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Abstract: Invasive annual grasses, such as cheatgrass (Bromus tectorum L.), have proliferated in
dryland ecosystems of the western United States, promoting increased fire activity and reduced
biodiversity that can be detrimental to socio-environmental systems. Monitoring exotic annual grass
cover and dynamics over large areas requires the use of remote sensing that can support early detection
and rapid response initiatives. However, few studies have leveraged remote sensing technologies and
computing frameworks capable of providing rangeland managers with maps of exotic annual grass
cover at relatively high spatiotemporal resolutions and near real-time latencies. Here, we developed
a system for automated mapping of invasive annual grass (%) cover using in situ observations,
harmonized Landsat and Sentinel-2 (HLS) data, maps of biophysical variables, and machine learning
techniques. A robust and automated cloud, cloud shadow, water, and snow/ice masking procedure
(mean overall accuracy >81%) was implemented using time-series outlier detection and data mining
techniques prior to spatiotemporal interpolation of HLS data via regression tree models (r = 0.94;
mean absolute error (MAE) = 0.02). Weekly, cloud-free normalized difference vegetation index (NDVI)
image composites (2016–2018) were used to construct a suite of spectral and phenological metrics (e.g.,
start and end of season dates), consistent with information derived from Moderate Resolution Image
Spectroradiometer (MODIS) data. These metrics were incorporated into a data mining framework
that accurately (r = 0.83; MAE = 11) modeled and mapped exotic annual grass (%) cover throughout
dryland ecosystems in the western United States at a native, 30-m spatial resolution. Our results
show that inclusion of weekly HLS time-series data and derived indicators improves our ability to
map exotic annual grass cover, as compared to distribution models that use MODIS products or
monthly, seasonal, or annual HLS composites as primary inputs. This research fills a critical gap
in our ability to effectively assess, manage, and monitor drylands by providing a framework that
allows for an accurate and timely depiction of land surface phenology and exotic annual grass cover
at spatial and temporal resolutions that are meaningful to local resource managers.

Keywords: data mining; invasive plants; Landsat; Sentinel-2; time-series analysis; phenology

1. Introduction

Increasing spread of invasive vegetation, such as cheatgrass (Bromus tectorum L.), can contribute to
ecosystem degradation and increased disturbance frequency within dryland ecosystems that cover roughly
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40% of the Earth’s land surface [1–3]. Several invasive annual grass species are present in the sagebrush
biome of the western United States, but cheatgrass is the most ubiquitous, especially in the Great Basin, which
includes most of Nevada and portions of Utah, Idaho, Wyoming, Oregon, and California [4]. Cheatgrass
has a relatively long history in the area, prolific seed production characteristics [5,6], and an ability to
outcompete most native vegetation after disturbances and for early growing season moisture [7]. Changing
climate and disturbance regimes may drive exotic annual grasses into uninvaded areas [8–10] further
diminishing ecosystem services [11]. Monitoring and mapping of exotic annual grass dynamics is therefore
vital for land resource managers in the stewardship of dryland environments [12,13].

Emerging technologies and remote sensing sensors have spawned a deluge of information
and tools that are useful for characterizing invasive plants and fractional components of dryland
communities at local to regional scales [14–16]. Previous studies have used information collected by
a suite of remote sensing platforms (e.g., Moderate Resolution Image Spectroradiometer (MODIS),
Landsat, Advanced Very High Resolution Radiometer (AVHRR)) to quantify spatiotemporal patterns
of invasive plant species [17], including cheatgrass cover and die-off [18–21], and associated drivers of
invasion at local and regional scales [17,22,23]. Remote sensing of exotic annual grasses in dryland
ecosystems of the western United States has largely relied on repeat, multispectral imagery and
phenological difference techniques; where some exotic annual grasses are characterized by early spring
green-up, senescence, and amplified inter-annual growth response to precipitation that is distinct
from most native species [24–26]. Distribution models and maps of exotic annual grass cover support
early detection and rapid response initiatives if data inputs have high spectral, spatial, and temporal
resolution (or if proliferation is distinct, homogenous, or slow growing), but few studies have made
use of technologies that provide accurate and spatially-detailed information at latencies requested by
land resource managers.

The overarching goal of this research was to develop a fully automated and scalable system that
leverages in situ observations, harmonized Landsat and Sentinel-2 (HLS) data and derived metrics (i.e.,
phenological and spectral indices), and data mining techniques for mapping exotic annual grass (%)
cover (30-m spatial resolution) throughout dryland ecosystems in the western United States. We defined
the following objectives to accomplish this goal, which provides guidance for the organization of
the remainder of the manuscript: (1) Develop a robust, automated cloud, cloud shadow, water, and
snow/ice masking approach for harmonized Landsat 8 and Sentinel-2 data using image differencing
techniques in a semi-supervised classification framework; (2) train and validate regression tree models
for accurate interpolation of HLS spectral data through space and time; (3) identify remote sensing and
derived information (e.g., phenological and time-series metrics, topographical, and biophysical data)
that are most useful for explaining the spatial patterns of exotic annual grass cover; and (4) construct
regression tree models using in situ and remote sensing observations to develop spatially explicit
estimates of exotic annual grass (%) cover and associated estimates of uncertainty. Our approach using
harmonized Landsat and Sentinel-2 data facilitates expedited mapping of exotic annual grass cover
across large regions at unparalleled spatial and temporal resolutions.

