matching [7] have been devised for accurate remote detection. Similarly, complex techniques with
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artificial intelligence enabled [8] and classification-based systems has also been proposed [9,10] to
achieve accurate and confident detection results.

Previous methods showed promising results, while leaving room for the application of accurate
and heuristic segmentation techniques along with the development of an accurate yet computationally
efficient multi-staged olive tree classification system. In addition, these algorithms have been tested
over less demanding environments, characterized by fewer ground classes captured over fewer sample
images. Our proposed system aims to achieve accurate detection and classification of olive trees in
highly diverse environment captured over a large set of aerial images, addressing the limitations in
the previous work. It contributes to the domain knowledge by:

• utilizing the heuristic based, improved K-Means clustering algorithm for better segmentation
results;

• developing a computationally efficient and robust multi-step based classification model for
accurate detection and identification of olive trees; and

• training and testing the proposed system over a large set of diverse images with varying ground
information.

The rest of the paper is organized as follows. Section 4.2 presents the existing literature on olive
tree detection followed by the methodology discussed in Section 3. Section 4 covers the experimental
setup followed by results in Section 5. Section 6 concludes the paper along with the discussion of
future work.

2. Related Literature

2.1. Early 1990s and 2000s

Starting in 1990, Karantzalos and Argialas proposed a blob detection based method to detect olive
trees in satellite imagery acquired from Quickbird and IKONOS [5]. In 2000, the Joint Research Centre
(JRC) developed a tool called OLICOUNT to count olive trees in grey-scale input image [11]. The
tool utilized a combination of techniques such as thresholding, region growing, and morphological
operations. Advancements in the tools were made, resulting in OLICOUNT v2 with 16-bit image
support [12].

2.2. Late 2000s

Gonzales et al. in 2007 developed a probabilistic model to count the olive trees [7] over the
imagery acquired through QUICKBIRD satellite. The probability was calculated for a tree if it was
a part of a reticle along with exhibiting the geometrical features such as size, shape, and the angle
formed among the trees. The technique resulted in detection accuracy of 98%. In 2009, Arbor Crown
Enumerator (ACE), the algorithm proposed by Ionis et al., detected olive trees in multi-spectral
imagery [6]. The algorithm utilized the red band thresholding along with the NDVI-based detection
method, resulting in an overall estimation error of 1.3%. In the same year, a classification model was
proposed by Yakoub et al. to detect olive trees in the agricultural area of Al Jouf, Saudi Arabia acquired
by IKONOS-2 [9]. The method utilized a Gaussian Process Classifier (GPC) classifying morphological
features of ground data with an overall accuracy of 96%.

2.3. 2010 to Present

In 2010, Garcia et al. proposed multiple methods to detect olive trees from satellite acquired
from the SIGPAC viewer of Ministry of Environment and Rural and Marine Affairs, Spain (http:
//sigpac.mapa.es/fega/visor/) images [3]. Testing samples were formed from the SIGPAC satellite
viewer. In one of the methods, they detected olive trees by extracting them as segments formed
by K-Means clustering. The results showed an overall omission rate of zero in six samples and a
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commission rate of one in six. Other methods utilized fuzzy logic, generating a fuzzy number to detect
the olive trees using k-neighbor approach [8]. Promising results were obtained from the methodology
showing an omission rate of one in six and a commission rate of zero. The results were generated
using the value of k as 1 and 2.

In 2011, an object-based classification method was proposed by Jan Peters et al. to detect olive
trees from multi-spectral images covering the region of France [10]. The method was comprised of a
four-step model: image segmentation, feature extraction, classification, and result mapping. Synergy
models were developed at each stage of the technique by combining features from various sensors
giving an overall accuracy of 84.3%.

