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Abstract: In the near future, the Surface Water Ocean Topography (SWOT) mission will provide
images of altimetric data at kilometric resolution. This unprecedented 2-dimensional data structure
will allow the estimation of geostrophy-related quantities that are essential for studying the ocean
surface dynamics and for data assimilation uses. To estimate these quantities, i.e., to compute
spatial derivatives of the Sea Surface Height (SSH) measurements, the uncorrelated, small-scale
noise and errors expected to affect the SWOT data must be smoothed out while minimizing the
loss of relevant, physical SSH information. This paper introduces a new technique for de-noising
the future SWOT SSH images. The de-noising model is formulated as a regularized least-square
problem with a Tikhonov regularization based on the first-, second-, and third-order derivatives of
SSH. The method is implemented and compared to other, convolution-based filtering methods with
boxcar and Gaussian kernels. This is performed using a large set of pseudo-SWOT data generated in
the western Mediterranean Sea from a 1/60◦ simulation and the SWOT simulator. Based on root mean
square error and spectral diagnostics, our de-noising method shows a better performance than the
convolution-based methods. We find the optimal parametrization to be when only the second-order
SSH derivative is penalized. This de-noising reduces the spatial scale resolved by SWOT by a factor
of 2, and at 10 km wavelengths, the noise level is reduced by factors of 104 and 103 for summer and
winter, respectively. This is encouraging for the processing of the future SWOT data.

Keywords: SWOT; de-noising; variational regularization; western mediterranean

1. Introduction

The Surface Water Ocean Topography (SWOT) [1] mission will provide an unprecedented
two-dimensional view of ocean surface topography at a pixel resolution of 2 km. The launch is
scheduled for 2021. SWOT’s wide-swath altimeter, based upon Synthetic Aperture Radar (SAR)
interferometry technology, will measure Sea Surface Height (SSH) over a 120-km wide swath with
a 20-km gap at the nadir. The satellite will also carry a conventional nadir altimeter. SWOT will
evolve on two different orbits: the first 3 months of scientific data production will be dedicated to
a fast-sampling phase, where the repeat cycle will be 1 day. Then, the satellite will be moved to its
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nominal orbit with a 20.86-day repeat cycle. SWOT is a multidisciplinary hydrology and oceanography
mission, and here, we focus on the latter.

The main oceanographic objective of SWOT is to observe the geostrophic fine-scale circulation at
the global scale [2,3]. The measurement system is designed to resolve ocean circulation patterns at scales
down to 15 km, whereas the present-day constellation of conventional altimeters only resolves scales of
150–200 km and above [3]. In addition to potentially unexpected discoveries, this order-of-magnitude
gain in resolution will help quantify several oceanic processes much more accurately than today.
Among those processes are vertical motions, which are key to the vertical exchanges between the
ocean surface and the atmosphere and between the ocean surface and the deep ocean [4–9], and the
dissipation of kinetic energy, which partly determines the climatic role of the global ocean [10,11].

The SWOT mission objectives will be reached if we can accurately estimate gridded maps of at
least the first- and second-order horizontal derivatives of SSH. Altimetry describes the upper ocean
dynamics through geostrophy, which involves the horizontal SSH gradients. Geostrophy is a fairly
good approximation of meso-scale dynamics, i.e., at scales larger than the first Rossby deformation
radius (about 10–15 km in our region [12]), for which Rossby numbers are typically smaller than 1.
Kinetic energy dissipation is driven by the horizontal strain rates of the ocean surface flow [13].
Complete, gridded maps of SSH derivatives are required for climate studies and short-term operational
applications. One way to make gridded maps from incomplete SSH observations (including SWOT,
but not only) is to assimilate those data into dynamical models. The assimilation of SWOT is expected
to be challenging because of the spatially correlated errors, and promising solutions to this rely upon
the joint assimilation of SSH and its derivatives [14,15]. All these considerations compel the scientific
community to strive for getting accurate estimates of SSH derivatives.

Unfortunately, SWOT data will very likely be contaminated by small-scale noise and errors
that prevent the direct computation of SSH derivatives. The errors expected to contaminate SWOT
measurements gather several components with different spatial coherences and different amplitudes.
Details are provided in the SWOT mission performance and error budget document [16]. To be
prepared to exploit the future SWOT data, the SWOT simulator for ocean science has been developed
to simulate realistic realizations of SWOT uncertainties [17]. Some are illustrated at our study region
(Figure 1) in Figure 2. Errors due to the satellite roll, the baseline dilation, and the path delay
induced by atmospheric humidity exhibit significant spatial correlations with different characteristic
patterns. The system timing error presents errors invariant across-track but with possible small-scale
variations along-track. The KaRIn (Ka-band Radar Interferometer) noise is spatially uncorrelated, with
higher amplitudes at nadir and near the edges of the swath. The path-delay component also exhibits
small-scale variations due to sharp changes in air humidity. Efforts have already been undertaken
to filter out SWOT’s random, small-scale noise by Gómez-Navarro et al. [18]. The authors show that
the implementation of a diffusion-based filter allows to retrieve the dynamical spectral signature
down to 40–60 km scales (20–30 km in terms of dynamical pattern scales). However, the de-noising
approach here is not specifically designed to retrieve SSH derivatives, and we believe there is room for
improvement in the scales to be retrieved.

This paper presents a method designed to remove the random, small-scale noise of the future
SWOT data, which explicitly relies upon the regularity (bounded variations) of the first three orders of
SSH derivatives. Consequently, this approach is of interest as it has a direct impact on not only SSH but
also on important oceanic variables like geostrophic velocity and vorticity. This de-noising method is
rooted in image restoration techniques of the variational type [19–22]. The range of image restoration
techniques is extremely wide and diversified. Testing all existing methods is out of reach and irrelevant
here. Our approach is then to acknowledge that our image is a smooth physical field with relatively
smooth derivatives and that the estimation of derivatives is an important issue. This consideration
guides the design of the de-noising method presented in Section 2. The method involves a set of
parameters that must be adjusted. An essential task is to identify optimal sets of parameters. This study
suggests a methodology to identify them. The experimental setup is described in Section 3. Sections 4
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and 5 present the results, and Section 6 summarizes the study, draws the most relevant conclusions,
discusses them, and suggests possible future research paths.