2. Material and Methods

2.1. Automated Cloud, Shadow, Snow/Ice, and Water Masking Procedure

The study area was divided into 33 production units (109.8 km × 109.8 km) based on the Sentinel-2
tiling system, spanning portions of Oregon, California, Idaho, and Nevada (Figure 1). Harmonized
Landsat and Sentinel-2 (HLS) data scenes (v1.4) were pulled from the HLS data download site, filtered by
acquisition week (i.e., weeks 4 to 44). Readers are referred to [27] for a detailed review of HLS imagery
and preprocessing. In total, there were approximately 12,000 scenes that met our filtering criteria from
2016 to 2018.
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Figure 1. Number of valid harmonized Landsat and Sentinel-2 (HLS) observations from 2016 to 2018 
overlaid by level III ecoregions [28] and Bureau of Land Management Assessment, Inventory, and 
Monitoring (AIM) plots (2016–2017). Black lines indicate state boundaries and inset shows Sentinel-2 
tiles and drylands in the United States. Drylands are defined by an aridity index [29], where the 
average ratio of annual precipitation to potential evapotranspiration (1970 to 2000) is between 0.03 
and 0.5. 

We developed an automated masking procedure leveraging HLS imagery and decision tree 
classification models because of known issues with the standard (v1.4) HLS masking layers. Training 
examples needed for decision tree classifiers were harvested using quality assurance (QA) band 
information and spectral thresholding for each Landsat and Sentinel-2 scene. Pixels identified to be 
clouds/shadows/water/snow/ice in the QA bands and those with a Normalized Difference Wetness 
Index (NDWI) ≤0.05 were given a value of 0. Conversely, pixels with high-quality information and 
NDWI values >0.05 were give a value of 1 because qualitative analysis indicates this to be a reasonable 
threshold for improving shadow and water detection. Coincident spectral information (all available 
bands) was extracted for randomly sampled pixel locations (n = 2000) within five Normalized 
Difference Vegetation Index (NDVI) clusters (natural breaks) in each scene. We used a time-series 
outlier filtering approach to further curate the model training databases because of identified 
omission errors in the standard HLS masks, where we removed NDWI values that exceeded ±25% of 
the median coincident seasonal value, with seasons being defined as five time periods (i.e., day of 
year ≤180; 180 to 200; 200 to 220; 220 to 240; ≥240). 

Binary, decision classification models were developed using the open-source version (GNU) of 
the See5 software algorithm [30] and optimal hyperparameters (i.e., number of cases at each leaf node, 
tree size, and pruning confidence) were determined using f-fold cross validation. After model 
calibration, the models were used to classify pixels within each image. Manual-image interpretations 
(n = 2600) of non-clear and clear pixels were made and randomly distributed throughout space and 
time for an independent validation of the classified images, with an additional target sample (n = 120) 
within areas where there was disagreement between standard HLS mask and decision tree model 
outputs. We report overall, user, and producer accuracies within confusion matrices, using estimators 
for stratified (standard HLS mask) and simple (decision tree mask) random sampling, to depict the 
robustness of the classifiers on harmonized Landsat-8 and Sentinel-2 imagery [31]. The total number 

Figure 1. Number of valid harmonized Landsat and Sentinel-2 (HLS) observations from 2016 to 2018
overlaid by level III ecoregions [28] and Bureau of Land Management Assessment, Inventory, and
Monitoring (AIM) plots (2016–2017). Black lines indicate state boundaries and inset shows Sentinel-2
tiles and drylands in the United States. Drylands are defined by an aridity index [29], where the average
ratio of annual precipitation to potential evapotranspiration (1970 to 2000) is between 0.03 and 0.5.

We developed an automated masking procedure leveraging HLS imagery and decision tree
classification models because of known issues with the standard (v1.4) HLS masking layers. Training
examples needed for decision tree classifiers were harvested using quality assurance (QA) band
information and spectral thresholding for each Landsat and Sentinel-2 scene. Pixels identified to be
clouds/shadows/water/snow/ice in the QA bands and those with a Normalized Difference Wetness
Index (NDWI) ≤0.05 were given a value of 0. Conversely, pixels with high-quality information and
NDWI values >0.05 were give a value of 1 because qualitative analysis indicates this to be a reasonable
threshold for improving shadow and water detection. Coincident spectral information (all available
bands) was extracted for randomly sampled pixel locations (n = 2000) within five Normalized Difference
Vegetation Index (NDVI) clusters (natural breaks) in each scene. We used a time-series outlier filtering
approach to further curate the model training databases because of identified omission errors in the
standard HLS masks, where we removed NDWI values that exceeded ±25% of the median coincident
seasonal value, with seasons being defined as five time periods (i.e., day of year ≤180; 180 to 200;
200 to 220; 220 to 240; ≥240).

