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Abstract: In Global Navigation Satellite System (GNSS) positioning, gross errors seriously limit
the validity of Kalman filtering and make the final positioning solutions untrustworthy. Thus,
the detection and correction of gross errors have become indispensable parts of Kalman filtering.
Starting by defining an incremental Chi-square method of recursive least squares, this paper extends
this definition to Kalman filtering to detect gross errors, explains its nature and its relation with the
currently adopted Chi-square variables of Kalman filtering in model and data spaces, and compares
them with the predictive residual statistics. Two robust Kalman filtering models based on an
incremental Chi-square method (CI-RKF) were established, and the one with a better incremental
Chi-square component was selected based on a static accuracy evaluation experiment. We applied the
selected robust model to the GNSS positioning and the GNSS/inertial measurement unit (IMU)/visual
odometry (VO) integrated navigation experiment in an occluded urban area at the East China Normal
University. We compared the results for conventional Kalman filtering (CKF) with a robust Kalman
filtering constructed using predictive residual statistics and an Institute of Geodesy and Geophysics
(IGGILI) weight factor, abbreviated as “PRS-IGG-RKF”. The results show that the overall accuracy of
CI-RKF in GNSS positioning was improved by 22.68%, 54.33%, and 72.45% in the static experiment,
and 12.30%, 7.50%, and 16.15% in the kinematic experiment. The integrated navigation results
indicate that the CI-RKF fusion method increased the system positioning accuracy by 66.73%, 59.59%,
and 59.62% in one of the severe occlusion areas, and 42.04%, 59.04%, and 52.41% in the other.

Keywords: gross error; Kalman filtering; robust estimation; Chi-square increment

1. Introduction

Kalman filtering is a recursive algorithm widely used in positioning and navigation. It dynamically
updates the state variables of a system and recursively estimates the state variables by assigning proper
weights to the observations and state predictions. The weights of conventional Kalman filtering are
defined based on the observation signal-to-noise ratio and satellite elevation angles [1]. When the real
observations do not satisfy the mathematical model or the statistical properties of the measurement
noise and the dynamic state process (in particular, when signals undergo severe interference from
multipath, no-line-of-sight (NLOS) and gross errors), such a recursive process of conventional Kalman
filtering not only generates a poor solution for this epoch, but also propagates poor quality solutions for
subsequent epochs. To remedy such a vulnerability, scholars have proposed various methods to mitigate
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the impact of these abnormal situations, such as function model compensation [2], adaptive Kalman
filtering [3], and robust Kalman filtering [4]. Both the function model compensation and adaptive
Kalman filtering methods primarily examine the reasonableness of the underlying mathematical model
and noise statistics. When a violation is detected, these methods revise the original inaccurate dynamic
model and process noise statistics to improve the performance of the recursive filtering. These methods
usually consume extra computational resources to detect abnormal observations and gross errors, and
hence are not effective or conducive for civil real-time positioning in cases where the impact of gross
errors is overwhelming. On the other hand, robust Kalman filtering is very effective for gross error
detection. This paper focuses on the detection and elimination of abnormal observations and gross
errors of Kalman filtering, in order to ensure its stability and reliability. Hence, for the rest of the paper
our attention is confined to robust Kalman filtering.

Current robust algorithms are mainly composed of two parts: gross error detection and robust
estimation. The main idea of these robust Kalman filtering algorithms is to use learning statistics for
judging errors [5] to detect gross errors in observations, then eliminate them or assign proper reduced
weights to minimize their contamination [6]. Commonly used algorithms such as the Huber scheme [7],
Institute of Geodesy and Geophysics (IGGIII) scheme [8], two-factor equivalent weights [9], robust
Bayesian estimation [10], Danish function [11], and so on all rely on the learning statistics from the
discrepancy between the predictive residuals and posterior residuals of observations [12]. A commonly
adopted approach is to construct a Chi-square variable with a Chi-square test to detect gross errors
and monitor system failure. One type of Chi-square variable is based on the departure between
the propagated state vector and the state vector estimated from Kalman filtering; its corresponding
statistical test is called the state Chi-square test (SCST) [13,14]. Another type of Chi-square variable
is based on the residuals between observations and predicted values from the estimated state; its
corresponding statistic test is called the innovation Chi-square test (ICST) [15]. In ordinary least squares
(LS), the Chi-square variable is defined based on the Sum of Squares of Errors (SSE) [16]. In particular,
the increment of Chi-square (Ax?) between two adjacent epochs is sensitive to abnormal observations
and gross errors at this epoch [17]. The concept of the increment of Ax? also can be extended to Kalman
filtering [18]. However, the connection between the A b extending from the recursive LS (RLS) and
Chi-square variables of Kalman filtering that are defined directly in the model and data spaces has
not yet been discussed. In this paper, we reveal that the Ax? extending from the RLS is equivalent to
the ICST and, hence, that its contributors are from both model and data spaces. We then deploy the
Ax?-based robust Kalman filtering in real observation scenarios by defining the corresponding robust
weight function.