2. Variational De-Noising of SWOT Images with Penalization of Derivatives

2.1. Formulation of the Image De-Noising Problem

The purpose of image de-noising here is to allow the computation of first- and second-order SSH
spatial derivatives of SWOT data as accurately as possible. The two reasons already mentioned in
the introduction are (i) that these quantities represent geostrophic velocities and relative vorticity,
respectively, of which the estimation is central to the success of SWOT mission, and (ii) that these
quantities could be used to draw maximum benefits from the assimilation of SWOT data into ocean
circulation models [14,15]. We therefore propose a method that explicitly constrains these derivatives.

The proposed de-noising model is formulated as a regularized least-square problem with a
Tikhonov regularization. The de-noised SWOT image h is searched for by minimizing the following
cost function:

J(h) =
1
2
‖m ◦ (h− hobs)‖2 +

λ1

2
‖∇h‖2 +

λ2

2
‖∆h‖2 +

λ3

2
‖∇∆h‖2 (1)

where ‖ ‖ represents the L2-norm, hobs is the original noisy image (i.e., our observation, the
pseudo-SWOT data), ∇ = (∂/∂x, ∂/∂y) is the gradient operator, and ∆ = ∂2/∂x2 + ∂2/∂y2 is the
Laplacian operator. Letter m and sign ◦ represent a mask and the entrywise matrix product, respectively.
They can be ignored for the present and the next subsection: their role is discussed in Section 2.3 below.
The regularization terms impose regularity constraints on geostrophic velocity, vorticity, and vorticity
gradient, respectively. Parameters λ1, λ2, and λ3 must be prescribed. The search for their optimal
values is reported in Section 3.3.

2.2. Resolution of the Variational Problem

The variational problem displayed in Equation (1) is solved using a gradient descent method [23].
The gradient of J is written as follows:

∇J(h) = m ◦ (h− hobs)− λ1∆h + λ2∆∆h− λ3∆∆∆h (2)

so that the solution can be reached after convergence of the following iterations:

hk+1 = hk + τ
(

m ◦ (hobs − hk) + λ1∆hk − λ2∆∆hk + λ3∆∆∆hk
)

(3)

Stability of iterations is guaranteed if τ ≤ (1 + 8λ1 + 64λ2 + 512λ3)
−1. In practice, it is taken

equal to this value. Two improvements on the method’s implementation accelerate the gradient
descent: Firstly, iterations are started with a preconditioned image obtained by applying a Gaussian
filter onto the original image, including inpainting as discussed in Sections 2.3 and 2.4 (note that
hobs remains the original, unfiltered image). Preconditioning considerably speeds up the algorithm
convergence, in particular for the inpainted regions. Secondly, iterations are actually implemented
with an acceleration of Scheme 3 based on the Fast Iterative Shrinkage-Thresholding Algorithm (FISTA)
[24], detailed in Appendix B. Iterations are stopped when ‖hk+1 − hk‖ < 10−9 or if k = 104. Those
values have been fixed after a careful search of a trade-off between accuracy and numerical efficiency.

The Laplacian operator is discretized with finite differences using the five-point stencils of the
image pixels. As commonly done in image processing, the division by pixel size is ignored; this also
reduces the probability of truncation errors due to operations with terms different by too many orders
of magnitude. Pixels located at the boundaries, where the stencil is incomplete, must have a Laplacian
value attributed; otherwise, the image would become smaller at each iteration of the gradient descent.
The implementation of the Laplacian operator follows Chambolle [22] and is detailed in Appendix A.



Remote Sens. 2020, 12, 734 4 of 23

2.3. Dealing with Gaps in the Image

An inpainting method is implemented to deal with islands, continents, and the 20-km wide gap
at the SWOT nadir, which all represent obstacles to the calculation of the second derivatives of images.
Inpainting consists of filling the gaps consistently with the neighbouring water pixels. This is done
(i) by extending images hobs and h with pixels in the gaps and (ii) by filling mask m with ones in the
water pixels of the original image and zeros in the gaps. Differential operators can then be applied to
every image pixel, and the gradient descent iterations are carried out smoothly. Mask m is applied to
the resulting image to obtain the final, filtered image with islands, continents, and the nadir gap.

Inpainting should not only be considered as a complimentary step to facilitate the gradient
descent implementation but also as an opportunity to fill the nadir gap for calibration, validation, and
reconstruction purposes. In the gaps, the image resulting from the iterations is determined only by
the neighbouring water pixels and regularity constraints. The gap width (20 km) appears reasonably
small in comparison with spatial scales of SSH variations in most parts of the mid-latitude, open
ocean. The image values obtained at nadir may thus be comparable to those collected by the nadir
instrument carried by SWOT, allowing calibration of the radar interferometer, validation of data, and
reconstruction of SSH in gap-free images. Such opportunities will be explored in a future work.

2.4. Comparison with Convolution-Based Filters

In Section 4, the image de-noising technique described above will be compared with standard-type
filters, namely convolution-based filters. In our experiments, we test the two commonly used boxcar
and Gaussian convolution kernels, with a large range of parameters, and we shortly refer to the
boxcar filter and the Gaussian filter. Their parameters are the box size (or footprint) and the standard
deviation for the Gaussian kernel (hereinafter referred to as σ). Gaps in the SWOT swath (lands,
islands, and nadir gap) are inpainted to facilitate filtering and to ensure the smoothness of SSH fields.
Then, SSH values created in gaps are removed for the evaluation of the methods using the mask m.
Inpainting is implemented as follows: (i) Image gaps are filled with zeros; (ii) both the filled image and
the mask m are filtered with the same kernel; and (iii) the filtered filled image is divided entrywise by
the filtered mask. Note that, in an earlier study [18], a Laplacian diffusion filter was experimented.
It is not reproduced here, since it is equivalent to the Gaussian filter implemented in this study. For
details on the software used to implement these methods see Appendix E.