In 2017, Chemin et al. [4] proposed a method to monitor the massive loss of olive trees due to
the deadly pathogen, Xylella Fastidiosa over the region of Apuglia, Italy [13]. Multi-spectral images
were pre-processed to NDVI followed by segmentation based on Niblack’s thresholding method and
Sauvola binarization [14]. Segments falling within defined parameters of size and area were considered
to be olive trees, resulting in an overall mean error of 13%. In 2018, Khan et al. [15] proposed a
computationally efficient method to detect olive trees over the territory of Spain. They employed basic
image processing techniques such as unsharp masking and threshold-based segmentation to detect
and count olive trees. Segmented trees were made part of the tree count if lying within the possible
size range. The algorithm showed an overall accuracy of 96%.

Related work done in the past years show the proposition of various techniques and methods to
detect olive trees. Techniques from simple image segmentation and blob detection to complex methods
of classification have been proposed. It has been observed that all previous techniques in the literature
showed high accuracy but with a few limitations. Application of simple and efficient threshold-based
segmentation techniques along with blob-detection-based methods gave decently accurate results but
were highly prone to false positives. Sequential application of the above-mentioned techniques over
multi-spectral images enhanced detection accuracy with increase in computational cost. In addition,
the respective techniques also showed limitations towards omission and commission errors. When it
comes to classification based systems, publicly available datasets with enough images covering diverse
cases were not made part of the testing images, leaving room for improvement in the classification
results. Our proposed technique focuses on overcoming these shortcomings along with validating it
over a diverse dataset in terms of both number of images and ground cover classes.

3. Proposed Scheme of Automatic Detection of Olive Trees

In this paper, a method for detecting olive trees in plantation areas using classification is proposed.
The aim was to design and develop an olive tree detection algorithm that is accurate in prediction,
able to handle many image data, scalable to multi-spectral imagery, and robust in producing accurate
results in varying land/tree scenarios in the imagery. The multi-step algorithm utilizes a combination
of techniques: pre-processing, segmentation, feature extraction, and classification. The workflow
diagram of our proposed system is shown in Figure 1.



Remote Sens. 2020, 12, 760 4 of 16

Figure 1. Workflow of algorithm for automatic detection of olive trees.

3.1. Image Pre-Processing

Image pre-processing is the initial step of our algorithm in which the colored images undergo the
noise removal and any other irregularities obscuring the desired information. During the formation
of the images, they may encounter errors due to low luminance, motion blur, and mechanical noise
added due to optical devices. Input images are pre-processed, removing such errors by smoothing the
effect of noise followed by edge enhancement for better results in later stages [16].

3.2. Image Enhancement Using Laplacian of Gaussian (LoG) Filtering

Laplacian filter is used to highlight the regions showing abrupt changes in intensity levels
resulting in enhanced edges of the image [17]. Considering the sensitivity of the Laplacian filter to
noise, the Gaussian filter is used as a smoothing operator to normalize the noise within the image [18].
The 2D Gaussian is given in Equation (1),

G(x, y) =
1

2πσ2 e

(
− (x2+y2)

2σ2

)
(1)

where σ is the standard deviation. The convolution result of the Gaussian filter with the input
image im(x,y) is given in Equation (2) as,

L(x, y) = im(x, y) ∗ G(x, y) (2)

where * represents the convolution operator and L(x,y) is the Gaussian scale space representation of
the input image im(x,y). The Laplacian is given in Equation(3) as,

∇2 =
∂2L
∂x2 +

∂2L
∂y2 (3)
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where ∂ is the spatial derivative of the filtered image L in both x and y axis. Gaussian smoothing
followed by the Laplacian can be combined using a single operator known as Laplacian of Gaussian
(LoG) [19], which is shown in Equation (4) as,

∇2G(x, y) =
x2 + y2 − 2σ2

πσ4 e−(
x2+y2

2σ2 ) (4)

where σ represents the standard deviation and x and y represent the spatial coordinates of the image.
The application of Gaussian filter before the Laplacian attenuates the noise, thus improving the
performance of the Laplacian operator of enhancement of edges.

3.3. Image Segmentation Using K-Means Clustering

The region of interest (ROI) is defined as the subset of pixels within an image requiring further
operations to be performed. To extract foreground information of olive trees as the ROI from the image,
image segmentation technique is used. Various segmentation techniques can be used, out of which
K-Means clustering is performed.