The emerging integrated positioning of multi-constellation satellite navigation systems enlarges
spatio-temporal coverage while enhancing positioning accuracy and stability. Meanwhile, it increases
the probability of observation anomalies and blunders [19]. In occluded urban areas, the ratio of
abnormal gross errors becomes much higher due to complex multipath environments and limited sky
visibility [20]. Thus, the gross error detection and on-the-spot contamination reduction appear critical
for real-time Global Navigation Satellite System (GNSS) positioning, an inertial measurement unit
(IMU), and a visual odometry (VO)-assisted GNSS (GNSS/IMU/VO) integrated navigation system [21].
We tested our Ax2-based robust Kalman filtering scheme in real-time static and kinematic experiments
of both GNSS positioning and GNSS/IMU/VO integrated navigation, analyzed its positioning accuracy
improvement, and compared its performance with the robust Kalman filtering based on predictive
residual statistics. The observations were obtained from instrumental measurements, and their contents
were related to their practical applications, such as the observation results from various sensors [22].
In this paper, the observations represent the pseudo-range measurements from the receiver in GNSS
positioning, and refer to the positioning parameters obtained by GPS, IMU, and VO in integrated
navigation. The validity of this model verifies that Ax2-based robust Kalman filtering does improve
the accuracy and stability of real-time kinematic positioning, and has an advantage over the other
schemes of Kalman filtering that are compared in the paper.
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2. Methodology

2.1. Gross Error Detection

The SSE is the sum of squared deviations of observed values from predicted values. It stems
from the regression analysis and is used to measure discrepancies between observed data and an
estimation model. It is also an important statistic in LS positioning [16], which is equal (in numerals) to
the weighted sum of the squares of errors (WSSE) [23]. Since the LS positioning solution minimizes the
WSSE components [24], the magnitude of the SSE of the LS reflects the degree of consistency between
the observed values, and can be used to evaluate the fitting goodness of the estimated parameters to
the actual observations.

Differently from the ordinary LS, where the model prediction uses full observations, the recursive
LS (RLS) builds its model based on a subset of observations (called as “past history”). It has been
shown that such derived recursive residuals are very sensitive to such a point that the model is not
supported by real data [25]. Later, it was suggested that the recursive residuals were more sensitive
to data outliers than the residuals from the ordinary LS [26]. Scientists have proposed the routine
calculation of recursive residuals in an RLS analysis to diagnose both model and data outliers [27].

The observation equation at epoch k is expressed in forms of vector and matrix:

z = hxg + v (1)

where zy, Iy, vy are the observation vector, design matrix, and noise vector measurements, respectively,
and their subscript k represents the kth epoch; the observation error covariance matrix at this epoch is
11; Xx denotes the state vector at epoch k. In our positioning applications, we assume that observations
and the error covariance matrix at each epoch are independent, and that the design matrix has a full
ranking. After this is established, the solution and its covariance matrix can be expressed in a recursive
form [28]:

R = 1 + Ca ] (Ca,_ I +11) Nz~ hifi)

Cs, = Cy, —C¢ hT(hkak_l hk + T’k)_lhkcjek_l

xklk

A @
k-1
where the symbol " is the estimated solution vector and the superscript T denotes matrix transposal.
The estimated solution covariance matrix at epoch k is represented by C.

The SSE (Chi-square) of such a recursive LS from epoch 1 to epoch k is defined as

Xi = — hifye )y (zi — hi%y) 3

M»

The increment of Chi-square at epoch k is defined as
AXT = X7 - X1, 4
It was proven that A )(i can also be expressed in a recursive form [18]:

A)(k A)?TC 1 Axk+(zk—hkxk) e (zk—hkxk)

Axk = xk - xk—l

©)

This concept of A Xk from RLS can be extended to Kalman filtering. Suppose that the state equation
and observation equation of Kalman filtering at epoch k are [29,30]

Xy = AgXp—1 + Brth—q + Ty (6)

z = hxg + v ()
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where subscript k still represents the epoch index; xy is the state vector; uy is the control function;
zx and hy represent the observation vector and design matrix; Ak, By are the transition coefficient matrix
of the state and the control function transition; I'; is the input matrix of the state disturbance noise;
wir~ N(0,9) is the state disturbance noise; v~ N(0, ) is the observation noise. Suppose that wy, vy are
independent of each other and obey a normal distribution of white noise.

The state transition and update equations are as follows:

R k-1 = Apfp-1 + Brtg—1

ka,k—l = AkCJ?k_lA;; + qukl"g

Ky = Cﬁk/k—l hlzﬂ(hkcjek/k71 ]’lg + T’k)_l 8)
R = -1 + Kie(zk — il -1)

Cs, = (I - Kghi)C

Ry k-1

where £ represents the estimated state variable at epoch k and £ _; denotes the predicted state vector
at epoch k from epoch k — 1; I is the identity matrix and K} is the Kalman gain matrix at epoch k.
According to the A )(i of the recursive LS, the A )(i of the k epoch in Kalman filtering is defined as [31]

Axi: Aﬁlzcgkl,k_l A)?k—l—(zk — hk}ek)Tr]:l (Zk - hk-fk) (9)

where A%y = £ — £ y_1. It can be seen from the above equation that the A )(I% of the k epoch is composed
of two parts, with the first part being the increment caused by the change of fitting solution, and the
second part being the increment caused by the observation residual of the k epoch.