Binary, decision classification models were developed using the open-source version (GNU) of
the See5 software algorithm [30] and optimal hyperparameters (i.e., number of cases at each leaf
node, tree size, and pruning confidence) were determined using f -fold cross validation. After model
calibration, the models were used to classify pixels within each image. Manual-image interpretations
(n = 2600) of non-clear and clear pixels were made and randomly distributed throughout space and
time for an independent validation of the classified images, with an additional target sample (n = 120)
within areas where there was disagreement between standard HLS mask and decision tree model
outputs. We report overall, user, and producer accuracies within confusion matrices, using estimators
for stratified (standard HLS mask) and simple (decision tree mask) random sampling, to depict the
robustness of the classifiers on harmonized Landsat-8 and Sentinel-2 imagery [31]. The total number
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of valid HLS observations at each pixel in the study area is shown in Figure 1 and is a useful tool for
error diagnostics.

2.2. Automated Time-Series Modeling and Metrics

We used a regression tree modeling framework (similar to [32]) for the spatial estimation of
weekly NDVI values derived from HLS data acquired from 2016 to 2018. This framework relies on: (1)
the generation of spatial inputs (e.g., weekly HLS composites, week of year, and year raster data) to
serve as covariates within regression tree models; (2) extraction of model tuning, training, and testing
data from raw NDVI image composites; (3) hyperparameter optimization (i.e., number of rules and
committees); and (4) application of calibrated and validated models to predict NDVI at each pixel and
time step (e.g., weekly), as described in more detail below.

As a part of the workflow, we developed weekly NDVI composites using a pixel-based imaging
compositing method to remove highly correlated data within the same week and to impute missing
values using clear HLS data. Here, missing values were imputed using a weighted sum approach
like [33], where a combined time and confidence weight (TCt) was calculated as:

TCt = exp

−(dt − nt

21

)4× q (1)

where d is the day of year the target scene t was acquired, n is the day of year the adjacent scenes
(2–3 week search window) were acquired, and q is the likelihood of an unobstructed pixel as derived
from the See5 mask confidence, such that q is near 1 and 0 for clear and non-clear pixels, respectively.
This approach differs slightly from [32] because of data availability issues present in our larger
spatiotemporal domain. An NDVI composite was then constructed as:

NDVIt =

∑N
t=1 TCt ×NDVIt∑N

t=1 TCt
(2)

where NDVIt is the NDVI composite image for scene t, N is the number of scenes combined from
adjacent weeks (2–3 weeks), and TCt is the weights for t described above. We then binned each scene
into weeks and took the median pixel values to develop a weekly time-series dataset, herein denoted
as HLSint, that served as spatial inputs into regression tree models.

Regression tree model training samples (n = 25,000) were harvested from the raw, weekly
composites using a stratified sampling design and NDVI clustering with five natural breaks for each
composite. Raw HLS data served as the dependent variable in the regression tree models, and HLSint,
week of year, and year of data served as predictor variables. Predictor NDVI values were replaced
with a weekly global mean when the corresponding data were used as a reference, to prevent data
leakage and force the model to make predictions based on other inputs. Regression tree models were
trained and validated using time-series data from over 8 M and 2 M independent locations, respectively,
where individual models were developed for 6 tiles using an overlapping-grid design to overcome
computational hurdles and to mitigate spatial autocorrelation affects.

We compared weekly HLSint, regression tree predicted (HLSRT), and expediated MODIS [34]
(eMODIS) data via cross-correlation analysis to assess similarities between each of the annual time
series. We report model accuracy and comparison statistics (i.e., Pearson correlation coefficient (r),
root mean square rrror (RMSE)) for the entire study domain, using 5-km grid summaries, and by level
III ecoregions (i.e., Blue Mountains, Eastern Cascades Slopes and Foothills, Cascades, Sierra Nevada,
Central Basin and Range, Idaho Batholith, Sierra Nevada, Columbia Plateau, Central and Northern
Basin and Ranges, Central California Foothills and Coastal Mountains, and Snake River Plain [28]).
For ecoregion level comparisons of the various time-series data, we summarized NDVI values within
homogenous areas (coefficient of variation <20%), as calculated from standard deviation and mean
focal scans (9 × 9 pixels) of the average 30 m growing season NDVI, to align with the scale of the
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weekly eMODIS products. Comparisons with eMODIS data allow for an additional independent
assessment of estimated seasonal variations in NDVI and phenological transition dates.