3. Experimental Setup

3.1. Simulated SWOT Dataset

The input of our database is a 15-month North Atlantic simulation at a resolution of 1/60◦.
We use the NEMO3.6 ocean model coupled to LIM2 ice model, with atmospheric forcing from a
global ocean reanalysis at 1/4◦ (GLORYS-v3) and ocean-atmosphere boundary conditions of Drakkar
Forcing Set (DFS5.2) based on European Centre for Medium-Range Weather Forecasts (ECMWF)
Interim Re-Analysis (ERA-Interim). It has no high frequency forcing and thus does not include tides.
The domain covers the North Atlantic from 25◦N to 66◦N. The horizontal resolution is between 0.8
and 1.6 km (depending on latitude), and the grid has 300 vertical levels. This NEMO (Nucleus for
a European Model of the Ocean) model configuration is referred to as NATL60, and the source files
and codes are available in Molines [25]. The particular simulation used herein has been described in
Amores et al. [26], Fresnay et al. [27], Ajayi et al. [28]. Lastly, the simulation time span is from mid-June
2012 to October 2013 [29].

The SWOT simulator for Ocean Science (version 2.21) [17] is run to generate pseudo-SWOT scenes
from the NATL60 simulation. The SWOT simulator first builds the SWOT observation grid based
on the provided satellite orbit. In this study, SWOT grid resolution is fixed at 1 km. After this work
started, the resolution of the basic SWOT level 2 SSH data products has been fixed to 2 km, but this
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small mismatch does not modify the general approach. After building the grid, the simulator reads
SSH data from NATL60 and linearly interpolates them from the model to the SWOT grid (rendering
the variable SSH_model). In a last step, it computes random realizations of observation errors and
adds them to the interpolated SSH data (rendering SSH_obs). Observation errors considered at the
moment are KaRIn noise errors, roll errors, phase errors, baseline dilation errors, timing errors, and
errors due to signal alternation by atmospheric humidity. Among these errors, only the KaRIn noise
is expected to be spatially uncorrelated. Technically, the SWOT simulator provides simulations of
the noise-free SSH observed by SWOT and of the noisy data that SWOT will actually yield (sum of
the former and the noise: SSH_obs = SSH_model + errors). For the evaluation of image de-noising
methods, it thus provides “true” noise-free images (htrue) along with the realistic SWOT data (hobs) to
process and compare with the truth.

A set of 543, 121 × 200 km2 pseudo-SWOT scenes are generated in the western Mediterranean
Sea, covering one winter and two summer seasons (choice limited by the model’s time span). SWOT
scenes are sampled from the fast-sampling phase satellite orbit, focusing on a cross-over region,
i.e., where an ascending pass crosses a descending pass, therefore providing 2 passes per day.
The SWOT data simulation is carried out over three 3-month periods: July to September 2012 and
2013 (JAS12 and JAS13 hereafter), representing the summer season, and February to April 2013
(FMA13), representing the winter season. The summer periods provide 92 (resp. 91) of ascending (resp.
descending) passes; the winter period provides 89 (resp. 88) passes. The selected region belongs to the
fast-sampling phase crossover in the western Mediterranean Sea. This is one of the regions selected
for calibration/validation (Cal/Val) [30] in which in situ measurements have been made in the frame
of SWOT [31]. To mitigate the computational complexity of the study and to avoid the presence of
continents and islands, limited subregions of the SWOT swaths are sampled. These subregions are
121-km wide (the width of 2 SWOT swaths plus the gap) and 200-km long. The region, the SWOT
passes, and the subregions are shown in Figure 1. It is worth noting that each scene is affected by a
unique realization of the SWOT error.

Figure 1. SSH_model outputs (m) for cycle 1 of pass 9 (left) and 22 (right) of the July to September
2012 (JAS12) dataset: In red is the subregions selected.
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In this work, image de-noising techniques are first applied to the pseudo-SWOT scenes affected
by the KaRIn noise only (SSH_obs_K) and then to the scenes containing all errors (SSH_obs).
This approach allows to discriminate the effects and the performance of image de-noising in the
presence of the spatially correlated SWOT errors. A few realizations of the different components of
the SWOT error are shown in Figure 2, where we can observe how most errors exhibit strong and
long-range correlations, whilst the KaRIn error does not show any correlation at all.

(a)

(b)

Figure 2. Examples of errors (m) added by this Surface Water Ocean Topography (SWOT) simulator
version 2.21 to our study region fast-sampling phase for JAS12 pass 9 (a) and 22 (b): Note that these
simulations are performed without the 20-km gap at nadir.

3.2. Diagnostics for Evaluation

The quantitative evaluation of de-noising methods is carried out by computing Root Mean Square
Errors (RMSE) and Mean Spectral Ratios (MSR). RMSE for a single de-noised SWOT field h is computed
as the Euclidean distance to the corresponding original, noise-free field htrue:



Remote Sens. 2020, 12, 734 7 of 23

RMSE(h) =

√√√√ 1
N

N

∑
i=1

(
hi − htrue

i
)2 (4)

where N is the number of pixels and i a pixel index. Single image RMSEs are then averaged out by
season for the 3 seasons considered and are computed for SSH, |∇SSH| and ∆SSH. Thus, the test
of a de-noising method with a specific set of parameters results in 9 RMSE values. To evaluate the
improvement after the application of the different de-noising techniques and parameters, we also
calculate the percentage of the initial RMSE left. We calculate this RMSE residual (RMSEr) as follows:

RMSEr(h) =
RMSE(h)

RMSE(hobs)
× 100, (5)

where h is the de-noised field and hobs is the original noisy field (SSH_obs_K or SSH_obs).
The spatial spectra of the de-noised SWOT SSH are compared with the spectra of the noise-free

and the noisy SWOT SSH. For each pass, we calculate the cross-track averaged and along-track power
spectrum. The spectra are then averaged out over each season, leading to one spectrum per season.
Information on the wavenumber spectrum calculations is given in Appendix C. Again, to evaluate the
improvement after the application of the different de-noising techniques and parameters, we compare
the noise-free and de-noised fields. To do so, the Mean Spectral Ratio (MSR) is computed from the
Power Spectral Densities (PSD) of SSH. For each season, MSR is computed as follows:

MSR =

√√√√√ 1

∑Nk
j=1 δk j

Nk

∑
j=1

(log10

(
PSDj(htrue)

PSDj(h)

))2

× δk j

, (6)

where Nk is the number of wavelengths considered and where PSDj(htrue) and PSDj(h) are the power
spectral density values at wavelength j for the original, noise-free SWOT field and the de-noised SWOT
field, respectively. The considered wavelengths span the interval from 9 km, the approximate effective
resolution of NATL60, to 200 km, the size of images along-track. MSR is defined above so that the best
score is 0.