The A)(]% derived from Equation (9) acts as an indicator of gross error detection. Although it
demonstrates its nature clearly, it is inconvenient in practical use because it requires an updated state
variable £;. Once a gross error occurs, it indicates that the solution and its covariance matrix of the
Kalman filtering have already been distorted and can no longer be used recursively to get the correct
solution of the next epoch [32]. In order to obtain a normal solution, the solution and its covariance
matrix of the previous epoch must first be saved. If no gross error is found, the solution and covariance
matrix will be updated. Otherwise, it is necessary to remove the gross error of the k epoch and restore
the previously saved uncontaminated solution and its covariance matrix, then continue the operation.
Such a procedure not only occupies more computational memory, but also reduces the operation speed
greatly, which is not conducive to real-time positioning. To obtain an estimated value of A )(i before
updating the solution, we express the A )(I% and the observation residuals at k epoch by the form of their
propagated values from the k — 1 epoch:

N -1 o
At = Co W (mCap, 1 +7i) " (2 — hiRig1) (10)

N -1 N
2 — it = re(liCsy 1y + 1) (2 — hiRip-n) (11)

Bring Equations (10) and (11) into Equation (9):

N -1 N
Axp = (z - hkxk,k—1)T(hkCazk,k_1h,f +7%) (2 = hyekicr-1) (12)

Equation (12) is equivalent to Equation (9), but Equation (9) uses the updated £, while Equation (12)
uses the propagated £; 1 and Cg,, .
or not through the prediction staé;e only. If the raw observation causes the A )(i anomaly, it will be
regarded as a gross error, which can be further processed by eliminating data or reducing the Kalman
filtering weight to get the normal positioning results.

Therefore, Formula (12) can judge whether the epoch is normal

For comparison, the SCST-adopted Chi-square variable is defined as [14]

A= AR](C Cs,) " ARy (13)

k-1~
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which is different from our Equation (9) and is confined to state variables only in a parameter space.
Meanwhile the ICST-adopted Chi-square variable is defined as [15]

N -1 N
Axy = (z - hkxk,k—l)T(hkCazk,k_lh,f +7%) (2 = hyeRick-1) (14)

which is exactly the same as Equation (12). Thus, the nature of the ICST-adopted Chi-square variable is
equivalent to the extension of the RLS-defined A )(l%, which actually covers the variance caused by the
new data in both the data and model spaces according to Equation (9). The matrix I4Cs, , , h]z + 1y is
called the covariance matrix of innovation, and is introduced by the new observation.

The learning statistics for judging errors, such as predictive residual statistics, are express as [33-35]

) (15)

where 0y = Iy k-1 — zx is the predictive residual vector, and C; = I C it hz + 1y is the covariance
matrix of innovation. Equation (14) can be converted to '

ART = ﬁ,{c;klzak (16)

A comparison shows that Equation (15) is a simplified version of Equation (16), which uses a trace
of the covariance matrix of innovation to replace the full covariance matrix. Hence, Equation (16) is
more rigorous, as all correlations among the predictive residuals are considered. Therefore, compared
with learning statistics, Ax? reflects the impact of gross errors more accurately.

2.2. Robust Kalman Filtering Based on Chi-Square Increment

Ideally, zj — hi&y x—1 should obey the normal distribution with a zero mean value [36]:
2 = Iy -1~ N(OuCay Bl + 1) (17)

When a gross error occurs, the predictive residual no longer obeys the above normal distribution.
The Chi-square test for A)(l% provides useful statistics to identify gross errors in observation.
Method 1 is used to test the components of the vector zj — Iy %y x_ totally:

o -1 o
(zk = Mk 1) (eCapy L+ 1) (21— ikt ) ~ X2 (1) (18)

Set the following hypothesis test:

{ Ho: Axg ~ x*(n,0) (19)

Hj: A)(]% ~ x*(n,A)

where Hy denotes that there is no gross error in the system and H; denotes that there is a gross
error in the system; n is the degree of freedom of Chi-square distribution; and A is a centralized
parameter matrix.

