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Abstract: This paper analyses the spatio-temporal trends and variability in annual, seasonal, and
monthly rainfall with corresponding rainy days in Bhilangana river basin, Uttarakhand Himalaya,
based on stations and two gridded products. Station-based monthly rainfall and rainy days data
were obtained from the India Meteorological Department (IMD) for the period from 1983 to 2008 and
applied, along with two daily rainfall gridded products to establish temporal changes and spatial
associations in the study area. Due to the lack of more recent ground station rainfall measurements
for the basin, gridded data were then used to establish monthly rainfall spatio-temporal trends for the
period 2009 to 2018. The study shows all surface observatories in the catchment experienced an annual
decreasing trend in rainfall over the 1983 to 2008 period, averaging 15.75 mm per decade. Analysis of
at the monthly and seasonal trend showed reduced rainfall for August and during monsoon season
as a whole (10.13 and 11.38 mm per decade, respectively); maximum changes were observed in both
monsoon and winter months. Gridded rainfall data were obtained from the Climate Hazard Infrared
Group Precipitation Station (CHIRPS) and Precipitation Estimation from Remotely Sensed Information
Using Artificial Neural Networks-Climate Data Record (PERSIANN-CDR). By combining the big
data analytical potential of Google Earth Engine (GEE), we compare spatial patterns and temporal
trends in observational and modelled precipitation and demonstrate that remote sensing products
can reliably be used in inaccessible areas where observational data are scarce and/or temporally
incomplete. CHIRPS reanalysis data indicate that there are in fact three significantly distinct annual
rainfall periods in the basin, viz. phase 1: 1983 to 1997 (relatively high annual rainfall); phase 2:
1998 to 2008 (drought); phase 3: 2009 to 2018 (return to relatively high annual rainfall again). By
comparison, PERSIANN-CDR data show reduced annual and winter precipitation, but no significant
changes during the monsoon and pre-monsoon seasons from 1983 to 2008. The major conclusions of
this study are that rainfall modelled using CHIRPS corresponds well with the observational record
in confirming the decreased annual and seasonal rainfall, averaging 10.9 and 7.9 mm per decade
respectively between 1983 and 2008, although there is a trend (albeit not statistically significant) to
higher rainfall after the marked dry period between 1998 and 2008. Long-term variability in rainfall
in the Bhilangana river basin has had critical impacts on the environment arising from water scarcity
in this mountainous region.
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1. Introduction

Rainfall is a key component of the hydrological cycle and has a diverse range of impacts on human
society, for example, agricultural activities [1], hydropower generation [2], vegetation phenology [3], and
sustainability of biodiversity [4]. It is widely accepted that recent climate change has altered annual and
seasonal patterns of rainfall along with its spatial distribution. The particular significance of rainfall
variability has been highlighted for the high mountain regions of the Indian Himalayan Region (IHR) [5,6].
High mountain regions are in fact potentially ideal localities for evaluating climate change and associated
impacts because of its large elevation range and vulnerable biota. As about one-fifth of the world’s
mountain inhabitants is found in the wider Himalayan region [7], with an ongoing increasing population,
the region is likely to play a crucial role in livelihoods of future generations [8]. However, recent studies
suggest that over the past century, there have been several phases of rapid warming and that climate
variability here exceeds the global average [9]. Therefore, understanding rainfall variability in the
Himalayan region becomes extremely critical for integrated Himalayan spatial planning.

As the Himalayan region receives summer precipitation from the Indian Summer Monsoon
(ISM) and winter precipitation from the Westerlies, much of the area that falls under the dominant
influence of the south-westerly winds receives significant amounts of summer rainfall (~80%), but
this gradually declines towards the north-western Himalayan region (i.e., the Monsoon shadow zone).
Contrastingly, during the winter season, north, and northwest slopes of the Himalaya receive more
rainfall from frontal disturbances and mid-latitude westerly cyclones, which originate in the North
Atlantic, Mediterranean and Caspian Sea [10]. Accordingly, precipitation distribution and amount
across the region depend on a range of climatic drivers, including the North Atlantic Oscillation (NAO)
and El Niño Southern Oscillation (ENSO) and Jet Stream etc.

A growing literature suggests above normal increasing trend in temperature around the Western
Himalayan region [11–14]. The decreasing thermal contrast between the Indian Ocean and Tibetan
Plateau has led to the weakening of the ISM and hence the rainfall in the Himalayan region [13,14].
A range of regional precipitation attributes, such as rainfall amount, distribution, intensity, and
frequency of rainy days, have been studied previously in the IHR and propose reduced rainfall
intensity between 1951 and 2004 [15–17]. Such inconsistency in seasonal rainfall and rainy-day results
in extreme rainfall events that, in turn, lead to flash floods and associated damages in low-lying
areas [18]. Monitoring such inconsistencies of rainfall and reduction related forfeiture in mountainous
regions are major challenges for the scientific community [19] and requires suitable data on its
spatio-temporal variability [20,21]. Although paucity of station data in such regions is a significant
obstacle, advances in cloud computing technology enable computation of satellite-derived information
of rainfall characteristics using web-based remote sensing platforms such as Google Earth Engine
(GEE). Indeed, access to gridded satellite data has become significantly more accessible in the recent
past [22,23] and numerous satellite and reanalysis rainfall observations are available with higher
spatial and temporal resolution such as TRMM, GPCC, APHRODITE, ERA-Interim, CFSR, GPM,
IMERG, CHIRPS, PERSIANN. We used CHIRPS and PERSIANN-CDR datasets based on their higher
spatio-temporal resolution, suitability over mountainous terrain such as the IHR and recent data
availability over our study area.