3.3.1. K-Means Clustering

K-Means clustering is a type of unsupervised learning that divides unlabeled data into
non-overlapping groups [20]. The algorithm performs the iterative assignment of each data point
to one of the K groups based on the least distance of centroids to their feature space. The process is
repeated until centroids reach to their final constant positions. For the input of K number of clusters
and respective centroids, data points representing olive trees are clustered and extracted. The flow
diagram of the process is shown in Figure 2.

Figure 2. Flow diagram of K-Mean algorithm.

3.3.2. Centroid Selection

The centroid is a key data point around which clustering is performed. It is similar to any other
data point represented with feature vector selected randomly or through a mechanism. In the proposed
methodology, K numbers of centroids are selected under a mechanism [21] for better clustering, as it
affects speed and performance, which is given mathematically as given in Equation (5),

Ci = i ∗ m
k + 1

(5)

where m is the maximum intensity value of the image determined from the histogram, k is the number
of clusters and Ci is the ith cluster centroid where i takes the value of 1, 2, 3, k.

3.4. Feature Extraction

The segments extracted as a result of clustering may include both olive trees and other ground
components due to similar intensity levels. Features from those individual segments are extracted and
a feature vector is formed. Olive trees when viewed from above show resemblance towards blob-like
structures exhibiting distinct characteristics of size and color. The features extracted are grouped
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together forming a single feature vector. The statistical feature vector is calculated for each of the
extracted foreground segment. Table 1 lists the mentioned features along with the combined vector of
those features.

Table 1. Extracted statistical features from the images.

* Sr No. Feature Size of Feature Vector Description

1 Mean of Red band 1×1 Average value of pixels in red band
2 Mean of Blue band 1×1 Average value of pixels in blue band
3 Mean of Green band 1×1 Average value of pixels in green band
4 Area 1×1 Number of pixels in a segment
5 Combined Features 1×4 Mean values of the color of the segment and its size

* Sr No : Serial Number.

3.5. Classification

Classification is one of most widely used technique in machine learning to predict the output
belonging to a class label y based on input features x. Features extracted in the previous section are
used to train and test multiple supervised learning algorithms. These include Naive Bayes, Support
Vector Machine, Multi-layer Perceptron, and Random Forests.

3.5.1. Naive Bayes Classifier

Naive Bayes (NB) is a supervised learning technique based on the Bayes theorem [22]. It works
on a naive assumption of independence among the features relating the conditional and marginal
probabilities that two events occurred randomly. For an input x =(x1, x2, x3, xd), a d-dimensional
feature vector with no output class label, the algorithm predicts the class based on the Bayes theorem.
Let C be a class variable with class labels as Cj with j = 1,2,3..k. P(Cj) is the prior probability of class Cj.
P(x− Cj) is the likelihood of the object belonging to the class Cj and P(x) is the prior probability of
the predictor. The posterior probability of a class Cj given the predictor x as P(Cj − x) as shown in
Equation (6) as,

P(Cj|x) =
P(Cj)P(x|Cj)

P(x)
(6)

In the above equation, the class Cj is assigned to the input x based on the highest probability
among all the classes. The independence of features among one another is given in Equation (7),

P(x|Cj) =
k

∏
j=1

P(x|Cj) (7)

The Naive Bayes classifier is based on the above equations and its naive assumption leads
to simpler calculation and faster data processing. The two equations can be combined together
summarizing the algorithm, as shown in Equation (8),

j = arg max
j

P(Cj)
d

∏
i=1

P(xi|Cj) (8)

where the P(x) is omitted as it is the same for all the class.
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3.5.2. Support Vector Machines

Support Vector Machines (SVM) are a set of supervised learning methods proposed by Vapnik
in 1995 that work by minimizing the classification error to maximize the geometric margin between
the classes [23]. The classifier works by finding the right hyperplane to separate the data points into
required classes. Once the hyperplane is determined, the testing samples are predicted to be on either
side of the plane. Mathematically, the hyperplane is given by Equation (9),

w · x + b = 0 (9)

where x is an N-dimensional input vector, w is a weight vector described as w = (w1, w2, w3...wn),
and b represents the bias of the model and is a scalar quantity described as the perpendicular distance
from hyper-plane to the origin.