For observations with gross errors, robust estimation is usually achieved by enlarging the
observation covariance noise matrix [37-39]. According to the above hypothesis, the robust factors are
constructed with A )(l%:

AXZ
1 k ¢
. X (n) 20
A)(k A)(k
< |l=——|<cC
P 10l R 0 (20)
A)(]% Axi c
2| |Em| 4
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where « is the confidence level, and ¢, c; are two pre-defined constants. Then, the observation
covariance matrix is updated to 7y = Biry.
Method 2 is used to test the components of the vector z; — Iy %y 1 individually.
From Equation (18), it can be deduced that an individual A)(i,i should obey the Chi-square
distribution with a degree of freedom equal to 1:
N T T -1 s 2
(zk = Mt p-1)i (hCay Iy + Vk),ﬁ- (zk = R ge-1); ~ x°(1) (21)

where the subscript i denotes the i-th component. Then, the hypothesis test is as follows:

A2 2
Ho: Axii; ~ x (1,0) @)
Hi: Axii ~ x2(1,7)
Similarly, the robust factors can be constructed as
A
! ‘Xﬁm' <0
A ki
A Feee] I Percy) I @3)
A A
20| |[2m|”a
The observation covariance matrix is updated to 7 ; = Btk i, 1% = [ k1 oo Tki - Tkm ]
The updating process of robust Kalman filtering is
P = (:,ek,k_lhT(hkc%1 '+ 7)1
e = Rik-1 + K2k — Iifip-1) (24)
CQX = (I — Kth)C??k,k—l
2.3. Mathematical Model of CI-RKF in GNSS Positioning
The observation equation of the pseudo-range [39] is
pi = 1 +0T—0t + I + T} + &), (25)

where subscript k still denotes the epoch and superscript i is the observation index or satellite index at
each epoch; p is the pseudo-range measurement; r is the geometric distance between the satellite i and
the receiver; 01y is the receiver error; I is the ionosphere delay; T is the atmosphere delay; and ¢, is
the pseudo-range measurement noise. In order to establish the pseudo-range positioning equation,
Equation (25) can be simplified as the following:

r;'( + 0t = ﬁ;c - eé) (26)

where ﬁ;( = p;{Jr(St;( - I}i - T;{ is the pseudo-range measurement value after correction.

The initial position £y is determined by LS positioning [40], I’ = eye(8), and B = zeros(8), where
eye indicates the unit diagonal matrix, zeros indicates the zero matrix, and the number in brackets
is the dimension of the matrix. In the static experiment of GNSS positioning, the state transition

eye(4) diag([o 0 0 Ts |)

coefficient matrix is defined as A :[ ], where T; is the sampling

zeros(4,4) diag(| 0 0 0 Ts |)

eye(4)  Tsxeye(4)
zeros(4,4)  eye(4) ] 411

interval. In the kinematic experiment, A :[
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In Figure 1, all calculations except A )(i are the routine Kalman filtering formula. For the gross
error checking, the only increased computational burden is the A X% calculation, in which all matrix
values are ready from routine analysis and the dimension of the matrix inversion is the observation
number at epoch k. Such an additional computation is tolerable for real-time positioning. In our
GNSS positioning static experiment, the central processing unit (CPU) time is increased from 90.643 to
93.284 seconds (only a 2.91% hike), then increased from 4.431 to 4.561 seconds in the GNSS positioning
kinematic experiment (only a 2.96% hike) due to the gross checking.

Initial Estimate

Xn,Cio T
State Equation g ,
> ;%k,k y=AE  +Bu, G g Aka,_‘ A + Tl <
Observation
Equation
P, ~ T ~ T 1 e e
Z, = hkl‘k +7, La A)—’k = (Zk _h’klhk—l) (hi.'("\"k_i:_lh} +rk) (‘i- _hk‘xk,}a—l)

=
| Chi-square
| Test
|
|
|
|

lk+1 :
|
|
|
U g R ——

Update A 4
Equation X =%, +K(z, - hkxk,k—l )

Figure 1. The calculation process of the incremental Chi-square (CI-RKF) using Global Navigation
Satellite System (GNSS) positioning.

2.4. Mathematical Model of CI-RKF in GNSS/IMU/V O Integrated Positioning

An IMU is a commonly used auxiliary navigation device [42]. It has the advantages of being
independent from external information, freedom from electromagnetic interference, and good short-term
accuracy and stability [43]. However, an IMU requires sporadic external positioning information to set
up its initial position and calibrate its solutions in order to avoid cumulative positioning errors. VO is
a key module of lidar sensor navigation technology based on simultaneous localization and mapping
(SLAM) [44]. It locates its position autonomously through the surrounding environment, independent
of satellite signals [45,46]. Due to the image blur, lens blocking, and other issues, it is difficult to
perform positioning applications using VO technology on its own. As a result, the combination of an
IMU and VO can improve the reliability of the system. An IMU and VO provide the relative location,
while GNSS provides the absolute location. This system can provide short-term and relatively accurate
position information by using a VO/IMU when the GNSS signal is temporarily missing, and for this
reason the GNSS/IMU/VIO has become a trend in current integrated navigation.

The construction of a combined GNSS and VO/IMU is based on the loose coupling method [47] in
which the VO and IMU are tightly coupled (the combined process can be found in [48,49]). The velocity
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information from the VO/IMU and the position information of GNSS are used as inputs [50], and the
system positions are estimated via filtering [51]. The system coupling mode is shown in Figure 2.

MU +
Tight
Coupling
vo !
v
P -
GNSS +——— g CI-RKF P, ¥

Figure 2. GNSS/IMU/VO coupling model; P represents the position, and V represents the velocity.