Given the importance of evaluating amount, seasonality, variability, and long-term trends in
precipitation characteristics of the Indian Himalaya, the aim of this study is to assess the spatio-temporal
dynamics of rainfall and rainy days for the Bhilangana river basin during the period from 1983 to 2008.
In so doing, we seek to explain the patterns of rainfall change and its potential impacts on the regional
environment. The aim is achieved in relation to the following objectives.
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a. To collect, tabulate and analyse rainfall data collected from i) available surface observatories
managed by IMD ii) reanalysis rainfall data from CHIRPS and iii) satellite rainfall
data PERSIANN-CDR

b. To map annual and seasonal time series of rainfall dynamics and juxtapose the performance of
reanalysis and satellite-based data products compared to ground station data

c. To evaluate annual, seasonal, and monthly distributions and trends in rainfall and rainy days
and compare the results from the three sources through the application of non-parametric tests

d. To briefly discuss the regional socio-economic implications of observed rainfall variability

2. Environmental Characteristics of the Bhilangana River Basin

The Bhilangana river basin, a sub-basin of the upper Bhagirathi, is located in Uttarakhand
State, western Himalaya, India. The basin, which occupies a total area of 1482 km2, lies between
30◦32′71”N to 30◦87′79”N latitude and 78◦48′22”E to 79◦03′53”E longitude (Figure 1) at elevations
ranging between 616 to 6635 m amsl. The headwaters originate at the terminus of the Khatling glacier
(3718 m asl) and flow ~ 80 km southwest to confluence with another river and feeds into the Tehri
dam (India’s highest elevation river dam), after which it is known as the Bhagirathi river. The dam
supports a 2400-megawatt hydropower system which provides electricity to adjacent states (Punjab,
Haryana, Uttar Pradesh, Jammu and Kashmir) including the national capital (New Delhi). Indeed, the
Bhilangana river is the lifeline for approximately 1.3 million people (around 13 percent of Uttarakhand’s
population) and 295 villages [24] in terms of fresh water, irrigation, household activities and social
wellbeing. Geologically, this area is primarily underlain by the Garhwal formation [25]. The major
litho-tectonic units in the area are a) Central Crystalline and b) Garhwal groups [26]. Tectonically, this
area is located in an earthquake zone “V”, (i.e., seismically more active) and is frequently impacted by
mass movements including landslides and debris flow following monsoonal precipitation in summer
months (June–September) [27,28]. The area is prone to extreme rainfall events, such as cloudbursts and
torrential downpour, some of which together with other extreme events such as glacier lake outburst
floods have resulted in loss of life, property, and infrastructure in the region during recent past [18,29].
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respectively. The background image is ASTER GDEMV2, derived from USGS.
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3. Materials and Methods

3.1. Observed Data

Observed monthly rainfall and rainy days data for the period from 1983 to 2008 were obtained
from the India Meteorological Department (IMD, Pune) (Table 1). Since both rainfall and rainy-day
records of IMD have data gaps, we carefully selected suitable stations for this study based on a) more
than 30 years of data, b) up to 80% of data availability, and c) the most recent records. In some cases,
we interpolated the missing data by applying long-term monthly averages. Eventually, three surface
observatories were selected for both rainfall and rainy-day parameters. As per the IMD, a rainy-day is
defined as a day with a minimum of 2.5 mm rainfall. Reliable and reasonably continuous monthly
data for these ground stations were only available for the period from 1983 to 2008.

Table 1. Data used to estimate long-term rainfall variability in the Bhilangana river basin.

Station Observed Data (Collected from IMD)

Station
Location

Period Elevation (m) Available Observations (%)
Lat. Long.

Mukhem 30.34 78.28 1983–2008 1981 95.8
Tehri 30.22 78.26 1983–2008 676 91.3

Narendra Nagar 30.09 78.17 1983–2008 1037 81.3

Gridded Data (Downloaded through Google Earth Engine Platform)

Data product Year Source Grid Spacing
CHIRPS 1983–2018 UCSB/CHG 0.05 arc degree

PERSIANN-CDR 1983–2008 NOAA/NCDC 0.25 arc degree

3.2. Gridded Rainfall Data

Along with observed data, one reanalysis (CHIRPS) and one satellite-based (PERSIANN-CDR)
gridded rainfall product was derived using GEE. Conspicuously, the CHIRPS gridded daily rainfall
product is a combination of observed and satellite rainfall and has low systematic bias [30–35] with an
extended period of record. CHIRPS data is accessed from the website of the Climate Hazard Group
(https://www.chc.ucsb.edu) (USAID, NASA, and NOAA).PERSIANN-CDR data is satellite-derived
daily rainfall estimate using artificial neural networks (ANN), with high spatio-temporal resolution
and accuracy [36–39], and retrieved from the website of NCAR and UCAR (https://climatedataguide.
ucar.edu). The ANN estimates precipitation from cold cloud pixels and adjacent features using gridded
satellite brightness temperature details. In addition to this, two intensive field visits were conducted in
2016 to assess the environmental and socio-economic impacts of rainfall changes.

To estimate long-term trends, observed monthly rainfall and rainy-day data were collected from
1983 to 2008, as per the existing observation records of IMD. This was further compared with gridded
data available between 1983 and 2008, based on high spatial resolution and a similar period of record.
Thereafter, the more recent spatial and temporal trends were carried out using reanalysis data for the
period 2009 to 2018.

3.3. Data Handling and Statistical Applications in GEE

Annual, seasonal and monthly gridded rainfall products were derived from the GEE platform [40]
using the ee.ImageCollection algorithm and applying a filter command (ee.Filter.calendarRange) to
cover the study period (1983–2018). After processing the images (.sum), the clip function was used to
confine the boundaries to the Bhilangana study region (Supplementary code 1). Both high-resolution
modelled datasets were downloaded and analysed in the GEE code editor. To ensure spatial similarity in
both gridded datasets, bilinear interpolation resampling technique was used [41]. To match the similar
spatial information with station data, nearest point-pixel rainfall values of both the gridded datasets

https://www.chc.ucsb.edu
https://climatedataguide.ucar.edu
https://climatedataguide.ucar.edu
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were extracted in GEE platform for station localities (Supplementary code 2) [33,36]. Subsequently,
pixel-based long-term spatio-temporal trend for both gridded data sets was performed in GEE using
ee.Reducer.senSlope algorithm (Supplementary code 3). The Sen’s slope (magnitude of trend) was
tested through Mann–Kendall (alpha ≤ 0.05 and Z statistics = 1.96, obtained from the standard normal
table) expression.