3.5.3. Random Forest

Random Forest is a classification algorithm consisting of tree-structured classifiers (h(x,�k and
k = 1,2), where (�k) is given as an independent identical distribution of random vectors [24]. Each tree
casts a vote for the input x. Random Forest is based on an ensemble technique grouping classifiers
such as decision trees and classifies the instances by summation of their individual votes. It is very
popular among the classification algorithms due to its high performance.

3.5.4. Multi-Layer Perceptron (MLP)

Artificial Neural networks (ANN) are non-parametric flexible models comprised of several layers
of computing elements called as nodes. The input signal is received by each node through external
inputs and is processed locally through the transfer function. Transfer function outputs the transformed
signal to other nodes. In MLP, all nodes and layers are arranged in a feed-forward manner [25].

Figure 3. A hypothetical example of the Multi-Layer Perceptron (MLP) network used for classification [26].

Figure 4. The ability of the SVM to classify datasets that are not linearly separable [27].

Any input vector fed into the network is propagated from the first layer as an input layer, passing
through the hidden layers, towards the last layer as the output layer. Three-layer MLP is a commonly
used ANN structure for binary classification problems such as of olive tree detection. An example of an
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MLP with one hidden layer and one output node is shown in Figure3. The hyperplane is represented
by a dashed line in Figure4.

Statistical features extracted from the segments are fed into the classifiers resulting in a binary
classification map, indicating the classified olive trees along with non-olive objects. Classification
accuracy is calculated, and correctly classified olive trees are recorded giving the total olive tree count.

4. Materials and Methods

This section describes the dataset used to evaluate our proposed method. It also discusses the
parameters on which the performance of our method was measured and gauged.

4.1. Dataset

To evaluate the performance of our proposed algorithm, images were acquired from the SIGPAC
viewer of the Ministry of Environment and Rural and Marine Affairs (http://sigpac.mapa.es/fega/
visor/). The interface spans the communities of Spanish territory captured in the form of satellite
images. Among those communities is the Castilla La Mancha, covering the province of Toledo, which
is significant for a high concentration of olive production [28].

Around 110 images in the visible spectrum with a spatial resolution of 1m and of uniform image
sample size of 300×300 were taken from the satellite images. Parameters defining the center of the
area by Universal Transverse Mercator (UTM) corresponded to Huso 30 with X = 411,943.23 and
Y=4,406,332.6 [3]. Images taken from the viewer included multiple land covers including houses,
roads, shrubs and bushes, rocks, and olive trees. For each image, the land covers were marked,
providing the ground truth information necessary in the classification stage.

4.2. Performance Evaluation Metrics

Information about how well a classification system has performed in predicting the testing
samples against their ground truth values was recorded in a confusion matrix or error matrix, as shown
in Figure 5.

Figure 5. Confusion Matrix.

True Positive (TP) and True Negative (TN) are the correctly classified test samples of positive
class and negative class, respectively. Positive class in our system represents the olive trees, whereas
negative class represents the non-olive objects. False Positive (FP) and False Negative (FN) are the
mis-classifications of test samples of positive and negative classes, respectively, into other classes.
Using the information from the confusion matrix, various performance evaluation metrics were
calculated, which are briefly discussed below.

4.2.1. Overall Accuracy (OA)

It is represented as the ratio of the number of correctly predicted items to a total number of items
to predict. In our binary classification problem, it is calculated as the ratio of correctly predicted olive
and non-olive tree samples to the total number of samples. Mathematically, it is given as Equation (10),

Overallaccuracy =
TP + TN

(TP + TN + FN + FP)
∗ 100 (10)

http://sigpac.mapa.es/fega/visor/
http://sigpac.mapa.es/fega/visor/
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4.2.2. Commission Error (CE)

Commission error, also known as False Positive rate, is defined as the mis-classification of an
object being labeled as a true class actually belonging to the false one. The rate at which a non-olive
sample is classified as an olive one is given as in Equation (11) as,