3.3. Exploring Parameters of the De-Noising Methods

For all de-noising methods, a wide range of parameters are tested to identify optimal parameters
according to the diagnostics presented in Section 3.2. The convolution-based methods use a single
parameter that can easily be compared with the image dimensions in pixels. For the boxcar kernel,
the tested parameter values go from 3 to 200 km and correspond to the size of the box in pixels (1 km
in our case). For the Gaussian kernel, the tested parameters go from 0.25 to 300 and correspond to
the standard deviation, in pixels (we test up to a big sigma to have a highly oversmoothed image to
reach the limit of the method). On the contrary, the geometric interpretation of the parameters of the
variational method is not straightforward, and a wide exploration of the parameter space must be
undertaken. However, due to computation time limitations, this cannot be performed in a strictly
systematic manner. The adopted procedure is detailed below.

3.3.1. Orders of Magnitude of the Cost Function Terms

The orders of magnitude of the terms ‖∇h‖2, ‖∆h‖2, and ‖∇∆h‖2 composing the cost function
(Equation (1)) are estimated to coarsely scale the parameters λ1, λ2, and λ3. The rationale is that,
for one of these terms (with its weight) to have some impact on the solution, it must be of an order of
magnitude not too different from the background term ‖m ◦ (h− hobs)‖2. Figure 3 shows the seasonal
evolution of the derivative terms, computed from the model in a 2◦ × 2◦ region containing the SWOT
passes used in this study. The relative ratios between ‖∇h‖2, ‖∆h‖2, and ‖∇∆h‖2 are approximately
1000:10:1. Therefore, if we want to include all three terms in the cost function, the ratios between λ1,
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λ2, and λ3 should coarsely be 1:100:1000. Those ratios must be only considered as a guideline to start
the investigation, not a strict rule. Note that the order of magnitude of the background term after
minimization of the cost function is thought to be in the range 1 to 100 in the same region. This has
been estimated using the noise-free field.

Figure 3. Seasonal variations of the cost function terms ‖∇h‖2, ‖∆h‖2, and ‖∇∆h‖2, from top to
bottom: Shaded areas indicate the JAS12, February to April 2013 (FMA13), and July to September
2013 (JAS13) periods from left to right, respectively. The mean and median values are printed for each
period and for the whole year (upper right corners, in bold).

3.3.2. Finding Optimal Sets of Parameters

First, we created an exponential series of values to be tested for the three lambdas, consistently
with the previously estimated relative ratios. For λ1, the series is chosen as {4n, n = 0, ..., 7}. For
λ2 and λ3, the series are {10× 4n, n = 0, ..., 7} and {100× 4n, n = 0, ..., 7}, respectively. With these,
six scenarios of Derivatives Penalization (DP) de-noising are investigated, including one, two, or three
penalization terms in the cost function of Equation (1). Three scenarios out of the six considered
include a single penalization term (mono-parametric) of orders 1, 2 and 3, successively. The other
scenarios are made of terms of orders 1 and 2 and of 2 and 3, and the last one includes the three orders.
For conciseness, particularly in the next section, we refer to the variational method with the first-order
term only as the λ1 method. We similarly refer to the λ2 method and to the (λ1 + λ2) method when the
first two penalization terms are considered, and so on.

For each scenario, a two-step procedure is implemented to identify an optimal set of parameters.
In a first step, de-noising of the full set of images is performed with all possible combinations of
parameters permitted by the scenario and the parameter series defined previously. RMSEs and MSR
are computed for all the combinations. In a second step, refined series of parameters are created in
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the neighborhood of the combination of parameters that yields the minimum RMSE and MSR scores.
Image de-noising is then carried out again with all possible combinations of these series.

4. Optimal De-Noising Method

In this section, the optimal de-noising method is searched for based on the RMSE and MSR scores
described in Section 3. We investigate the KaRIn-noise-only scenario and then the all errors scenario
and finally have a closer look at the method identified as optimal. As it becomes clear in what follows,
the notion of optimality does not only refer to quantitative measures. The design of a single index
summarizing the performance of the method for the different RMSEs is indeed subjective. Moreover,
we take into account the ease of implementation and parameterization as a criteria in the final decision.

Minimum values of RSME and MSR for each season, method, and variable are reported in
Tables 1 and 2 for the KaRIn-only and all errors scenarios, respectively. RMSE scores are actually
expressed as the percentage of the original RMSEs (RMSEr), i.e., those of the original, noisy data. For
SSH, |∇SSH|, and ∆SSH RMSE and MSR of each de-noising configuration and parameterization, the
scores do not necessarily correspond to the same optimal parameter (box size, σ, or λ).

Table 1. Scores summary of boxcar, Gaussian and Derivatives Penalization (DP) de-noising methods
for the just KaRIn (Ka-band Radar Interferometer) dataset.