The state equation and the observation equation of the system are
Xj= AXp1+Q (27)

where A :[ g TsXIzs

0 I ] is the state transition matrix, and I is the identity matrix; H =[I¢.] is the
343 343

design matrix; X = [ Xk Yk Zk Ux Uy Uz ]T is the matrix of six variables to be estimated, xy, ¥,
and z; are the positional variables; vy, vy, and v, are the velocity variables; Q is the state noise; and R is
the observation noise.

The system state prediction and state estimation equations are

Xiop-1= AXj—1 (29)

Xy = Xig-1 + Ke(Zk = HeXi1) (30)

The system status update process is as shown in Equation (24).

3. Data and Experiments

Experiment 1: A corridor between Building A and Building B of the Estuary and Coastal
Research Institute in East China Normal University was selected as our platform, as shown in Figure 3.
The experimental data were collected by a U-blox9 receiver. The sampling frequency was 1 Hz,
and total data covered 5522 epochs. The positioning results from the Trimble R8 were taken as the
reference solutions.

Experiment 2: A route was planned around the campus as the kinematic experiment environment,
with the occlusion caused mainly by the surrounding trees and buildings. The experimental equipment
was placed on the roof of a car to receive the satellite signal (Figure 4). The data were also collected
by both U-blox9 and Trimble BD982 receivers with a 1-Hz acquisition frequency. The solutions were
derived from the data of the Trimble BD982 receiver and were solved using Inertial Explorer 8.60,
a high-precision post-processing software that served as the ground truth. In order to reduce the
influence of instability in the attitude and route, the vehicle tried to keep running in the middle of road
at a near-constant speed.
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e

il

(b)
Figure 3. The setup of the static experiment using GNSS positioning; (a) overview of the test platform
(marked by the line of dashes) in Google Earth; (b) observation environment of the static experiment.

G?ogle Earth

(b)

Figure 4. The setup of the kinematic experiment using GNSS positioning; (a) trajectory of the vehicle;
(b) onboard equipment for the kinematic experiment.

Experiment 3: Selecting part of the route from Experiment 2, the vehicle moved around the
building- dense area of the campus at a relatively constant speed. A HUAWEI HonorV9 mobile phone
was placed in the carriage to collect the raw GPS observations through software named rinexOn [52],
and the receiving frequency was set to 1 Hz. The IMU (MIT-G-710 of xsen series) and VO (ZED Stereo
Camera) were fixed on the roof of the car to collect the data, and the sampling frequency and frame
rate were 100 Hz and 30 fps, respectively. At the same time, the Trimble BD982 receiver was placed
on the roof with a receiving frequency of 1 Hz, and its data were processed by Inertial Explorer 8.60.
The vehicle’s experimental devices are shown in Figure 5.
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Figure 5. The setup of the kinematic experiment using integrated positioning; (a) integrated navigation
vehicle experiment; (b) Huawei Honor V9 placed in the carriage to receive satellite signals.

4. Results and Discussion

Two robust methods were constructed by a Chi-square increment in Section 2. In this section,
we first compare their performances based on the data collected through Experiment 1, select the better
one, and record it as robust Kalman filtering based on a Chi-square increment (CI-RKF). The results are
shown in Section 4.1. Next, the CI-RKF is compared with conventional Kalman filtering (CKF) and
the robust Kalman filtering constructed using predictive residual statistics and IGGIIIweight factor
(PRS-IGG-RKF) based on the data from Experiments 1 and 2, respectively. The results are discussed in
Sections 4.2 and 4.3. Finally, the three schemes are applied to the GNSS/IMU/VO integrated navigation,
and the results are obtained by comparing the fusion positioning accuracy in the shelter zone based on
Experiment 3, which is shown in Section 4.4.

4.1. Comparison of Chi-Square Increment Robust Methods

The experiment results of two robust incremental Chi-Square methods are shown in Figure 6.
The o is set to 0.15 in both methods, and ¢y, c; is set to 3.7 and 2.3 in methods 1 and 2, respectively.

= 2 " —Method 1
= 0 —Method 2
g 2 k——"‘"——-———
H _4 1 | | 1
— 20 1000 2000 3000 4000 5000 6000
E 0 [ T T T T ]
£ 2r .
: 3 |
Z :8 1 I 1 I 1

100 1000 2000 3000 4000 5000 6000
E
‘E 0 \ﬁ
: 10 Il Il 1 i

0 1000 2000 3000 4000 5000 6000

Epoch(s)

Figure 6. Comparison of robust incremental Chi-square methods.

It can be seen in Figure 6 that the deviations between the final positioning results and the true
values of Method 2 were less than those of Method 1, and the convergence speed of Method 2 was
faster than that of Method 1, meaning the detection index in Method 2 was more sensitive to the gross
error. Because the vector z; — Hy&y x—1 was tested as a whole in Method 1, the entire observed noise
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covariance matrix will be enlarged if the sum of errors per epoch is greater than the detection threshold,
and the magnification of each covariance will also be the same. However, in Method 2, the components
in vector zy — Hy%y 1 were tested individually. If a satellite fails, the corresponding noise variance
term will be amplified, and the magnification of each variance varies according to the deviation degree
of the residual. The final positioning accuracies of Method 2 were 21.02%, 60.69%, and 85.57% higher
than that of Method 1 in the east, north and up (E/N/U) direction. Thus, Method 2 was selected for
discussion in the following section.