Additionally, gridded daily rainfall records were then aggregated to monthly and seasonal totals
viz., pre-monsoon (MAM), monsoon (JJAS), post-monsoon (ON), and winter (DJF), following the
scheme of Basistha et al. [13] and Singh and Mal [42]. Thereafter, Lag-1 autocorrelation technique
(alpha ≤ 0.05) was employed to check the presence of positive and negative autocorrelation in rainfall
data, since this may affect the observed magnitude of trends in a dataset [13,43–45]. As observed
rainfall records in a high mountainous region like IHR are poorly available and remain a challenge for
the scientific community, several descriptive statistics were then applied to check data distribution
and relative performance of the gridded datasets to ensure high- quality satellite rainfall data with
respect to station observed data be used for further investigation. This statistical metrics includes
determination of (a) mean-variance between observed and satellite/model rainfall values (Bias), (b)
multiplicative bias (MBias) to measure the mean magnitude of bias, (c) relative bias (RBias) to reveal
systematic standard error (d) mean absolute error (MAE) to obtain the average slope of error (e) root
mean square error (RMSE) to assess the average magnitude of error, and (f) correlation coefficient
(CC) to evaluate the degree of relationship between observed and satellite data, (g) coefficient of
variation used as a estimation of variability when the average is proportional to standard deviation,
(h) uncertainty to measure the amount of error in an average of large scale estimation, together with
an (i) empirical cumulative distribution frequency (CDF) and (j) the Taylor diagram [22,33,34,46]
(Appendix A). A normalised standard deviation method was applied to the Taylor diagram to exhibit
relative performance of both gridded and station datasets [47]. Furthermore, Sen’s slope estimator
was used to calculate the long-term magnitude of change in station observed data, the Mann–Kendall
(MK) test was applied using MATLAB programming language to evaluate their statistical significance
(Appendix B).

4. Results

4.1. Spatio-Temporal Distribution of Rainfall and Rainy Days in the Bhilangana River Basin (1983–2008)

Mean annual rainfall (1983–2018) in the Bhilangana river basin is observed as 1196 mm across an
average of 66 rainy days per year, although with marked spatial variability and seasonality. Rainfall
is highest in the mountainous northeast (1473.6 mm), and somewhat less (710.8 mm) in the lower
elevation areas in the southwest (Figure 2). Maximum rainfall is recorded during the monsoon season
(78.6%), along with an average of 44 rainy days, followed by the winter (10.1%), pre-monsoon (8.4%),
and post-monsoon (3.0%) along with around 8, 11, and 3 rainy days correspondingly. Within the Indian
Summer Monsoon (ISM) monsoon season, August exhibits maximum rainfall (28.5%) followed by
July (24.7%), September (16.8%) and June (10.5%) with 15, 13, 8, and 7 rainy days respectively. Station
observed data on the other hand revealed mean annual rainfall of the basin is 1313.4. Monsoon is
the highest rainfall season followed by pre-monsoon, winter, and post-monsoon (Table 2). Out of
the two gridded datasets, CHIRPS reveals similar spatial information with station observed data in
compare to PERSIANN-CDR. Mean annual rainfall revealed by the CHIRPS was 1119.7 mm, where
PERSIANN-CDR underestimate rainfall counts by 998.1 mm. Seasonal and monthly distribution
highlights similar spatial integrity with observed and CHIRPS dataset, where PERSIANN-CDR
overestimate rainfall counts during pre-monsoon, post-monsoon and winter season (Figure 3a,b,
Table 3). In both station and gridded datasets, there is greater annual and seasonal spatial variability
at lower elevation stations such as Tehri and Narendra Nagar, than the higher elevation observatory
(Mukhim) (Figure 3c,d). Both gridded datasets indicate similar spatial variability, although CHIRPS
has better match with all the observed stations at seasonal and monthly scale (Figure 3c,d).
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Table 2. Mean annual, seasonal, and monthly distribution of station and gridded datasets in the
Bhilangana river basin for the period from 1983 to 2008.

Data JAN FEB MAR APR MAY JUN JUL AUG SEPT OCT NOV DEC

Station 63.7 78.3 66.8 50.6 71.3 112.3 227.9 223.8 144.5 40.0 10.3 30.3

CHIRPS 36.8 27.1 35.4 17.4 46.1 90.0 290.6 263.8 141.0 23.6 5.4 20.8

PERSIANN-CDR 55.7 54.9 40.4 31.7 36.1 140.5 347.1 410.5 201.5 42.4 13.4 28.1

Data Annual Pre-monsoon Monsoon Post-monsoon Winter

Station 1313.4 154.3 1014.8 48.3 96.0

CHIRPS 1119.7 188.7 708.6 50.3 172.3

PERSIANN-CDR 998.0 98.9 785.4 29.1 87.7
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Table 3. Statistical indices to check the spatial similarity between observed and gridded datasets
(CHIRPS and PERSIANN-CDR) for the period from 1983 to 2008.

Statistical Indices with Units
CHIRPS PERSIANN-CDR

Tehri N.Nagar Mukhim Tehri N.Nagar Mukhim

RMSE (mm) 29.60 24.66 21.58 81.24 96.20 111.30
MAE (mm) 30.20 26.31 66.54 49.76 83.09 66.54
Bias (mm) 4.59 6.26 9.88 16.88 −23.4 −29.5

MBias (mm) 0.93 0.99 1.62 0.77 2.11 1.61
RBias (%) 0.06 0.08 0.41 0.29 0.35 0.39

CC 0.85 0.67 0.69 0.74 0.60 0.75

4.2. Detailed Outcomes of Descriptive Statistics

The autocorrelation assessment indicates that no significant homogeneity between both observed
and gridded data sources (alpha ≤ 0.05). According to the results of descriptive statistics, the
PERSIANN-CDR, for example, overestimates rainfall in the higher elevation region (Mukhim) with a
positive MBias, but underestimates it in the low elevation part of catchment (higher spatial bias and
lower CC (Table 3). Figure 4a–c illustrates linear regression and CC for both gridded and individual
observational data, revealing strong spatial agreement with CHIRPS and somewhat less correspondence
in the case of PERSIANN-CDR. Both the datasets were well matched with lower elevation station data,
although CHIRPS has better agreement (r = 0.85) than the PERSIANN-CDR (r = 0.74) with an average
lower uncertainty value (±6.2 mm). Higher elevation surface observatories have a similar spatial
relationship with gridded datasets. Statistical indices indicated better performance of CHIRPS data in
corresponding with direct observation, showing less bias at Tehri (4.59 mm) and Nagendra Nagar (6.26
mm), and a little higher, albeit not beyond the acceptance level, in Mukhim (bias acceptance level = 10
mm) (Figure 4d,e). The positive bias for each station indicates that CHIRPS sometimes underestimates
rainfall amount. However, MBias and RBias values are low suggesting that the existing error is not
systematic. PERSIANN-CDR, on the other hand, overestimates rainfall with both greater bias and
lower spatial agreement (CC), therefore signifying systematic errors (Table 3), exception for Tehri. The
maximum RMSE was detected by the PERSIANN-CDR in the high elevation region, i.e., Mukhim
(111.30 mm), followed by Nagendra Nagar (96.2 mm) and Tehri (81.24 mm) whereas CHIRPS shows
better performance with all the observed stations. Moreover, empirical CDF reveals spatial distribution
for mean monthly rainfall (Figure 4f); notably, more than 80% of the data are evenly distributed among
CHIRPS and station records, where PERSIANN-CDR show a relatively higher distribution in respect
to observed data due to greater RMSE and systematic error.