Season De-noising method RMSEr
Minimum MSR

SSH |∇SSH| ∆SSH

JAS12

Boxcar 12.43 0.094 0.300 0.2010

Gaussian 11.23 0.067 0.250 0.1111

DP

1 12.55 0.084 0.279 0.2028

2 08.71 0.050 0.247 0.0143

3 09.06 0.051 0.247 0.1021

1 + 2 08.72 0.050 0.247 0.0192

2 + 3 08.68 0.049 0.247 0.0205

1 + 2 + 3 08.66 0.049 0.246 0.0259

FMA13

Boxcar 15.04 0.177 0.511 0.1066

Gaussian 12.97 0.133 0.424 0.0746

DP

1 15.41 0.173 0.483 0.1498

2 10.92 0.115 0.420 0.0178

3 10.86 0.113 0.416 0.0682

1 + 2 10.92 0.115 0.420 0.0208

2 + 3 10.79 0.113 0.416 0.0168

1 + 2 + 3 10.82 0.113 0.416 0.0255

JAS13

Boxcar 11.98 0.086 0.326 0.1796

Gaussian 10.99 0.063 0.276 0.0911

DP

1 12.78 0.083 0.309 0.2031

2 08.96 0.053 0.274 0.0216

3 09.11 0.053 0.273 0.1010

1 + 2 08.97 0.053 0.274 0.0394

2 + 3 08.84 0.052 0.272 0.0243

1 + 2 + 3 08.84 0.052 0.272 0.0269

4.1. RMSE and MSR Scores with KaRIn Noise Only

For all variables (h, ∇h, and ∆h), all seasons, and all de-noising methods, minimum RMSEs are
smaller in summer than in winter (Table 1). This is expected because the oceanic surface features in
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winter are smaller than in summer [32], so their observation is more affected by the KaRIn noise. Also,
smaller structures are more affected by the smoothing due to the de-noising.

For all three seasons and all three variables, RMSEs and MSRs from the convolution-based
methods and from the λ1 method are larger than RMSEs and MSRs from all other variational methods.
Also, the λ3 method provides MSRs significantly higher than the other variational methods. None of
these methods is the optimal de-noising one in this KaRIn-only noise configuration and are not further
discussed in the following.

In terms of both RMSEs and MSRs and among the methods still on course, no method outperforms
the others systematically and distinctly. For all three variables, RMSEs are close to each other, with
differences less than a very few percents. MSRs are a bit more scattered but without any clear
predominance of a specific method in all seasons. However, the λ2 method exhibits the lowest MSR
values in summer and the second lowest value in winter, close to the λ2 + λ3 method.

Finally, this analysis persuades us to further examine the λ2 method for the KaRIn-only scenario
(see Section 4.3). This choice is supported by the RMSE and MSR analysis above, which shows
that other methods do not beat it clearly, and by the fact that it is much easier to parametrize a
single-parameter method rather than a two- or three-parameter method.

4.2. RMSE and MSR Scores with All Errors

Normalized minimum RMSEs for h and |∇h| are higher than in the KaRIn-only scenario by factors
of 6–12 for h and 1.5–4 for |∇h| (Table 2). This is obviously due to the spatially correlated component of
the errors (see Figure 2), which is not filtered out by any of the methods used here. Other approaches
must be used to remove the correlated errors in order to obtain more accurate estimates [33,34].

Contrary to h and ∇h, RMSEs for ∆h are comparable with those obtained in the KaRIn-only case.
They are 5% higher only. This slight increase in RMSE is the signature of the nonlinear component of
the correlated error. In the across-track direction, this nonlinear (quadratic, more precisely) component
is due to the baseline dilation [16,17]. The other components are constant, linear, or piecewise linear and
thus are removed by the second-order derivatives. The spatial errors’ signal in the along-track direction
is supposed to vary less with the satellite attitude (except timing errors) and the local environmental
constraints on the satellite (baseline dilation). This is reflected as small but not null second-order
derivatives of errors that may slightly affect the RMSE. In reality, the spatial decorrelation of such
errors might be short and combined with geophysical variations (waves and atmosphere).

Considering only RMSEs on ∆h, except for the boxcar and the λ1, no method performs significantly
better than the others, and RMSEs are higher in winter than in summer. This is similar to the KaRIn-only
scenario. The Gaussian filter performs comparatively better than in the KaRIn-only scenario.

In terms of MSRs, the methods involving λ2 perform significantly better than the others, including
the λ3 and the Gaussian methods. These last two exhibit MSRs larger than the others by factors of
1.5 to 4. In winter, the λ2 method is a little less effective than the multi-parameter methods, with a
MSR twice as large.

The de-noising experiments with all errors, like those with the KaRIn noise only, lead us to favor
the λ2 method. The reasons are similar: based on RMSEs and MSRs, the method compares favorably
with the others, and a single-parameter method is much easier to parametrize. The only result speaking
against this choice is the MSR in winter, for which the multi-parameter methods perform better than
the λ2 method. Considering the score value though and after the examination of the wavenumber
spectra (see Section 5) this point hardly justifies discarding the λ2 method as the optimal one.

4.3. A Focus on the Second-Order Variational Method

This section investigates the sensitivity of the λ2 de-noising to the parameter value. Figure 4
shows the RMSEs for h, |∇h|, and ∆h and the MSR for h as functions of λ2. On each graph, the three
seasons are shown for both KaRIn-only (solid lines) and all errors (dashed lines) scenarios, making a
total of 6 curves.
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Except for h and |∇h| RMSEs in the all errors scenario, all RMSE and MSR curves exhibit a clear
minimum point, which indicates the existence of an optimal or a range of close-to-optimal λ2 values for
the de-noising. These optimal values are larger in summer than in winter. This is very likely because
small-scale dynamics are amplified in winter [10]. Large λ2 values tend to over-smooth the SSH field
in winter, leading to higher residual errors. The seasonal difference in optimal λ2 values is particularly
evident with MSR, with values of ∼100 in winter and of ∼400 in summer. In Figure 4, the impact of
applying the optimal λ2 value for winter to summer (or viceversa) can be observed. RMSEs are not
very sensitive to λ2 near the optimal values, contrary to MSRs. For instance, using the winter value in
summer (or vice versa) barely changes RMSEs but affects MSR more significantly. RMSEs for h and
∇h in the all errors scenario are dominated by the correlated SWOT errors, which remain present after
de-noising. Consistently with the analysis of the previous section, those RMSEs are much higher in the
all errors than in the KaRIn-only scenario.

Table 2. Scores summary of boxcar, Gaussian and Derivatives Penalization (DP) de-noising methods
for the all errors dataset.