4.2. Comparison of GNSS Positioning Schemes in a Static Experiment

In order to evaluate the quality of the raw observations, the experimental data were solved by
the CKF using the incremental Chi-square method from Section 2.1. The change of the Chi-square
increment in the static experiment is shown in Figure 7a. The normalized Chi-square increment
was obtained by dividing the Chi-square increment by the total number of satellites per unit epoch,
as shown in Figure 7b. It can be seen from Figure 8 that there are gross errors in the observation
at the 500-600 and the 2000-2500 epochs. In Figure 3, the experimental equipment was placed in
the area similar to the urban canyon [53], so that as the satellites were moving, some signals (called
no-line-of sight (NLOS) signals) could only be received by reflections off the building [53], and this
caused the outline (the huge leaps in 500-600 and the 2000-2500 epochs) in the incremental Chi-square.
The delayed effect and the calculation model of the NLOS are discussed in [54], and here we used
the incremental Chi-square to detect them, mitigating the influence of this kind of gross error via the
robust Kalman filtering in this section.

= 25
7]
_ 300} g
g £ 20}
£ s
2 o
£ 200 g 15}
g '
B < 10}
o o
3 100} =
= g
@) = b5t
5]
L |
0 S g
0 1i alil
0 1000 2000 3000 4000 5000 6000 z

Epoch(s)
(a) (b)

Figure 7. Chi-square increment in the static experiment: (a) Chi-square increment; (b) normalized
Chi-square increment.

0 1000 2000 _ 30 4000 5000 6000
Epoglq(s)

In PRS-IGG-RKEF, the constants ¢y, c; were set to 1 and 5, respectively. In CI-RKEF, the constants
co,c1 were set to 2 and 3, respectively, and a was set to 0.15. Figure 8 illustrates the time series of
positioning errors from the three schemes in the E/N/U direction, and Table 1 shows their position
errors at the final epoch and the improved accuracy of the other two schemes relative to the CKE.

Table 1. Position errors at the final epoch in the E/N/U direction in the static experiment.

Direction Position Error (m) Improve (%)
CKF PRS-IGG-RKF CI-RKF PRS-IGG-RKF  CI-RKF
East -3.012 —2.830 -2.147 6.04 28.72
North 1.305 0.762 -0.053 41.61 95.94

Up 3.226 2472 0.135 23.37 95.82
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Figure 8. Position errors in the E/N/U direction in the static experiment.

In Figure 8, the positioning errors from the three schemes coincided during the first 500 epochs,
as no gross errors occurred (Figure 7). When the outliers emerged in the 500-600 and 20002500 epochs,
the positioning results of the PRS-IGG-RKF fluctuated more significantly at these points, and the
positioning results of the CI-RKF were relatively smooth as the numbers of iterations increased.
The errors of the PRS-IGG-RKF tended to converge after about 4000 epochs, while those of the CI-RKF
tended to converge after about 3500 epochs. Finally, the positioning errors of CI-RKF in the E/N/U
direction were lower than those of the PRS-IGG-RKEF. Both the PRS-IGG-RKF and CI-RKF were able to
improve positioning accuracy, but the final positioning accuracies of CI-RKF were 22.68%, 54.33%, and
72.45% higher than those of the PRS-IGG-RKF in the E/N/U direction. The static experiment using
GNSS positioning confirms that the Chi-square increment could detect outliers effectively, and the
CI-RKF could resist the influence of gross errors in real time by enlarging the observation covariance
matrix, providing a better performance compared with the PRS-IGG-RKFE.

4.3. Comparison of GNSS Positioning Schemes in the Kinematic Experiment

The incremental Chi-square and its normalized form of the kinematic data from Experiment 2 are
shown in Figure 9. It can be seen that gross errors occurred in the intervals within the 100-150 and the
200-300 epochs.

S 50
= 300 ‘%
g g a0}
QEJ L
g g
£ 200} 5 30
z
= 20t
: 5
2 100} ] -
5 E 10} 1
<
0 é 0
0 100 200 300 400 500 <Z: 0 100 200 300 400 500
Epoch(s) Epoch(s)
(a) (b)

Figure 9. Chi-square increment in the GNSS kinematic experiment: (a) Chi-square increment;
(b) normalized Chi-square increment.
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In the PRS-IGG-RKE, the constants cg, c; were 1.5 and 5, respectively; in the CI-RKF, the constants
co, c1 were 1 and 4, respectively, and @ was set to 0.15. The positioning errors in the E/N/U direction are
shown in Figure 10.