4.3. Spatio-Temporal Trends: Observational Data

4.3.1. Annual and Seasonal Trends in Observatory Rainfall Data (1983–2008)

This study reveals annual and seasonal rainfall distribution and trend for the period from 1983 to
2008. Maximum annual rainfall occurred in highest elevation surface observatory (Mukhim) followed
by Narendra Nagar and Tehri. Seasonally, Narendra Nagar received maximum rainfall than the
Mukhim and Tehri (Table 4). The analysis also reveals that the three surface observatories experienced
decreasing rainfall trends, some of which are statistically significant. Narendra Nagar showed the
maximum decrease (−32.82 mm/decade) followed by Tehri (−12.26 mm/decade) and Mukhim (−2.04
mm/decade) between 1983 and 2008 (Table 4). Stations at a lower elevation (Tehri) witnessed rainfall
changes of lower magnitude (statistically insignificant). All surface observatories experienced a
decreasing trend in rainfall throughout the year, except Mukhim during the winter season. The most
marked rainfall changes occurred during the monsoon season (−11.23 mm/decade) followed by winter
(−1.1 mm/decade), pre-monsoon season (0.63 mm) and post-monsoon (0.53 mm) seasons. Narendra
Nagar recorded the maximum decrease in monsoon season rainfall (−22.37 mm/decade) and also
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for the winter (−2.56 mm/decade) followed by post-monsoon (−0.82 mm/decade) and pre-monsoon
(−0.676) rainfall. The station at Tehri also witnessed significant rainfall decline during monsoon (−7.45
mm/decade), although the reductions during winter (−0.71 mm/decade) and pre-monsoon (−0.31
mm/decade) were not statistically significant. This was also the case, for Mukhim in the monsoon (3.79
mm/decade) and winter (−0.009 mm/decade); the negative trend (0.91 mm/decade) in the post-monsoon
season was, however, statistically significant at this locality.Remote Sens. 2020, 12, x FOR PEER REVIEW 8 of 25 
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Table 4. Annual and seasonal rainfall distributions and trends (1983–2008) in the Bhilangana river
basin for ground station records.

Station
Sen.’s Slope (mm/decade)

Annual Monsoon Post-Monsoon Winter Pre-Monsoon

Mukhim
Distribution 1473.7 1095.8 56.7 169.9 151.2

Trend −2.04 −3.79 −0.88 −0.01 −0.68

Tehri
Distribution 710.8 469.9 22.2 125.6 92.9

Trend −12.26 −7.46 0.00 −0.71 −0.31

Narendra Nagar Distribution 1400.4 1249.9 29.5 65.5 55.5
Trend −32.82 −22.37 −0.82 −2.56 −0.95

Bold numbers are statistically significant (alpha ≤ 0.05).

4.3.2. Monthly Trends in Observatory Data (1983–2008)

Analysis of monthly distribution and trend of rainfall offers a more detailed picture of rainfall
change in the region over the study period. Maximum rainfall was observed in July, August, and
September in all the surface observatories. However, Narendra Nagar experienced maximum rainfall
in the last 26 years followed by Mukhim and Tehri (Table 5). Furthermore, statistical trend analysis
shows marked decreases in Narendra Nagar for July (−8.4 mm/decade), August (−12.4 mm/decade)
and October (−0.5 mm/decade) (Table 5). Tehri also recorded significant decreases but mainly in July
(0.8 mm/decade) and September (0.1 mm/decade). Monthly values for Mukhim show no statistically
significant trends, although rainfall for June, July, October, and November did decrease over the
study period.



Remote Sens. 2020, 12, 709 9 of 24

Table 5. Monthly rainfall distributions and trends in the Bhilangana river basin (mm/decade, 1983–2008)
based on station observed data.

Station JAN FEB MAR APR MAY JUN JUL AUG SEPT OCT NOV DEC

Mukhim
Distribution 56.2 81.5 53.8 42.8 54.6 163.4 342.9 357.9 231.7 45.0 11.7 32.3

Trend −0.34 0.71 0.20 0.42 0.42 −0.31 −0.70 0.62 0.10 −0.60 0.00 0.00

Tehri
Distribution 42.5 56.0 32.0 32.0 29.0 66.0 159.8 170.4 73.7 20.5 1.7 27.1

Trend −0.13 −0.00 −0.00 −0.00 −0.11 0.10 −0.80 −0.10 −0.11 −0.10 0.00 0.00

Narendra
Nagar

Distribution 43.7 29.2 23.3 26.5 28.0 145.7 382.7 493.7 296.2 30.5 33.1 39.6
Trend −0.62 −0.42 −0.70 0.00 −0.30 −0.91 −8.43 −12.40 −2.92 −0.51 0.00 0.00

Bold numbers are statistically significant (alpha ≤ 0.05).

4.3.3. Trends in Rainy Days (1983–2008)

Annually, all surface observatories witnessed a statistically significant reduction in the number
of rainy days (Table 6). Narendra Nagar recorded the most marked frequency reduction during the
monsoon season, followed by Mukhim and Tehri (Table 6). Mukhim and Tehri stations experienced
fewer rainy days in post-monsoon and winter seasons respectively. The negative trend in rainy days
during monsoon season indicates a declining rainfall pattern for June through September. Significant
changes in annual and seasonal rainy days have direct influence on long-term rainfall patterns in the
study area.

Table 6. Annual and seasonal trends in frequency of rainy days in the Bhilangana river basin
(days/decade, 1983–2008).

Station Annual Monsoon Post-Monsoon Winter Pre-Monsoon

Mukhim −6 −8 −2 −1 0.00
Tehri −7 −3 0.00 0.00 0.00

Narendra Nagar −9 −11 0.00 0 0.00

Bold numbers are statistically significant (alpha ≤ 0.05). Zero values represent no statistically significant trend.