A suite of time-series and phenological metrics was generated from the weekly HLSRT and eMODIS
time-series datasets to help discriminate exotic from native vegetation and for regional comparisons.
Common vegetation phenological metrics (e.g., date and NDVI value at onset of greenness, date and
value of brown down, date and value of peak NDVI) were developed from individual years of weekly
NDVI data (week 7–week 42) using the CropPhenology package in R [35], as average timings and
indices of the absolute maximum and minimum values are useful for cheatgrass mapping [24]. Derived
phenological metrics were not compared to phenocam observations because the goal was to solely
develop metrics that are useful for regional exotic annual grass mapping.

2.3. In Situ Observations of Exotic Annual Grass Cover, Modeling, and Map Validation

Field observations of exotic annual grass cover (2016–2017), the dominant component of which
is assumed to be cheatgrass in our study area, were collected by the Bureau of Land Management
(BLM) using a point-intercept approach along three-spoked (25 m) transects. Discrete point data taken
along the BLM Assessment, Inventory, and Monitoring (AIM) transects were summarized to calculate
the percent cover of exotic annual grasses for model calibration and validation (Figure 1; n = 1885).
We compiled biophysical (i.e., Natural Resources Conservation Service Gridded Soil Survey Geographic
(gSSURGO) [36] soil texture fraction and organic matter content in the first 30 cm of the soil; National
Elevation Dataset (NED) [37]), and spectral data (Section 2.2) to serve as covariates within our predictive
models because such factors are known to control or depict cheatgrass cover dynamics [11]. Spectral
data were extracted coincident with the timing of the field observations (e.g., 2016 predictors extracted
for 2016 in situ observations) because exotic annual grass cover can vary tenfold between wet and dry
years [38,39] such as those evaluated in our study area (Figure S1).

We normalized the distribution of observations by percentage cover using a boot-strapping
approach, where we reshuffled the model database while undersampling (retaining) those plots with
zero (greater than zero) coverage of exotic annual grass cover, because of the prevalence of zero
percent exotic annual grass cover observations in the field database. We then developed parsimonious
regression tree models (n = 10) that were optimized using f -fold cross validation and the resampled
databases from 2016–2017. Regression tree ensembles were constructed using an open-source version
(GNU) of Cubist software and relevant environmental covariates as determined using tree-based feature
selection algorithms and importance weights in sequential models. We performed a sensitivity analysis
using different sets of NDVI composites (i.e., week + phenometrics, month, season, annual) to identify
the optimal number and frequency of remote sensing inputs. We reported cross validation errors for
each model and standard accuracy metrics across the study domain. The calibrated distribution models
were then used to predict cheatgrass fractional cover for each permutation. Finally, we computed the
pixel-wise median, standard deviation, and 2.5 and 97.5 percentiles of annual grass cover among the
suite of permutations. This yielded both a best estimate (median) and 95% confidence interval for exotic
annual grass cover at 30 m resolution for the study domain for all 3 years and the resulting maps were
validated using independent observations (n = 112) distributed throughout the spatiotemporal domain.

3. Results

3.1. Image Masking and Validation

Manual image interpretations and classification tree output comparisons were favorable (Table 1),
with mean overall accuracies of 85 ± 2% and 81 ± 2% for Landsat-8 and Sentinel-2 imagery, respectively.
Standard HLS masks had slightly lower overall accuracies of 83% ± 2% and 78% ± 2% for Landsat-8 and
Sentinel-2 imagery, respectively (Table 1). Mean overall accuracies within areas of model disagreement
suggest a 50% overall increase in model accuracies when comparing independent interpretations to decision
tree models (overall accuracy = 77 ± 7%) and standard HLS (38 ± 9%) masks. While a limited amount of
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independent test data was used in this comparison, this demonstrates that optimized, semi-supervised
classification models significantly enhance our ability to distinguish clear and non-clear data within our
study area.

Table 1. Confusion matrices of observed and mapped values of clear and non-clear pixels (i.e., cloud,
cloud shadow, water, snow/ice) in Landsat (top) and Sentinel-2A (bottom) data, as depicted by standard
HLS and decision tree masks. Bold values denote correctly classified instances. Accuracy measures are
presented with 95% confidence interval.