Season De-noising method RMSEr Minimum MSR
SSH |∇SSH| ∆SSH

JAS12

Boxcar 90.31 0.171 0.303 0.2024

Gaussian 90.10 0.156 0.264 0.1181

DP

1 87.60 0.159 0.281 0.1922

2 90.57 0.174 0.261 0.0307

3 90.22 0.156 0.265 0.1359

1 + 2 87.61 0.158 0.262 0.0328

2 + 3 90.22 0.156 0.261 0.0391

1 + 2 + 3 87.40 0.156 0.261 0.0395

FMA13

Boxcar 90.88 0.250 0.511 0.1274

Gaussian 90.76 0.221 0.435 0.0515

DP

1 89.89 0.237 0.484 0.1415

2 91.11 0.226 0.432 0.0314

3 90.96 0.226 0.432 0.0868

1 + 2 89.90 0.223 0.435 0.0160

2 + 3 91.00 0.226 0.430 0.0177

1 + 2 + 3 89.82 0.220 0.430 0.0203

JAS13

Boxcar 89.73 0.137 0.328 0.1792

Gaussian 89.18 0.126 0.289 0.1152

DP

1 84.30 0.131 0.310 0.1895

2 90.36 0.142 0.287 0.0254

3 89.66 0.127 0.290 0.1251

1 + 2 84.19 0.131 0.287 0.0237

2 + 3 89.66 0.127 0.286 0.0285

1 + 2 + 3 83.75 0.127 0.286 0.0267

Finally, the optimal λ can be defined within a range that is a compromise between the RMSE
and MSR results, for each season. In Figure 4, horizontal bars indicate the range of λ2 values that
provide scores higher than the minimum by less than 5%. For each season, the overlap of all horizontal
bars defines a range of optimal λ2 values. Not detailed here, the results from the other (single or
multiple-parameter) configurations of variational de-noising also exhibit such overlaps, except for λ1.
Based on this information and on MSR scores, we propose λ2 intervals of [300–400] and [400–500] in
summer for the KaRIn-only and all errors cases, respectively. With λ2 in these intervals, MSR scores
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remain close to their minima. Note that the two summer seasons’ results render slightly different
optimal values, suggesting that the optimal λ2 choice is inevitably subject to a part of subjectivity if no
additional information on the ocean surface dynamics is available. In winter, the optimal λ2 interval is
[90–120]. Due to more energetic dynamics that make the signal-to-noise ratio higher, the MSR optimal
λ2 values in the KaRIn and all errors scenarios are much closer to each other than in summer.

Figure 4. Scores of RMSE and MSR of the λ2 method from just KaRIn (solid line) and all errors (dashed
line) for all 3 seasons: Horizontal bars in the RMSE plots show the range of λ2 values that provide
scores higher than the minimum RMSE by less than 5%.

5. Retrieved SWOT Fields and Spatial Spectra

Figures 5 and 6 illustrate the de-noising with the λ2 method on SWOT passes and are presented
in the same format: h on the top panel, |∇h| on the central panel, and ∆h on the bottom panel. The first
panel shows, from left to right, the original, noise-free h field, h with KaRIn noise only, h with all
sources of errors, the de-noised KaRIn-only h, and the de-noised all errors h. The de-noised data have
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been obtained with the λ2 method with parameter values chosen within the intervals identified in
Section 4.3 and indicated on each graph. The second and third panels show the corresponding |∇h|
and ∆h, respectively. Figure 5a,b exhibit summer time scenes with high and low correlated SWOT
errors, respectively. Figure 6a,b are the corresponding winter plots.

In all cases, de-noising leads to correct orders of magnitude for all fields and particularly for
|∇h| and ∆h. This is not the case for the conventional convolution-based methods (see Appendix D).
As expected and already shown by Gómez-Navarro et al. [18] and Chelton et al. [35], the original
SWOT data affected by random, small-scale noise does not provide any useful information about SSH
derivatives. The de-noising method corrects this efficiently and makes it possible to identify the main
structural characteristics of the fields.

A strong spatially correlated error shows strong signatures on h, moderate signatures on |∇h|,
and low signatures on ∆h, except at the outer boundaries of the swath. The low signature on ∆h
was already observed in the RMSEs and is due to the specific spatial structure of the errors. Most
components are linear in the across-track direction. In the along-track direction, the impact is lower
because for the wavelengths impacted by the filtering, the error correlation is high (Figure 2). Therefore,
the correlated errors have a low effect on the second-order derivatives. The remaining noise at the
outer boundaries is due to the finite difference method used to compute the derivatives described in
Appendix A.

Although the resulting fields of ∆h fall in correct orders of magnitude and capture the structure
of the true fields at the scale of the swath, the kilometric-scale fronts and filaments are smoothed out
by the de-noising. Solving this issue would require the development of more sophisticated de-noising
techniques or a post-processing of the present result including, for example, some ocean dynamics
through data assimilation techniques. This will be a natural step forward, since the first motivation for
developing a de-noising technique constraining ∆h is precisely the combined assimilation of h and its
first two derivatives, as stated in the introduction.

Figure 7 shows Power Spectral Densities (PSD) of h. The rows distinguish the just KaRIn noise
added and the all errors cases. The columns are for summer 2012, winter 2013, and summer 2013.
On each graph, the spectra are shown for the noise-free data (SSH_model), the noisy data (SSH_obs),
the de-noised data (SSH_obs_f), the pre-de-noising noise (noise), and post-de-noising noise (noise_f).
The de-noised data have been obtained with the same λ2 values as in Figures 5 and 6. Each spectra has
an envelope showing PSD values between the 5th and 95th percentile, representing the PSD variability.
This envelope reduces with the PSD values and with wavelength. At small scales, SSH_obs_f’s
envelope is narrower than SSH_model’s, very likely because a fine-scale part of the physical signal is
removed along with the noise.

From this spectral viewpoint, the de-noised data matches the noise-free data well at all scales down
to ∼15 km. In the noisy data, the noise amplitude approaches the signal amplitude at wavelengths
of 50 km in summer and 40 km in winter and dominates the signal at shorter wavelengths. This is
efficiently corrected by the de-noising. The process seems more efficient in winter than in summer,
probably because of higher PSDs in winter related to more intense ocean surface processes.