4.4. Spatio-Temporal Trends: CHIRPS and PERSIANN-CDR

4.4.1. Annual and Seasonal Trends (1983–2008)

Statistically significant declining annual rainfall trends were recorded in both gridded data
products, averaging 10.9 mm/decade (Table 7). CHIRPS exhibited the most prominent changes (−14.8
mm/decade), followed by PERSIANN-CDR (−6.9 mm/decade). Modelled rainfall declined in all seasons
across the study period, with CHIRPS revealing a greater magnitude of change during monsoon,
pre-monsoon, winter, and post-monsoon (significant) seasons compared with PERSIANN-CDR (not
significant). The magnitude of rainfall reduction revealed by PERSIANN-CDR is lower, due to higher
spatial bias and greater mean absolute error. Due to the underestimation of rainfall counts (beyond the
acceptance level), PERSIANN-CDR showed very fewer changes in seasonal and monthly values in
comparison to observed station datasets, whereas CHIRPS has better agreement over the study period
exhibited by the higher correlation coefficient (r2 = 0.74). Spatially, the statistically significant reduced
rainfall trend is confined to the south-western parts of the study area (Figure 5). The decreased rainfall
trend in the north-western windward parts of the area over the area is not statistically significant. Low
elevation regions exhibit less rainfall variability throughout the decades, because both models (CHIRPS
and PERSIANN-CDR) underestimate rainfall amounts (bias = 4.6 and 16.88 mm respectively).



Remote Sens. 2020, 12, 709 10 of 24

Table 7. Annual and seasonal rainfall trends in the Bhilangana river basin (mm/decade, 1983–2008).

Data Annual Monsoon Post-Monsoon Winter Pre-Monsoon

CHIRPS −14.82 −24.14 −9.60 −12.60 −3.12
PERSIANN-CRD −6.91 −5.12 −0.71 −2.91 −1.32

Bold numbers are statistically significant (alpha ≤ 0.05).
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significance (1983–2008) (Top panel showing CHIRPS reanalysis and bottom PERSIANN-CDR
satellite-based data products respectively).

Lower elevation parts of the basin record greater magnitude changes both annually and seasonally
supported by lower systematic errors and bias with high spatial integrity. CHIRPS data also indicated
more change in low-lying areas with higher spatial agreement between station observed data, whereas
PERSIANN-CDR show no significant trend due to its underestimation of rainfall counts (Bias = 16.88).
The eastern side of the basin showed maximum changes in both the datasets, which suggests lower
monsoonal rainfall (Figure 6). The north and north-western areas exhibit lower winter rainfall changes
from 1983 to 2008.

4.4.2. Monthly Trends: CHIRPS and PERSIANN-CDR (1983–2008)

Markedly reduced rainfall is exhibited by CHIRPS for the months May through November (Table 8).
In contrast, the PERSIANN-CDR output showed a (statistically insignificant) slightly increasing trend
for May, June, and October. Maximum changes are recorded in July and August (CHIRPS), whereas
PERSIANN-CDR data reflect a lower magnitude of change over all due to higher spatial bias and
systematic errors compared to observe rainfall.

Table 8. Monthly rainfall trend of gridded datasets (mm/decade, 1983–2008).

DATA JAN FEB MAR APR MAY JUN JUL AUG SEPT OCT NOV DEC

CHIRPS −1.08 −0.51 −1.13 0.12 −1.60 −3.10 −9.42 −9.44 −5.71 −0.81 −0.30 −0.42
PERSIANN-CDR −1.11 −0.12 −0.50 −0.60 1.21 1.42 −2.31 −3.50 −0.60 1.12 −0.11 −1.41

Bold numbers are statistically significant (alpha ≤ 0.05).
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5. Inter-Annual Rainfall Variability and Trends (1983 to 2018) from Station Observed and
CHIRPS Data

Inter-annual rainfall variability was tested using station observed and gridded data sets for
the period from 1983 to 2008. Due to the unavailability or unreliability of ground station records
for the basin in the post-2008 period, annual, seasonal, and monthly rainfall trends and variability
need to be assessed using modelled data. The study suggests an overall increasing tendency for the
period from1983 to 2018 of approximately 8.76 mm/decade, although there is substantial inter-annual
variability across the entire study period. CHIRPS is shown here to produces values that are more
consistent with observed data, and we selected this to estimate long-term inter-annual rainfall variability
and trends as illustrated in Figure 7a indicate three distinct phases are evident in the annual, seasonal
and monthly records, such that 1983 to 1997 (phase I) exhibits mean annual precipitation fluctuating
around 1270 mm with lower uncertainty (±18 mm); phase II (1998–2008) is associated with significantly
lower annual totals (less than 620 mm), strongly suggested by station observed data (Figure 7d,e);
phase III indicates sharply increased annual rainfall of around 1586mm with high uncertainty values.
More recently, there is a suggestion of an increasing trend (4.11 mm/decade), although this is not
statistically significant. This investigation further revealed that monthly and seasonal rainfall has
increased in recent years (2009–2018) in comparison to previous decades, whereas phase II experienced
severely less rainfall and the significant reduction rate was −4.24 mm/decade (Figure 7a).
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Figure 7. Long-term temporal distribution of monthly rainfall and annual magnitude of trends in
mm/decade (a) monthly values from 1983 to 2018, (b) mean annual and seasonal rainfall for three
distinct rainfall phases with error bars from 1983 to 2018 (c) box and whisker plots show monthly
rainfall values from 2009 to 2018 (d,e) mean annual, seasonal and monthly rainfall of station observed
data for two different time periods (1983–1997; 1998–2008).

This recent (phase III) increase is primarily due to higher rainfall during the pre-monsoon season
in particular (Table 9; Figure 7b). However, there are significant decreasing changes in rainfall
during monsoon, pre-monsoon, and winter season in the north-western part of the basin in particular.
The eastern and south-eastern parts on the other hand experienced increasing rainfall during these
same seasons (not statistically significant) (Figure 8). Analysis of monthly trends indicate statistically
insignificant decreasing rainfall with lower uncertainty values in September (−8.2 mm/decade) followed
by February (−2.1mm/decade) and October (−1.9 mm/decade) with higher uncertainty. However,
January exhibits a significant increasing trend (0.79 mm/decade) with relatively greater uncertainty
(±11.4 mm), while March to July recorded an increasing but not significant trend in rainfall with an
average of ± 2.9 mm uncertainty (Table 9). This study also highlights that the highest increases are
for June (7.5 mm/decade) and July (6.1 mm/decade) (Figure 7c, Table 9). This increasing tendency in
monthly rainfall is most likely to be a result of extreme rainfall events in the study area.