Commission Error Rate =
FP

FP + TN
(11)

4.2.3. Omission Error (OE)

Omission error, also known as False Negative rate, is defined as the mis-classification of an object
being labeled to a false class belonging to the true one. It is the rate at which an olive tree sample is
classified as a non-olive one. Omission error is given in Equation (12) as,

Omission Error Rate =
FN

FN + TP
(12)

4.2.4. Estimation Error (EE)

It is given as the error in estimation of the number of samples within a given region relative to the
actual number of samples within that region. It is the representation of error between the estimated
number of trees and the actual number of trees to be estimated. Mathematically, it is given in Equation
(13) as,

et =

(
Nestimated − Nactual

Nactual

)
× 100 (13)

4.2.5. Finding the Optimal Value of K

The value of K in K-Means clustering specifies the number of groups to be formed, which can be
determined by clustering itself. Our methodology utilizes the elbow method [29] to find the optimal
value of K, which works by measuring the intracluster distances between cluster points and their
centroids given by Sum of Squared Error (SSE), as in Equation (14),

SSE =
k

∑
i=1

∑
x∈Ci

dist(x, Ci)
2 (14)

where dist is the Euclidean distance between the cluster members x and cluster centroid Ci. Moving
from smaller to larger value of K, the SSE decreases, giving less variation in the intracluster distance.
The point with an abrupt decrease in the SSE gives the value of K. Our method uses the value of K as 4.

5. Experimental Results

Step-by-step results are described, elaborated, and compared with the existing techniques below.
The proposed methods were tested on a desktop computer with CoreTM i7 7700HQ and 2.80 GHz.

5.1. Image Pre-Processing Results

As mentioned in Section 4.2, LoG was utilized for the pre-processing of images where input
colored images were pre-processed to reduce any noise or errors obscuring the required information.
Images were smoothened, normalizing any noise in the image followed by the sharpening through
Laplacian filter. Some examples of pre-processed images are shown in Figure 6.
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Figure 6. Image pre-processing results. The first column represents the input image and its zoomed in
version, whereas the second column refers to the corresponding results after pre-processing.

5.2. Image Segmentation Results

The ROI in the images are the olive trees and were extracted out of the background information
using K-Mean clustering, as discussed in Section 3.3. The average optimal value for number of clusters
was obtained as 4. The value of 4 was determined based on the abrupt change in SSE for varying
values of K. The segments formed as result of K-Mean clustering with a value of K as 4 are shown in
Figure 6.

Segmentation results were validated by measuring the segmentation accuracy of the proposed
K-Means clustering method and results were recorded. The segmentation accuracy of the method was
determined by calculating the overlapping percentage of resultant image with the marked ground truth
information. It was calculated through Jaccard Analysis, measuring the ratio of intersection between
segmentation result A and marked ground data B to the union of both A and B. Mathematically, it is
given in Equation (15) as,

J(A, B) =
|A ∪ B|
|A ∩ B| (15)

5.3. Classification Results

Statistical features extracted from the segments of images including both olive and non-olive tree
components were fed into the classifiers SVM, Naive Bayesian, Random Forest, and MLP.

Data samples denoted by D1, D2, and D3 represent the training to testing ratios of 50 to 50, 60 to
40, and 70 to 30, respectively, as shown in Figure 7. It was observed that by increasing the training
ratio from 50% to 70%, classifiers showed an increase in the classification results. Naive Bayesian,
SVM, Multi-Layer Perceptron, and Random Forest showed an overall accuracy of 79.5%, 90.1%, 92.9%,
and 96.6%, respectively, over the 50 to 50 division ratio.
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Figure 7. Image Segmentation Results for K set as 4. The first row represents the first cluster; the
second row is the second cluster; and the third and fourth rows correspond to the third and fourth
clusters, respectively. The scale bar represents the scaling ratio of 1 cm to 400 m.

Increasing the training samples to 60% of the total data samples, the overall accuracy for the
classifiers increased to 79.6%, 91.1%, 93.5%, and 97.3%, respectively. The ratio of 70% for training
samples resulted in the highest overall accuracy, with Naive Bayesian at 80.1%, SVM at 92.3%, MLP at
94%, and Random Forest performing best at 97.52%.