Following the definition proposed by Wang et al. [36] for the spatial scale resolved by SWOT,
the de-noising reduces this scale by a factor of 2, leading to resolved scales between 20 and 30 km
approximately. Wang et al. [36] define the spatial scale resolved by SWOT by the wavelength
at which the SWOT noise spectrum intersects the spectrum of the true signal (SSH_model here).
Figure 7 indicates resolved scales of 50, 40, and 50 km in the JAS12, FMA13, and JAS13 scenarios,
respectively, in both just KaRIn and all errors cases. After de-noising, the resolved scales are reduced
to approximately 25, 20, and 25 km in the KaRIn-only case and to 30, 20, and 30 km in the all errors
case. Even below these scales, the noise left is very low and within the variability of SSH_model (red
envelope in Figure 7). At wavelengths near 10 km, the noise is reduced by 104 in the JAS scenarios and
103 in the FMA scenario.
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(a)

(b)
Figure 5. Fields of pass 09, cycle 2 (a) and 6 (b) of the JAS12 dataset compared to the fields filtered
with λ2 = 355 (455) for SSH_obs_K_f (SSH_obs_f). From top to bottom: SSH, gradient of SSH and
Laplacian of SSH. From left to right: model interpolated to SWOT grid (SSH_model), SSH_model +
KaRIn noise (SSH_obs_K), SSH_model + all errors (SSH_obs), filtered SSH_obs_K (SSH_obs_K_f), and
filtered SSH_obs (SSH_obs_f).
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(a)

(b)
Figure 6. Fields of pass 09, cycle 2 (a) and 6 (b) of the FMA13 dataset compared to the fields filtered
both with λ2 = 105. From top to bottom: SSH, gradient of SSH and Laplacian of SSH. From left to right:
model interpolated to SWOT grid (SSH_model), SSH_model + KaRIn noise (SSH_obs_K), SSH_model
+ all errors (SSH_obs), filtered SSH_obs_K (SSH_obs_K_f), and filtered SSH_obs (SSH_obs_f).
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Figure 7. Spatial spectra of the model interpolated data (SSH_model) are shown in red, and that of
the pseudo-SWOT data (SSH_obs) is in black. Blue lines indicate the filtered pseudo-SWOT spectra
(SSH_obs_f) obtained with the same λ2 as in Figures 5 and 6. The dashed lines are the noise spectra
of SSH_obs (noise) and SSH_obs_f (noise_f). Shaded areas show values between the 5th and 95th
percentiles, showing the Power Spectral Density (PSD) variability. Top row shows pseudo-SWOT data
with just KaRIn noise added and bottom row shows all errors. Columns represent the different seasonal
datasets from left to right: summer 2012 (JAS12), winter 2013 (FMA13), and summer 2013 (JAS13).

6. Discussion and Conclusions

Several objectives of the SWOT mission will be met only if the random, small-scale noise and errors
affecting the data can be efficiently removed. Small-scale noise, in particular the spatially uncorrelated
KaRIn instrument noise, prevents the computation of horizontal SSH derivatives. This limits both the
direct estimation of relevant oceanic variables on the SWOT swath and the use of SWOT data to build
gridded products of altimetry.

To remove the small-scale SWOT noise, we propose a de-noising method that performs better
than conventional convolution-based methods both in terms of RMSE (physical space diagnostic)
and spectra. The method, which originates from image processing applications, is based on the
regularization of the SWOT SSH data by the penalization of its derivatives of orders 1 to 3 in a
variational, optimization framework. This approach is chosen because it is in close connection with the
oceanic variables of interest, namely geostrophic velocity and vorticity. After a thorough evaluation
based on a large number of simulated SWOT scenes, the variational de-noising method exhibits better
performance than standard, boxcar, and Gaussian filters. We find the method performs best when
only the second-order derivative (λ2) is considered in the cost function. Only one parameter needs to
be set, which makes the parameterization of the method as simple as a convolution-based method.
We find that this parameter can be set smaller or larger in function of the characteristics of our field:
the higher the intensity of the signal, the lower the derivatives penalization needed and thus the value
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of the parameter (as we find in the FMA13 λ2 values in contrast to JAS12). Also, if the noise level in
our fields is higher (all errors scenario), the more we need to penalize and the larger the parameter
value. In other words, the higher the signal-to-noise ratio (SNR), the less we need to penalize our field,
and so the smaller λ2.

The method will require further investigations before operational applications, since we have
focused our attention to one particular region (the western Mediterranean Sea), with an ocean
circulation free of tidal forcing and a prescribed Significant Wave Height (SWH) of 2 m. The present
study shows that, in one single region, the range of optimal parameters changes with the season due
to seasonal changes in the ocean surface dynamics. Similar conclusions are certainly expected with
respect to regional and dynamical regimes. The NATL60 simulation used here does not include tidal
forcing. The behavior and efficiency of the de-noising method may be questioned in the presence
of tidal motions and particularly tide-generated internal waves. Finally, the SWH prescribed in the
SWOT simulator to compute the KaRIn error amplitude is prescribed to 2 m. As the SWH varies
geographically and according to the atmospheric regime, KaRIn errors smaller or larger than those
computed for the present study with the SWOT simulator can be expected [36]. The first two aspects
(geographic variations of ocean dynamics and internal tides) are presently under study using data from
several high-resolution simulations that include tidal forcing: the HYbrid Coordinate Ocean Model
(HYCOM) [37], the Massachusetts Institute of Technology general circulation model (MITgcm) [38],
and the recent extended NATL60 (eNATL60) simulation (not yet published). This greater range of
scenarios will help provide a more generic set of λ2s to use in function of the ocean dynamics.

The method should also benefit from additional developments to reconstruct more realistic
fields of relative vorticity on the SWOT swath and could ultimately lead to the estimation of vertical
velocities. The de-noising process inevitably smooths out the very fine-scale, elongated structures
usually visible in surface relative vorticity fields [10]. Restoring these structures should be investigated,
for example using appropriate image processing techniques [39,40] or methods already developed in
the oceanographic community such as Lagrangian advection [41,42]. Dynamical models could also be
used in a data assimilation framework.