Standard HLS Mask Decision Tree Mask
Landsat-8 Reference Landsat-8 Reference

Clear Non-Clear Total User’s
Accuracy Clear Non-Clear Total User’s

Accuracy

Map Clear 577 73 650 89 ± 2% Map Clear 686 131 817 84 ± 3%
Non-Clear 168 482 650 74 ± 3% Non-Clear 59 424 483 88 ± 3%

Total 745 555 Total 745 555
Producer’s
Accuracy 84 ± 2% 81 ± 3% Producer’s

Accuracy 92 ± 2% 76 ± 3%

Overall
Accuracy 83 ± 2% Overall

Accuracy 85 ± 2%

Sentinel-2 Reference Sentinel-2 Reference

Clear Non-Clear Total User’s
Accuracy Clear Non-Clear Total User’s

Accuracy

Map Clear 550 100 650 85 ± 3% Map Clear 616 116 732 84 ± 3%
Non-Clear 195 455 650 70 ± 4% Non-Clear 129 439 568 77 ± 4%

Total 745 555 Total 745 555
Producer’s
Accuracy 78 ± 2% 78 ± 3% Producer’s

Accuracy 83 ± 2% 79 ± 3%

Overall
Accuracy 78 ± 2% Overall

Accuracy 81 ± 2%

3.2. Time-Series Modeling and Metrics

The use of regression tree ensembles for spatiotemporal interpolation of spectral information is
straightforward to implement and results in very high accuracies from the perspective of hold-out
spectral data (Table S1). A paucity of observations, specifically long-term data gaps, result in increased
error rates when using simpler smoothing methods, as compared to estimates made by complex
regression tree models, which strongly influence the ultimate determination of phenological metrics
and fractional exotic annual grass cover at a pixel (Figure 2). In dryland ecosystems, inter-annual
variability of vegetation productivity distinct from land cover change is prominent in rangelands
dominated by cheatgrass because of its link to rainfall [26,40]. Overall, we found stronger correlations
between HLSRT and eMODIS data as compared to eMODIS and HLSint data (Table 2) generated using
per-pixel compositing methods that are often used to construct cloud-free time-series data for input
into models of land surface phenology or land cover change (e.g., [33,41]).

Cross-correlation analysis of eMODIS and HLSRT time-series data revealed good agreement
between the datasets across evergreen forests and rangelands within the study area (Figure 3; average
r = 0.74 ± 0.21; n = ~36,000), despite differences in how snow was handled in each time series (i.e.,
masked out in the HLS time series), with an average lag of 1 week between the time series (eMODIS
lagging HLS data). Inclusion of snow-impacted pixels in MODIS time series can adversely impact start
of season estimates within coniferous forests that typically have little inter-annual variation in NDVI [42]
and are commonly found in western ecoregions of the study area (e.g., Cascades, Sierra Nevada),
hence the reason for the exclusion of snow in the HLS dataset. Correspondingly, cross-correlation
analysis indicates better agreement for years with relatively less precipitation (i.e., 2016 and 2018;
Figure S1), despite the lack of Sentinel-2B observations in 2016, and within homogeneous rangelands
less impacted by snow (r = 0.91; Table 2). For comparison, Robinson et al. [43] used a per-pixel and
climatology-driven approach to produce 16-day Landsat composites and found a lower correspondence
with MODIS data within homogenous evergreen forests and shrublands (average r = ~0.65) within the
conterminous United States (1984–2016). Enhanced estimates of inter-annual NDVIs in the current
study are mainly attributed to shorter revisit times of HLS data, the robust regression tree compositing
and masking approach used here, and/or the known spatial inaccuracies of climatology data previously
used for aiding interpolations of Landsat NDVI data.
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Figure 2. Time series of Normalized Difference Vegetation Index (NDVI) derived from harmonized
Landsat and Sentinel-2 (HLS) data, regression tree models, and expediated Moderate Resolution Image
Spectroradiometer (eMODIS) dataset within rangelands stratified by level III ecoregions [28]. The box
plots show the interquartile range and median weekly NDVI values (horizontal black line) in 2016.
The whiskers extend to a range of values that are within the median ± 1.5 times the interquartile range.
HLS data coverage (%) is displayed at the bottom of each panel and rounded to the nearest whole
number. NDVI is scaled (100× + 100) to an 8-bit unsigned integer.
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Table 2. Cross-correlation (Pearson’s r) between eMODIS, regression tree estimated (HLSRT), and
interpolated harmonized Landsat and Sentinel-2 (HLSint) data within rangelands stratified by level
III ecoregions [28]. Bold values indicate r’s greater than adjacent r values. Ecoregions substantially
impacted by snowfall (i.e., Cascades, Sierra Nevada) are excluded from overall summaries.

Ecoregion % Study Area Year eMODIS and
HLSRT (r l)

eMODIS and
HLSint (r l)