Figure 8. Comparative analysis of Naive Bayesian, Support Vector Machine (SVM), Multi-Layer
Perceptron (MLP), and Random Forest over division ratios D1 (50% testing, 50% training), D2 (40%
testing, 60% training), and D3 (30% testing, 70% training).
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Confusion matrices for classifiers trained and tested at D3 proportion are shown in Table 2,
whereas comparison of classifiers for D3 division (70% training and 30% testing) is shown in Table 3.

Table 2. Confusion matrices of the Olive Tree classification by four classifiers for D3 Division (table
constructed as shown in Figure 5).

* SVM Tree Non-Tree Naive Bayesian Tree Non-Tree

Tree 2971 10 Tree 2653 328
Non-tree 360 1474 Non-tree 630 1204

** MLP Tree Non-Tree Random Forest Tree Non-Tree

Tree 2891 90 Tree 2936 45
Non-tree 197 1637 Non-tree 74 1760

* SVM : Support Vector Machine. ** MLP : Multi-Layer Perceptron.

Table 3. Performance evaluation of classifiers presented as percentage values.

Classification Algorithm * OA ** CE *** OE **** EE

Random Forest 97.5 0.04 0.015 0.97
MLP 94.0 0.10 0.03 3.5
SVM 92.3 0.19 0.003 10.1

Naive Bayesian 80.1 0.34 0.11 11.7

* OA, Overall Accuracy; ** CE, Commission Error; *** OE, Omission Error; **** EE, Estimation Error.

6. Discussion

This section discusses the overall results achieved by the proposed method and draws a
comparative analysis of computational time with the utilization of both versions of K-Means
segmentation. It also draws a comparative analysis between the proposed method and
existing techniques.

6.1. Comparative Analysis with Simple K-Mean

Standard K-Means technique initializes the centroids by random selection among the data points.
The clustering is performed around the selected centers as they move towards the final position
during the iterative process. The initial selection of centroids plays an important role in the overall
performance of the clustering algorithm, affecting clustering speed along with the improvement in
results. A comparative analysis between the two versions of K-Mean clustering is shown in Figure 9.

Figure 9. Comparison of segmentation accuracy between the Simple K-Means and Improved K-Means.

The segmentation accuracy for Units 1–6 is shown in Figure 9, where each unit consists of almost
1000 foreground olive trees. It can be seen for Unit 6 both K-Mean variations performed equally well.
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However, for images with low contrast between the background and foreground, centroid selected
K-Means seemed to outperform the other, such as for Units 1–3 and 5. Centroid selected K-Means was
able to detect young olive trees, outperforming the simple approach by a far margin for Unit 4.

Centroid selection speeds up the convergence of initial centroids to their final position, reducing
the number of iterations by half that of standard K-Means. A reduced number of iterations results in
reduced computational complexity.

The average computational time for an image using improved K-Mean comes out to be 78 ms,
whereas the standard/simple K-Mean results in 131 ms of average computational time. A comparison
of the computational time (CT) between the two variants of K-Mean is shown in Figure 10.

Figure 10. Comparison of Computational Time (CT) between the Simple K-Means and Improved
K-Means.

6.2. Comparative Analysis with Benchmark Schemes

Our proposed methodology and its results were compared with the existing techniques for olive
detection and its enumeration. The comparison drew on the parameters of the dataset, the number of
images used, the spectrum showing the processed information size, and the performance evaluation
metrics. A tabular form of the analysis is given in Table 4.

For the spectral information of the imagery utilized, Ionis et al.’s ACE method [6] combining the
red band and NDVI-based thresholding followed by the blob detection showed an estimation error
of 1.24%. Chemin et al.’s [4] thresholding-based method for the binarization of the multi-spectral
image followed by the localization of centers to detect the possible olive trees showed an estimation
error of almost 13%. Jan Peters et al. [10] work based on developing synergy models combining
sensor data followed by four-step classification algorithm showed an overall accuracy of 84.3%.
The above-mentioned techniques showed promising results, achieving high accuracies; however, all
the techniques utilized multi-spectral information, leading to the added computational cost.