20 T T T T T T T T

1
50 100 150 200 250 300 350 400 450
Epoch(s)

-10 1 1 1 1 1 1 1 L
0 50 100 150 200 250 300 350 400 450
15 T T T T T T T I
- CKF
-+ PRS-IGG-RFK
10 - -+ CI-RKF i

50 100 150 200 250 300 350 400 450

Figure 10. Position errors in the E/N/U direction in the kinematic experiment.

During the abnormal epochs (Figure 9), the filtering solutions of CKF fluctuated noticeably,
and there were large deviations between the positioning results and the real values. The maximum
error of the CKF was about 15 meters at the 100-150 epoch, and 10 meters in the 200-300 epoch.
The accuracy of the subsequent solutions was influenced by these outliers. Although there was
continuous GNSS navigation, it can be seen that gross errors still had a significant impact on
positioning in the area with poor observation. However, the overall performance of the PRS-IGG-RKF
and CI-RKF were relatively stable, especially at these epochs, which greatly reduced the errors and
caused them to fluctuate near zero in the east and north direction. Table 2 shows the positioning errors
of the total region and occluded areas from three schemes. For the total region, the performances of
both the PRS-IGG-RKF and CI-RKF were better than of the CKF, and the positioning accuracies of
the CI-RKF were about 12.3%, 7.5%, and 16.15% is higher in the E/N/U direction than those of the
PRS-IGG-RKE. For the occlusion area, the positioning accuracies of the CI-RKF were 12.11% and 8.99%
higher than those of the PRS-IGG-RKF in the east and north directions, but they underperformed in the
up direction. Overall, the CI-RKF performed better, but more attention should be paid to the accuracy
of the horizontal direction.
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Table 2. The RMS of position errors in the E/N/U direction in the kinematic experiment.

Position Error (m) Improve (%)
CKF  PRSIIGG-RKF  CI-RKF  PRS-IGG-RKF  CI-RKF

East 2.334 1.659 1.372 28.92 41.22

Overall North 2.860 1511 1.297 47.15 54.65
Up 4547 4435 3.701 2.46 18.61

Shel East 3.585 2.390 1.956 33.33 45.44
> elter North 3.888 2.024 1.675 47.94 56.93
ones Up 6.428 3311 3.687 48.50 42.64

4.4. Integrated Navigation Experiment in an Occluded Urban Area

In heavily occluded areas, crowded buildings limit the sky visibility and increase interference from
multipath and NLOS signals. The GNSS/IMU/VO integrated navigation system is commonly deployed
to improve accuracy and stability of the positioning, while filling in GNSS observation gaps caused by
eclipsed signals and huge outliers (in particular for low-cost GNSS receivers). The critical issue then
is how to detect and identify outliers effectively when the true trajectory remains unknown. In this
experiment, the robust Kalman filtering was an effective method, and three schemes were applied
to a GNSS/IMU/VO integrated navigation system. Figure 11 compares the trajectories from three
schemes. Fusion combined the GNSS raw observations with the positioning results from the VO/IMU
data in a loosely coupled way via the CKF. The robust fusion trajectories of the integrated navigation
system were obtained by the PRS-IGG-RKF (Robust Fusion 1) or CI-RKF (Robust Fusion 2). In this
part, the robust weighting factors of the CI-RKF were adjusted slightly, according to the IMU'’s ability
to provide positioning information without GNSS signals over a short time. The GPS information from
the mobile phone will be disused, as it provided very poor observations (that is, the corresponding
observation noise variance was amplified to infinity).

The results from different Kalman filtering schemes in occluded areas were also projected into
Google Earth, as shown in Figure 12. The respective position errors in the E/N/U directions of shelter
zones 1 and 2 were calculated (Table 3).

Table 3. The RMS of position errors in the E/N/U direction for shelter zones in the integrated

navigation experiment.

Position Error (m) Improve (%)

Fusion Robust Robust Robust Robust

Fusion1l Fusion2 Fusion1 Fusion 2
Shelter 7 East 4.939 2.889 1.643 4151 66.73
€ te{ ON€ " North 2.029 1.442 0.820 28.93 59.59
Up 2.365 1.680 0.955 28.96 59.62
Shelter 7 Fast 25.782 16.030 14.944 37.85 42.04
€ tezr ON€  North 12.946 6.094 5.303 52.93 59.04
Up 15.089 9.615 7.181 36.28 52.41

Figure 11 indicates that the results of mobile phone positioning by GPS only had a large deviation,
even interruption. In the GNSS/IMU/VO integrated navigation, when the receiver had no sufficient
GPS satellite signals, or the observed GPS signals contained severe gross errors (and hence needed to
be eliminated), the IMU/VO was able to assist navigation within a short interval, so that users could
obtain a sustained positioning trajectory with good stability. The upper left and lower right corner
of Figure 11a show the areas where the GPS-only solutions deviated seriously, and the integrated
navigation trajectory of GNSS/IMU/VO also fluctuated significantly. This shows that in areas with
serious occlusion or where GPS signals experienced gross errors, the CKF integrated navigation was
not completely immune and the positioning results still suffered. Figure 11b shows the PRS-IGG-RKF
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results for data fusion, and that it improved positioning to a certain extent and mitigates *but not
completely eliminated) the influence of gross errors. Figure 11c demonstrates the ability of the CI-RKF
results to fuse with GNSS/IMU/VO integrated navigation data. This robust fusion method generated
a smoother trajectory than in Figure 11a,b, and was closer to the ground truth. Figure 12 zooms the
solution trajectories in on the two sheltered areas, displaying that the trajectory of the CI-RKF approach
was significantly better than the other two schemes. Table 3 shows the statistics of the position errors
for the two occluded areas, and that accuracy was greatly improved when the CI-RKF was applied.