Blue Mountains 17
2016 0.86 2 0.86 2
2017 0.77 2 0.79 2
2018 0.93 4 0.89 3

Cascades 4
2016 0.37 1 0.59 0
2017 0.59 2 0.75 0
2018 0.76 2 0.77 1

Central Basin and
Range 22

2016 0.91 1 0.92 1
2017 0.91 2 0.91 1
2018 0.92 3 0.90 2

Central California
Foothills and

Coastal Mountains
0.3

2016 0.94 1 0.96 1
2017 0.96 1 0.97 0
2018 0.95 1 0.98 0

Columbia Plateau 0.6
2016 0.98 1 0.96 1
2017 0.97 1 0.94 1
2018 0.92 2 0.85 2

Eastern Cascades
and Foothills

11.9
2016 0.82 2 0.80 2
2017 0.55 4 0.54 5
2018 0.83 2 0.75 2

Idaho Batholith 3.3
2016 0.88 1 0.86 2
2017 0.75 2 0.74 2
2018 0.87 4 0.83 3

Northern Basin
and Range 33.6

2016 0.90 1 0.91 1
2017 0.74 2 0.76 2
2018 0.92 3 0.90 2

Sierra Nevada 2.5
2016 0.63 1 0.78 1
2017 0.50 4 0.69 2
2018 0.76 3 0.79 3

Snake River Plain 5.2
2016 0.98 1 0.98 1
2017 0.86 1 0.83 2
2018 0.95 3 0.98 2

Overall 100 - 0.91 1 0.87 2

Subscript indicates lag in weeks. Bold values indicate r’s greater than adjacent r values.
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Ecoregion 

% Study 

Area Year 

eMODIS 

and HLSRT 

(rl) 

eMODIS 

and HLSint 

(r l) 

Blue Mountains 17 2016 0.862 0.862 2017 0.772 0.792 2018 0.934 0.893 Cascades 4 2016 0.37-1 0.590 2017 0.592 0.750 

Figure 3. Cross-correlation and lag statistics between eMODIS and regression tree estimated Normalized
Difference Vegetation Index (NDVI) as summarized across all 5 × 5 km grids during 2016–2018. Time
series were populated using NDVI values within target land cover types (i.e., rangelands and evergreen
forests). Areas with insignificant correlations (p-value > 0.05) and mostly non-target land covers are
shown as black and white grids, respectively. A positive (negative) lag indicates that eMODIS NDVI
lags (leads) that of HLSRT NDVI.

Robust estimates of inter-annual variations in NDVI are a prerequisite for estimating phenological
transition dates (phenophases), such as the start of the growing season. Comparisons between
phenometrics derived from HLSRT and eMODIS data suggest further agreement between seasonal
trajectories of NDVI across the spatial domain (Figure 4). For example, estimated mean start of season,
maximum, and end of season NDVI values show good agreement with eMODIS-derived data, with
Pearson’s correlation, and mean absolute errors (MAEs) ranging from 0.72 to 0.98 and from 0.02 to
0.08, respectively. Estimated timings followed similar patterns, with HLS-derived metrics generally
indicating earlier start of season, maximum, and end of season timings as compared to eMODIS
which is generally consistent with previous interpretations [32]. For comparison, Zhou et al. [44] used
a weighted least-squares approach for temporal smoothing of HLS data and a delayed moving average
technique to estimate the start of season date in grasslands along the eastern border of North Dakota
and western Minnesota, with much higher data densities as compared to this study, and found fair
agreement with MODIS-derived date estimates (RMSE = 11.6 days).
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Figure 4. Mean satellite-derived phenophase metrics and associated Normalized Difference Vegetation
Index (NDVI) for rangelands stratified by level III ecoregions [28] over the 2016–2018 record.
Phenometrics are summarized for homogeneous pixels (coefficient of variation <20%), as calculated
from standard deviation and mean focal scans (9 × 9 pixels) of the average 30-m growing season NDVI,
as estimated from regression tree models. Pearson’s correlation coefficient (r) and mean absolute
error (MAE) are shown for all years combined. Data were fit using ordinary least-squares regression
(dashed line) and the 1:1 line is shown as a solid black line. NDVI is scaled (100× + 100) to an 8-bit
unsigned integer.
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3.3. Exotic Annual Grass Cover Modeling, Mapping, and Validation

Our automated workflow produced exotic annual grass (%) cover maps (2016–2018) and associated
estimates of model variance at 30-m spatial resolution across the study domain (Figure 5). Training and
testing Pearson’s correlation coefficient (0.83 and 0.64), MAE (11% and 14% cover), and relative MAE
(rMAE; 0.50 and 0.70) indicate fair agreement between modeled and observed percent cover values
(Figure 6). These errors are either substantially lower or equivalent to those found in similar mapping
efforts. For example, Jones et al. [15] generated estimates of annual, fractional forb, and grass cover
using a random forest model that integrated some 30,000 field observations, seasonal Landsat image
composites (1984 to 2017), and maps of abiotic and climatic factors and reported lower correlations
between modeled and observed values when using out-of-bag summaries (r = 0.70) and independent
test data (r = 0.44). Likewise, Xian and colleagues [16] used a regression tree model and Landsat
Operational Land Imager (OLI) mosaics and reported fair (r = 0.56) agreement between independent
field observations and model estimates of annual herbaceous cover. Similar levels of agreement
(r = 0.50) were found when comparing 250-m annual invasive herbaceous cover maps, as derived from
a regression tree model that used remotely sensed estimates of invasive annual herbaceous cover as
model training data and MODIS data as a predictor, with six years of independent AIM plot data,
despite large discrepancies in the scale of the AIM plots and spatial inputs [18].
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Figure 5. Time series of predicted exotic annual grass cover (%) and associated estimates of uncertainty
(standard deviation of 10 model estimates). Areas in white are non-target landcovers as identified from
the 2016 National Land Cover Database [45].