Some techniques utilize only the color band spectral information or less. J. Gonzales’ reticular
matching technique identified olive trees within a particular area [7] using grayscale images.
The probabilistic approach to detect olive trees combining the probability of a tree in a reticle along
with its probability of being an olive tree showed promising results with an overall accuracy of 98%.
In [9], Yakoub et al proposed classifying morphological features of ground objects from satellite
imagery using GPC, detecting about 96% of the olive trees. Juan et al. proposed method of K-Means
clustering [3] over SIGPAC viewer imagery, identifying almost all olive trees with a commission rate
of zero and an omission rate of one in six of the test cases.

Juan et al. utilized the same imagery over the application of fuzzy logic [8] and showed quite
similar results as per K-Means technique. The above-mentioned techniques showed accurate results
with less processing information, however lacked diversity in terms of the number of images along
with the ground classes. Karantzalos et al.’s [5] method of detection of olive trees consisted of
pre-processing the input images acquired from QUICKBIRD satellite followed by detecting the local
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maxima of Laplacian as olive trees. Their study provided no such statistical data to measure the
performance of the algorithm.

Our five-step classification model was tested over varying ratios of dataset distribution and
resulted in high accuracy, ensuring the accuracy and robustness of our algorithm. Our proposed
method addressed the shortcomings in existing techniques by accurately identifying olive trees,
leading to a reliable tree count. This novel approach of five-step classification in olive tree detection
validated over images having diverse ground data over color spectrum with an overall accuracy of
97.5% significantly contributes to the existing literature.

Table 4. Comparative analysis of the proposed scheme vs. benchmark schemes.

Technique Dataset No of
Images Spectrum OA CE OE EE

Proposed
Methodology

SIGPAC
Viewer 110 RGB 97.5 4 in 100 1 in 100 0.97

Reticular
matching [9] Quickbird N/A Grey-scale 98 5 in 100 7 in 100 1.24

Laplacian
Maxima [7]

Quickbird
/ IKONOS N/A Grey-scale N/A N/A N/A N/A

GPC [11] IKONOS-2 1 RGB 96 N/A N/A 3.68

K-mean
Clustering [5]

SIGPAC
viewer N/A RGB N/A 0 in 6 1 in 6 N/A

Fuzzy logic [10]
SIGPAC
viewer 1 RGB N/A 0 in 6 1 in 6 N/A

Red band Thresholding
+ NDVI [8] Quickbird N/A 4-bands N/A N/A N/A 1.3

Counting Olive Trees
in Heterogeneous

Plantations [6]

Acquired
Aerial
Images

N/A 4-bands N/A N/A N/A 13

Object-based olive
grove mapping [12]

Multi-sensor
imagery 4 4-bands 84.3 N/A N/A N/A

Multi-level
thresholding [15]

SIGPAC
viewer 95 Gray-scale 96 3 in 100 3 in 100 1.2

N/A : Not Available.

7. Conclusions

In this paper, we propose an automated method for the detection and enumeration of olive trees
comprising of a multi-step classification-based implementation model. The model took an RGB image
acquired from the SIGPAC Viewer as an input. The input image went through a stage of pre-processing
that removed any additive noise followed by segmentation using the improved K-means clustering
algorithm. Statistical features were extracted over the connected pixels in each of the segments and
were classified using SVM, MLP, Random Forest, and Naive Bayesian. Among the classifiers, Random
Forest outperformed the rest with an overall accuracy of 97.5% at 70 to 30 ratio of training to testing.
Our technique with such accuracy, diversity, and enough samples for the proper training of the
classifiers outperformed the previous techniques. It overcame the limitations of false tree count along
with computationally expensive based accurate systems, devising a computationally efficient, accurate,
and robust olive tree detection algorithm. As future work, we will incorporate more features to
improve the feature extraction method as well as the classification. We look forward to the detection of
olive trees using deep learning.
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