+ True trajectory : - True trajectory
121.452 + GPS only 121.452 ' ' > GPS only
* Fusion " * Robust Fusion 1
121.451F 121.451
121451 121.45
T12n449 & £ 121.449
L1 3
E E 121448
= 121.448 = .
'E'E on
g g
S1z1.447} S 121,447
121,446+ 121.446
121445} e —— T g 121.445 i
121.444 A + L 121.444
31.028 31.03 31.032 31.034 31.036 31028 31.03 3.1 032 31034 31036
Latitude(®) Latitude(®)
(a) (b)
+ True trajectory
121.452 > GPS only
* Robust Fusion 2
121.451F 3
12145+
1214490
e
L
=
Z 1214481
sL
=]
e
- 121.447
121.446
1214451
121.444 . L .
31.028 31.03 31.032 31.034 31.036
Latitude(°)
(c)

Figure 11. Comparison of the trajectories from three schemes: (a) the positioning results of the CKF
fusion method, with the black trajectory as the true value, the green trajectory as the GPS positioning
results, and the red as the result of the fusion method; (b) the positioning results of the PRS-IGG-RKF
fusion method, with the same color representations as (a); (c) the positioning results of the CI-RKF
fusion method, with the same color representations as (a).
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Figure 12. Performance of different Kalman filtering positioning results in shelter zones: (a) shelter

zone 1, with the true trajectory represented by yellow points, the positioning results of the CKF fusion
method in the integrated navigation system represented by green points, the positioning results of
the CI-RKF fusion method in the integrated navigation system represented by red points, and the
positioning results of the PRS-IGG-RKF fusion method in the integrated navigation system represented
by orange points; the numbers are the points” index; and (b) shelter zone 2, with the same color and
number representations as (a).

5. Conclusions

This paper derives an incremental Chi-square using Kalman filtering by extending the definition
of RLS and comparing its expression with currently adopted Chi-square variables. The comparison
indicates that the definitions of A )(i from the extension of RLS and ICST are equivalent, and reveals
that A)(I% actually comes from both the change of fitting solutions and the residuals of new observations.
In this paper, two methods were proposed for detecting anomalous observations via an incremental
Chi-square. The experiment results show that the second method (called the CI-RKF), which provided
an adaptive magnification to each term of the observation covariance, was superior. We applied the
CI-RKEF to the environment with an obvious NLOS effect, and its final positioning accuracies were
28.72%, 95.94%, and 95.82% higher than the CKF, and 22.68%, 54.33%, and 72.45% higher than the
PRS-IGG-RKE, respectively. The static experiment indicates that the CI-RKF could detect the outlines
and obtain satisfactory positioning solutions. Subsequently, we applied the CI-RKF to two kinematic
experiments. First, the CI-RKF was tested using the GNSS positioning model, and the results show
that its accuracies were 28.72%, 95.94%, and 95.82% higher than the CKEF, and 22.68%, 54.33%, and
72.45% higher than the PRS-IGG-RKEF. The overall positioning accuracies were 41.22%, 54.65%, and
18.61% higher than the CKF, and 12.3%, 7.5%, and 16.15% higher than the PRS-IGG-RKF. In next
experiment, we replaced the U-blox by a mobile phone with an internal low-cost GNSS antenna,
whose observation quality was relatively poorer than the U-blox and easily influenced by surrounding
environment. We use its output as the satellite signal for an integrated navigation combining an IMU
and VO. Compared with the positioning results obtained from the CKF fusion method, the positioning
accuracy of the CI-RKF fusion method increased by 66.73%, 59.59%, and 59.62% in shelter zone 1,
and by 42.04%, 59.04%, and 52.41% in shelter zone 2. When compared with the PRS-IGG-RKF fusion
method, the CI-RKF was 25.22%, 30.66%, 30.66% for shelter zone 1, and 4.19%, 6.11%, and 16.13%
higher for shelter zone 2. These kinematic experiments illustrate that the CI-RKF is able to improve the
positioning accuracy of the GNSS and the integrated navigation system, while also enhancing accuracy
and stability for real-time positioning in occluded urban areas.

The robust Kalman filtering approach using A )(i is general. This paper demonstrates its usage in
GNSS time of arrival (TOA) positioning. It can also be used in other positioning approaches, such as
time difference of arrival (TDOA), angle of arrival (AOA), received signal strength (RSS), among others.
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