Model variances were significantly associated with plotted and mapped cover values in our
study (p-value < 0.01; r = 0.61; slope = 0.06; Figure 5), and partially attributed to positively skewed
observation distributions [15], despite the data normalization and boot-strap approach used here.
However, shuffling the model training data while undersampling the lower bounds of the data had
a bias-reducing effect as compared to nonparametric modeling schemes that did not assign weights to
rarer observations (e.g., [15,46]). Similarly, Henderson and colleagues [14] used a probability-based
threshold and linear correction procedure in a univariate random forest modeling scheme, which
required accurate and unbiased presence-absence/probability models developed for a user-defined
threshold of cover, to construct relatively unbiased estimates of annual invasive grass cover in a portion
of the Great Basin.
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Figure 6. Predicted versus observed exotic annual grass cover (%) from independent test (n = 112) and
model training data (n = 1700) collected during 2016 and 2017. Pearson’s correlation coefficient (r),
mean absolute error (MAE), and relative MAE (rMAE) are calculated using all data points. Both years
of data were fit using ordinary least-squares regression (dashed red line) and the 1:1 line is shown as
a solid black line.

The robustness of our distribution model was largely contingent upon the number and quality
of the ground truth data, which should be collected at scales congruent with remote sensing inputs,
and the predictive capacity of the environmental covariates. Sensitivity analysis revealed that models
which made use of weekly NDVI composites and phenometrics significantly outperformed those that
made use of monthly, seasonal, or annual image composites and ancillary data (Figure 7). This finding
suggests that the temporal granularity of the remote sensing inputs significantly controls the accuracy
of the species distribution models, with the timing of key phenological transitions (e.g., start of green-up
and brown-down) and associated weekly spectral values being heavily used across model development
(Table S2).Remote Sens. 2019, 11, x FOR PEER REVIEW 8 of 18 
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Figure 7. Mean absolute errors (MAEs) calculated from observed and predicted exotic annual grass (%)
cover using f -fold cross validation and regression tree models of varying complexity. Models were
developed using Normalized Difference Vegetation Index (NDVI) composites and derived phenometrics
(for the weekly model only) generated using regression tree models and harmonized Landsat and
Sentinel-2 data. Data were fit using a locally weighted scatterplot smoother (LOWESS; span = 0.2) for
visualization purposes.
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4. Discussion

4.1. Time Series Modeling, Metrics, and Image Masking

Remote sensing of vegetation productivity and land surface phenology in dryland ecosystems
can be immensely challenging due to pervasive cloudiness during spring months, high amounts
of bare ground and biological soil crusts, high spatial heterogeneity, low vegetation signal-to-noise
ratios, and irregular growing seasons related to seasonal rainfall and frequent periods of drought [47].
To circumvent data availability and scaling issues, we developed a data fusion approach that leveraged
HLS data (i.e., Sentinel-2A and B, Landsat 8) and machine-learning techniques to construct weekly,
cloud-free NDVI image composites for an accurate representation of seasonal cycles of vegetation
greenness and estimates of phenological transition dates. Identification of clear and non-clear pixel
data (i.e., data quality screening) is a prerequisite for any satellite-based remote sensing analysis and
the use of optimized decision tree models resulted in improved accuracies as compared to standard
HLS masks in this study (Table 1). We suspect the standard HLS masks represent a more global solution
based on a physics-based pixel quality identification while our semi-supervised approach allows for
scene and date-specific tuning for improved cloud, shadow, water, and snow/ice identification. It is
important to note, however, that cloud and cloud shadow detection algorithms were recently improved
for Landsat and Sentinel-2 data (Fmask 4.0; [48]) and such data can easily be assimilated into our
workflow in the future.

We demonstrate that our regression tree compositing method is more robust than per-pixel
approaches that are typically used to construct time-series data for input into models of land surface
phenology or land cover change (Figure 2 and Table 2). A key advantage of using a global versus
pixel-based modeling scheme is the ability to leverage data across the spatiotemporal domain, as opposed
strictly to the temporal domain, to make predictions at each pixel and time step. While our approach was
mainly developed for monitoring precipitation-driven ecosystems with abrupt and flashy growth cycles,
it is transferable to more temperature-driven ecosystems where vegetation synchronizes its growth with
relatively consistent seasonal climatic changes using environmental cues (e.g., temperature, photoperiod).
Regardless, when insufficient high-quality data are available for training during the beginning and
end of the growing season, or when there are high levels of undetected noise in the data (e.g., due to
inaccurate masking algorithms), the resulting function fits can still be unrealistic and may require further
processing or filtering (e.g., Savitzky–Golay filter, Hampel filter) to diminish noise or artifacts. Since the
advancement of remote sensing of land surface phenology is vital for better understanding drylands [49],
future research should explore the benefits of using an ensemble of methodologies and spectral indices
(e.g., Soil-Adjusted Vegetation Index) to characterize phenological timings (e.g., [50]), leverage residuals
from curve fitting procedures to calculate measures of statistical uncertainty in the phenophases dates and
associated spectral values, and make comparisons with ground-based optical measurements acquired at
scales commensurate with remote sensing inputs.