Table 9. Monthly distribution, trends, and uncertainty (mm/ decade, 1983 to 2018).

Distribution JAN FEB MAR APR MAY JUN JUL AUG SEPT OCT NOV DEC

1983–2008 (CHIRPS) 36.82 27.11 35.44 17.44 46.11 89.90 290.60 263.83 141.11 23.61 5.60 20.84
1983–2008 (Station) 47.4 55.6 36.4 33.8 37.2 125.0 295.1 340.6 200.6 32.0 15.5 33.0

2009–2018 (CHIRPS) 40.6 55.5 58.91 35.62 67.52 161.62 460.92 434.82 207.92 36.33 3.91 2.42
Relative Uncertainty 11.4 15.9 3.9 3.6 3.2 6.5 0.3 0.1 3.0 15.9 18.2 16.3

Sen’s slope using
CHIRPS (2009–2018) 0.79 −2.1 2.91 1.61 3.69 7.54 6.09 −2.02 −8.21 −1.88 −0.06 −1.18

Bold numbers are statistically significant (alpha ≤ 0.05).
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Figure 8. (a) Spatial distribution, (b) statistical significance level and (c) trends in annual and seasonal
rainfall from 2009 to 2018 respectively. Top panel showing annual and seasonal rainfall distribution
from 2009 to 2018, Middle panel indicate the level of significance (at 95% confidence level based on MK
test), Bottom panel showing annual and seasonal trends of rainfall for the same period, where blue and
red color indicates increasing and decreasing trends, respectively.

6. Discussion

This study presents an analysis of annual, seasonal, and monthly trends and variability in rainfall
and rainy days using three surface observatories and two high-resolution gridded datasets at different
elevation ranges (from 6635 to 616 m amsl) over the last four decades. These three datasets were
calibrated and compared using several non-parametric statistical techniques which reveals significance
levels (alpha ≤ 0.05) for a wide range of data characteristics. The present study reveals that maximum
annual rainfall is observed during the monsoon season (79%) followed by the winter, pre-monsoon,
and post-monsoon, which is corroborated by the studies in the adjacent regions of Uttarakhand and
Nepal Himalaya, during the presence of ISM (monsoon) and Westerly Disturbances (winter) [13,14,17].

6.1. Temporal Trends in Observed Rainfall (1983–2008)

Significance changes in annual, seasonal, and monthly rainfall are observed using station-based
records. Spatial variability in rainfall trends and orographic effects on the distribution of rainfall
are apparent in the study area. Narendra Nagar witnessed the significant reductions in annual and
monsoonal rainfall (−32.82 and −22.37 mm/decade) followed by Tehri and Mukhim. The trends align
well with the previous studies in the western Himalaya and in the abject Nepal Himalaya [13,42].
In such circumstances, topography, relief, and aspects are dominant factors influencing rainfall
distribution, for instance, Tehri is located on the western side of the Gangotri range and receives more
rainfall from frontal systems in the winter compared to Narendra Nagar [48,49].

Significant inter-seasonal variations are also apparent, whereby average monsoon rainfall changes
(−11.23 mm-decade) are most considerable across the basin. Similar outcomes have been reported by
others, for example Ramesh and Goswami [15] described the increased occurrence of “monsoon-breaks”
across India between 1951 and 2008, which is attributed largely to less atmospheric water vapour
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reaching the subcontinent. Shekhar et al. [5] and Kumar and Jain [16] highlighted decline in frequency
and intensity of westerly disturbances in winters along with shrinkage of monsoonal cloud cover in
the Himalayan region from 1971 to 2000. A growing body of work concerning rainfall distribution
and trends in the IHR describes declining thermal contrast between the Indian Ocean and Tibetan
Plateau, resulting in less moisture reaching the Indian landmass, and contributes to decreased rainfall
in higher elevation regions [16,17,50]. Besides, anthropogenic factors such as large scale land use
transformation from forest to agricultural land and settlement in low elevation regions under the ‘Tehri
Dam Rehabilitation Program’ [51,52] and the ‘Terai Colonization Scheme’ also play a dominant role in
altering local rainfall patterns [53].

Significant reduction in the annual frequency of rainy days was identified from observational data
in the Bhilangana river basin. Several other studies on rainfall in India and Himalayan region have
reached similar conclusions [13,16,17,54,55]. This temporal pattern is perhaps due to a combination of
factors, including substantial decrease in the frequency and intensity of westerly disturbances from
1977 to 2007 [16], population migration from high to low elevation regions with associated land use
change and weakening of the land-ocean thermal contrast between the Tibetan plateau and Indian
Ocean [50]. In general, large scale deforestation [56], global climate shift [57], dynamics of the El
Niño Southern Oscillation [58] and North Atlantic Oscillation [10] are also the possible drivers of the
rainfall trend.

6.2. Appropriateness of Gridded Datasets in Compared to Observed Data (1983–2008)

There remains controversy, however, around long-term climate changes in the Himalaya. This
is largely a consequence of the complexity of monsoon system itself, coupled with heterogeneity
of surface topography [59]. Long-term observation stations are few and far between due to the
inhospitable climate and inaccessibility, and remotely sensed and reanalysis products must be relied
upon to estimate uncertainties that cannot be addressed with station rainfall data. Using the facility of
GEE cloud computing, reanalysis (CHIRPS) and satellite-derived (PERSIANN-CDR) rainfall products
may be compared and statistically analysed in terms of relative performance against the limited
observational data.

Satellite products do have limitation in regard to estimate rainfall in mountainous regions due
to the presence of cold cloud, ice, and snow [32,33,59,60]. Moreover, the role of local topography
in orographic rainfall is widely described [61–64] and this certainly impacts on the resolution and
accuracy of satellite-derived rainfall data. Prakash [34] and Beck et al. [35] demonstrated the suitability
of CHIRPS rainfall data through several statistical methods and concluded that the product adequately
estimates annual and seasonal long-term rainfall trends with respect to observed data. Which seems
in general to underestimate changes relative to the observational data. Ullash et al. [33] noted the
proficiency of CHIRPS data to estimate seasonal and monthly rainfall counts in different climate zones
of Pakistan, with low bias.