To conclude, this de-noising method opens the way to several relevant applications using the
SWOT data, possibly including SWOT data validation, assimilation, and SSH mapping. We mention
SWOT data validation due to the inpainting capability of the variational de-noising method, i.e., the
fact that the process naturally fills the 20-km gap of the SWOT swath (here the gap is inpainted and
emptied again after de-noising to restore SWOT data in the original shape). In other words, the SWOT
data are interpolated on the track of the SWOT nadir altimeter. This is obviously relevant for data
comparison and validation. De-noising is also interesting to preprocess the SWOT data before their
assimilation in ocean circulation models. This actually was a primary motivation for the method
development. Computing spatial derivatives of the SWOT data allows the implementation of data
assimilation methods that account for SWOT error correlations [14,15]. Alternatively, the relative
vorticity derived from the de-noising can be directly assimilated. This option has not been explored
yet to our knowledge. This de-noising method can also be combined with other techniques to improve
the assimilation. We particularly think about combining it with the technique recently developed by
Metref et al. [33] to significantly reduce the impact of the geometrically structured, highly correlated
SWOT errors (roll, phase, timing, and baseline errors). Finally, this study has been done using the
noise and errors simulated by the SWOT simulator version 2.21, and these will very likely be different.
We anticipate that the method is simple and flexible enough to be easily adapted to more realistic noise
and errors.
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Abbreviations

The following abbreviations are used in this manuscript:

SWOT Surface Water Ocean Topography
SSH Sea Surface Height
FISTA Fast Iterative Shrinkage-Thresholding Algorithm
KaRIn Ka-band Radar Interferometer
RMSE Root Mean Square Error
MSR Mean Spectral Ratio
PSD Power Spectral Density
DP Derivatives Penalization

Appendix A. Calculation of Laplacian

Laplacian are computed using finite differences, following the method proposed by Reference [22].
We note h, the image of size Nx × Ny. In a first step, the two components of the gradient are computed
as follows (i = 1, ..., Nx; j = 1, ..., Ny):

(∇h)x
i,j = hi+1,j − hi,j if i < Nx

= 0 if i = Nx

(∇h)y
i,j = hi,j+1 − hi,j if j < Ny

= 0 if j = Ny

In a second step, Laplacian is computed as the divergence of the gradient. Divergence of vector
a = (ax, ay) is computed as follows:

div(a) = bx
i,j + by

i,j

where:

bx
i,j =

ax
i,j − ax

i−1,j if 1 < i < Nx

ax
i,j if i = 1
−ax

i−1,j if i = Nx

and

by
i,j =

ay
i,j − ay

i,j−1 if 1 < j < Ny

ay
i,j if j = 1
−ay

i,j−1 if j = Ny

The scheme implemented at the boundaries preserves the image size, contrary to what a standard
five-point stencil Laplacian operator would do. Preservation of image size is essential in the gradient
descent iterations to end up with a final image of size similar to the initial image.

https://github.com/LauraGomezNavarro/paper_Gomez-Navarro_etal_2020
https://github.com/LauraGomezNavarro/paper_Gomez-Navarro_etal_2020
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Appendix B. FISTA

To speed up the gradient descent iterations, the Fast Iterative Shrinkage-Thresholding Algorithm
(FISTA) algorithm [24] is implemented. Setting t0 = 1 and introducing an auxiliary variable y initialized
as y0 = h0, the iterative algorithm of Equation (3) becomes the following :

hk+1 = hk + τ
(

m ◦ (hobs − yk) + λ1∆yk − λ2∆∆yk + λ3∆∆∆yk
)

tk+1 = (1 +
√

1 + 4t2
k)/2

yk+1 = hk+1 +
tk − 1
tk+1

(hk+1 − hk)

(A1)

Appendix C. Calculation of Spatial Spectra

The spatial spectra used as one of the scores for the de-noising parameterizations are calculated
as follows:

1. Apply a linear detrending;
2. Remove the spatial mean;
3. Apply a Tukey window with a 0.5 fraction of the window inside the cosine tapered region;
4. Compute the 1D spatial Fourier power spectra along-track for each SSH swath

across-track dimension.

Appendix D. Qualitative Figures of Different Methods

To better illustrate the advantage of our de-noising approach, we show in Figures A1 and A2 the
fields provided by the boxcar and Gaussian methods, corresponding to the λ2 experiments presented
in Figures 5 and 6. We only show the all errors scenario. Boxcar derivatives fields are very noisy, as it
is specially visible for the Laplacian fields. With the Gaussian method, the Laplacian is less noisy than
with our method, but the gradient is over-smoothed.

(a)

Figure A1. Cont.
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(b)
Figure A1. Fields of pass 09, cycle 2 (a) and 6 (b) of the JAS12 all errors dataset. From left to right:
comparison between the SSH_model, SSH_obs, SSH_obs filtered with our approach and λ2 = 455
(SSH_obs_f), with the optimal boxcar (SSH_obs_f_bc), and with the optimal Gaussian (SSH_obs_f_ga)
methods. From top to bottom: SSH, gradient of SSH and Laplacian of SSH

(a)

Figure A2. Cont.
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(b)

Figure A2. Fields of pass 09, cycle 2 (a) and 6 (b) of the FMA13 all errors dataset. From left to right:
comparison between the SSH_model, SSH_obs, SSH_obs filtered with our approach and λ2 = 105
(SSH_obs_f), with the optimal boxcar (SSH_obs_f_bc), and with the optimal Gaussian (SSH_obs_f_ga)
methods. From top to bottom: SSH, gradient of SSH and Laplacian of SSH

Appendix E. Softwares

• Standard image techniques: For both boxcar and Gaussian kernel python’s scipy.ndimage module
was used with the following specific functions:

– Boxcar filter: scipy.ndimage.generic_ f ilter()
– Gaussian: scipy.ndimage.gaussian()

• Variational regularization method: https://github.com/LauraGomezNavarro/SWOTmodule
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