4.2. Exotic Annual Grass Cover Modeling, Mapping, and Validation

Our automated workflow produced maps of exotic annual grass (%) cover associated estimates
of model variance throughout dryland ecosystems of the western United States at a native, 30-m
spatial resolution. Comparisons with independent field observations and error assessments reported
in previous studies suggest improved accuracies that can be partially attributed to: (1) the enhanced
temporal revisit times and resolutions of the HLS dataset, which allowed for the development of
nearly seamless weekly NDVI data (Figure 7); (2) consistent usage of sampling protocols across the
model testing and training datasets; and/or (3) the use of other relevant ancillary data related to
exotic annual grass cover (i.e., phenometrics, soils, topography). Moreover, while there are existing
systems that use multi-date satellite imagery to develop fractional cover maps of annual invasive
herbaceous cover [19,21,51], such approaches are generally not suited for developing near real-time
estimates. These approaches, which are subject to data latency issues or a lack of an automated
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workflow, have made use of coarse spatial-resolution inputs (e.g., eMODIS), downscaled MODIS
products, or composites constructed from Landsat data with coarse temporal granularity (i.e., 16 day),
and have not capitalized on the synergistic use of seamless Landsat-8 and Sentinel-2 data for improved
characterization of invasive annual grass dynamics.

With regards to scaling issues and sampling errors, we opportunistically used BLM AIM plot
data that were not optimally aligned with the scale of the remote sensing inputs and were collected
using point-intercept sampling rather than a complete enumeration/inventory with no sampling errors.
To circumvent scaling issues, we initially gave higher weights to observations that fell within relatively
homogenous areas, as identified by calculating the coefficient of variation of growing season NDVI
data within a 3 × 3 moving window, but this did not improve model accuracies from the perspective of
hold-out data. Likewise, previous research has shown that it can be important to train machine-learning
models on mixed pixels that can occupy a large portion of the spatiotemporal domain [52]. Future
studies may benefit by tackling scaling issues in other ways; for example, by upscaling more localized
in situ observations (with no sampling errors) using high-resolution imagery collected via suborbital
(e.g., unmanned aerial vehicle (UAV)) or orbital (e.g., CubeSat, DigitalGlobe) sensors, and then using
those estimates as training data within distribution models that use moderate-resolution imagery
inputs (e.g., [48]) while also tracking uncertainties throughout the entire prediction process.

5. Conclusions

In this study, we developed a fully automated and scalable workflow that integrates field
observations, harmonized Landsat and Sentinel-2 (HLS) data, maps of landscape conditions (i.e.,
soils, topography), and machine-learning techniques to construct a time series of fractional estimates
of exotic annual grass cover and associated uncertainties across dryland ecoregions in the western
United States [53]. In doing so, we also show that Landsat 8 and Sentinel-2 data can be used in
harmony to generate weekly cloud-free image composites of NDVI data and estimates of phenological
transition dates comparable to those derived from eMODIS data but at scales (30 m) more relevant
to local resource managers. The development and public release of spatially explicit maps of exotic
annual grass (%) cover and weekly NDVI can be important assets to land managers and scientists.
This workflow and derived information will be immensely useful for numerous science activities and
investigations such as monitoring and modeling historical and future land-surface dynamics and
biophysical conditions (e.g., biomass, drought), detecting and analyzing fuel breaks in sagebrush
ecosystems [54], controlling and quantifying fire behavior, targeting grazing, mapping other rangeland
components (e.g., % bare ground, shrubs, herbs), and enhancing aerial herbicide applications. Timely,
accurate, and spatially detailed depictions of land surface phenology and exotic annual grass cover
serve as foundations for better understanding and managing dryland systems in the face of a changing
climate and disturbance regimes.

Supplementary Materials: The following are available online at http://www.mdpi.com/2072-4292/12/4/725/s1,
Figure S1: Time series of mean annual precipitation (mm) anomalies for level III ecoregions (Omernik and Griffith,
2014), Table S1: Average statistical metrics (±SD) derived from observed and predicted normalized difference
vegetation index (NDVI * 100) values (2016–2018), Table S2: Predictor variable usage (+SD) across 10 regression
tree (RT) models developed.
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