However, Ashouri et al. [38] established the proficiency of PERSIANN-CDR in terms of long-term
rainfall-runoff modelling with low bias. In recent years, there has been growing literature in the
performance of PERSIANN-CDR daily rainfall product to acquire rainfall information in Asian
mountainous regions and assess its efficiency in terms of long-term performance for rainfall and
hydrological modelling [32,37,65–69].

Our study further highlights the performance of these two gridded data products whereby
CHIRPS a greater degree of correspondence with observed rainfall compared to PERSIANN-CDR.
The monthly, annual, and seasonal distribution from 1983 to 2008 depicts similar temporal trends
and spatial patterns to the three surface observatories (Figure 9). Statistical analysis supports this
interpretation of rainfall, in that CHIRPS shows lower systematic bias and spatial distributional errors
(RMSE). Annual, seasonal, and monthly trends from 1983 to 2008 reflect the ground station data well,
whereas the trends in PERSIANN-CDR data are variable.



Remote Sens. 2020, 12, 709 15 of 24

Remote Sens. 2020, 12, x FOR PEER REVIEW 15 of 25 

 

(RMSE). Annual, seasonal, and monthly trends from 1983 to 2008 reflect the ground station data well, 
whereas the trends in PERSIANN-CDR data are variable. 

 

Figure 9. Taylor diagram compares observed and gridded datasets (Notations, “Jan to Dec” are used 
for defining months, “Ann to Win” for annual and seasons, “obs” for the observation stations and 
“C” and “P” denote CHIRPS and PERSIANN-CDR respectively). 

6.3. Estimation of 1983 to 2008 Rainfall with Gridded Data 

Observed rainfall variability based on the gridded data presented here exhibit similar temporal 
trends to station data, with slight differences in annual, seasonal, and monthly rainfall, with a mean 
annual reduction of around 11 mm/decade across the basin. CHIRPS with a greater degree of 
agreement with station data, shows reduction in annual and seasonal rainfall by comparison with 
PERSIANN-CDR., because this product appears to systematically underestimate rainfall counts in 
the region. The study shows that most of the low-lying regions in the Bhilangana river basin have 
experienced a significantly decreasing trend in both annual and monsoon season rainfall, whereas 
PERSIANN-CDR showed much less change. Similar results are noted by Ullah et al. [33] in the 
mountainous regions of Karakoram and found CHIRPS data has better performance than 
PERSIANN-CDR to estimate rainfall counts. 
  

Figure 9. Taylor diagram compares observed and gridded datasets (Notations, “Jan to Dec” are used
for defining months, “Ann to Win” for annual and seasons, “obs” for the observation stations and “C”
and “P” denote CHIRPS and PERSIANN-CDR respectively).

6.3. Estimation of 1983 to 2008 Rainfall with Gridded Data

Observed rainfall variability based on the gridded data presented here exhibit similar temporal
trends to station data, with slight differences in annual, seasonal, and monthly rainfall, with a mean
annual reduction of around 11 mm/decade across the basin. CHIRPS with a greater degree of agreement
with station data, shows reduction in annual and seasonal rainfall by comparison with PERSIANN-CDR.,
because this product appears to systematically underestimate rainfall counts in the region. The study
shows that most of the low-lying regions in the Bhilangana river basin have experienced a significantly
decreasing trend in both annual and monsoon season rainfall, whereas PERSIANN-CDR showed much
less change. Similar results are noted by Ullah et al. [33] in the mountainous regions of Karakoram and
found CHIRPS data has better performance than PERSIANN-CDR to estimate rainfall counts.

6.4. Estimation of 2009–2018 Rainfall with CHIRPS

The CHIRPS analysis of rainfall pattern from 2009 to 2018 indicates a tendency towards increasing
annual rainfall, although this is not statistically significant, however, other studies have suggested
increased rainfall over the western Himalaya after 2008 due to fluctuation in monsoonal rainfall,
the formation of deep and wide convective cores in the Arabian seas and release at the foothills of
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western Himalaya, might be the cause of substantial rainfall at the south-eastern area due to orographic
uplifting [70,71].

An increased frequency of extreme events in the recent past, including cloudbursts, lake avulsion
floods and avalanches have been recorded for the Bhagirathi and Bhilangana basins, more especially in
the monsoon season [18,29]. Although Dimri et al. [29] indicate that gridded data products may not
capture such short term events in high mountain regions, CHIRPS data in this study do successfully
record extreme rainfall events during the monsoon seasons of July and August 2012 and 2013.

6.5. Variability of Rainfall (1983–2018) from CHIRPS Data

Temporal variability in annual and seasonal rainfall was analysed using the CHIRPS dataset
for the period from 1983 to 2018. Based on our analysis, we identified three distinctive rainfall
phases (1983 to 1997, 1998 to 2008, and 2009 to 2018). This pattern is notably due to a particularly
dry period, although this has not previously been shown for this or other parts of the Himalaya.
However, Bhutiyani et al. [11] conducted a spatial-temporal analysis of teleconnections between two
meteorological phenomena (NAO, ENSO) and monsoon rainfall and found that these systems brought
less moisture to the upland areas between 1983 and 2005. They further suggested that reduced rainfall
during 2004 and 2005 was due to rapidly increasing temperatures in the mountainous areas of the
Himalaya. Archer and Fowler [48] highlighted the importance of local topography in influencing the
amount and distribution of moisture during the onset of the ISM.

6.6. Regional Environmental Impacts of Rainfall Changes

Rainfall change is certain to have significant environmental and socio-economic consequences,
especially in vulnerable high mountain regions. Aside from the historical changes highlighted in
this paper, has been predicted that future surface temperatures will increase [72] and that surface
runoff of Himalayan major river basins will increase due to melting glaciers and early melting of
snow [73]. Higher temperatures impact rainfall mechanisms, which will, in turn, affect spatial and
temporal patterns of rainfall in the study region. Such scenarios are potentially very important for
people living in mountainous areas. Appollo, [74] stated that in the last few decades (1961–2011),
the Himalayan population has increased by 2.5 times from 19.9 to 52.8 million with a growth rate
of 3.3 percent, which was three times the global average. The temporal patterns of rainfall reported
here suggests that the population has already faced considerable challenges in this regard and will be
increasingly exposed. Almost 70 percent of the population of the basin is dependent on agriculture and
small-scale industries for their livelihoods and is therefore entirely reliant on the river water supply of
the Bhilangana river [24].

6.6.1. Effects of Decreasing Rainfall: 1983 to 2008

The long-term trend analysis of the Bhilangana river basin has revealed a decreasing rainfall
pattern, averaging roughly 15 mm/decade using both stations observed and gridded datasets. Of
the total area of the Bhilangana community development block (21350.67 hectares), more than 40
percent of the land is cultivable and, within this, more than one-quarter is irrigated [24]. This changing
rainfall pattern presents a major challenge to the people of the study area, since less water availability
impacts agriculture and other related activities directly. Several other studies have noted that rainfall
in the Himalayan mountains has become more strongly seasonal, whereby the pre- and post-monsoon
seasons exhibit prominent drying trends [13,42]. The negative trends in the pre-monsoon rainfall have
significant implications for the economy and local livelihoods. Since the pre-monsoon season marks
the beginning of the growing season, when the demands for water for irrigation is high. Decreasing
rainfall has led to abandonment of agricultural lands (Figure 10a). Moreover, small-scale household
industries, such as small hydropower stations have been discontinued due to lack of water in the
streams and rivers (Figure 10b).
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Figure 10. (a–d) Regional consequences of alternations in annual, seasonal and monthly rainfall pattern
from 1983 to 2018. (a,b) show some effects of decreased rainfall; (c,d) the state of property after a major
rainfall event. Localities of photos a-d are shown in Figure 1. Photos: A.B.

6.6.2. Effects of Increasing Rainfall: 2009 to 2018

Recent trends in inter-annual rainfall patterns suggest the long-term reduction in rainfall has
been reversed and, while this is not statistically significant at the annual scale, an increase in the
frequency and magnitude of extreme events has become an additional threat for local people as well
as infrastructure. Dimri et al. [29] describes several recent major cloudburst and associated mass
movement events that affected the area between 800 to 1800 m amsl and resulted in losses of livestock
and destruction of houses during the monsoon months. Banerjee et al. [28] reported that almost 10
percent of the total basin area falls within the high landslide risk zone and increased rainfall further
heightens the risk of such disasters. Dramatic evidence of the impact of such events changes can be
seen in the damage to buildings and infrastructure (Figure 10d). During a flood event in 2012 flood, a
medium-scale (24 mega-watts) hydropower station was partially destroyed (Figure 10c).

7. Conclusions

The prime aim of this study was to evaluate the spatio-temporal dynamics of rainfall and rainy
days for the Bhilangana river basin during the period from 1983 to 2018 using both in situ and gridded
rainfall data. Non-parametric statistical indices were applied coupled with advance web-based cloud
computing platform (GEE). This basin was studied because of its diverse topography, large extent of
population dynamics, heterogeneous land use and limited availability of ground data. The present
study adequately uses big data applications using GEE platform, alongside MATLAB programming
language to delineate the monotonic trend of gridded and observed data. The main conclusions of the
study can be summarised as follows.

1) This study provided a comprehensive understanding of the long-term historical trend of
observed rainfall and rainy days, together with satellite and reanalysis data sets. The statistical indices
indicated CHIRPS data show relatively better performance and accuracy than PERSIANN-CDR, when
compared to observational data. However, associating the two results, it can be seen that both station
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and gridded data products record statistically significant decreasing trends in rainfall from 1983 to 2018.
CHIRPS showed similar tendency corresponding with station data, averaging 11 mm rainfall/decade
over the period of record.

Notably, The PERSIANN-CDR showed less alteration in annual rainfall (6.9 mm/decade) due
to high RMSE and systematic bias, resulted in miscounting rainfall totals. From the observational
data exposed, Narendra Nagar has exclusively witnessed very substantial reduced annual rainfall
(32.82 mm/decade). Seasonally there is a statistically significant decreasing trend in monsoon, winter,
and post-monsoon rainfall of all the data products. Areas at lower elevation were subject to a greater
degree of rainfall decrease while the magnitude of change was highest in the monsoon season.

2) The temporal pattern of rainfall change can bring about substantial impacts on the regional
economy, including reduced water supply for crop cultivation, hydropower generation, tourism, and
livelihoods in general. In addition, the increasing recent rainfall pattern from 2009 to 2018, has caused
loss of life and damage of property and infrastructure.

3) Understanding spatial and temporal patterns, trends, and variability of rainfall in the Himalaya
remain a challenge to assess due to a combination of complex topography and low spatial coverage of
observation stations and inhospitable climatic conditions. Eventually, the systematic bias of gridded
rainfall in mountainous regions specify that precise estimation by satellite-based rainfall products
remains a big task for the scientific community. Sometimes low spatial resolution of satellites is also
another cause to detect short term changes at micro level regions. Nevertheless, high-resolution
reanalysis data products (CHIRPS) can be analysed through powerful cloud computing applications
such as GEE and provide valuable information about the dynamics of rainfall in vulnerable high
mountain regions.
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Appendix A.

Appendix A.1. Auto-Correlation

Occurrence of positive and negative autocorrelation may affect the analysis of trend in dataset [13,43].
The autocorrelation coefficient was tasted using the interval of Lag-1 (at 95% significance level) and computed
as follows {

−1− 1.645 ∗ (N − 2)0.5
}

N − 1
=< R =<

{
1 + 1.645 ∗ (N − 2)0.5

}
N − 1

(A1)

Appendix A.2. Bias

Bias denotes mean variance between in situ and satellite or model data. The positive bias indicates
underestimation and negative bias specifics overestimation of rainfall.

Bias =

∑N
i=1

(
RSi −ROi

)
N

(mm) (A2)

whereas, RSi and ROi depicts satellite and observed rainfall values respectively. N is showing number of
observations.

Appendix A.3. Multiplicative Bias

Multiplicative Bias is the average magnitude of gridded precipitation over observed counts, where
underestimation seems to count less than unity and overestimation is greater than unity [22]. This is actually
estimate probability mass function to distinct kernels of a set of observations including variance and mean
integrated standard error.

MBias =

∑N
i=1 RSi∑N
i=1 ROi

(A3)

where RSi and ROi depict satellite and observed rainfall values respectively. N is the number of observation days
over a particular grid.

Appendix A.4. Relative Bias

Relative bias illustrates the systematic bias of satellite precipitation and acts as parallel to bias. This actually
estimates the standard error between the observed and modelled datasets.

RBias =

∑N
i=1

(
RSi −ROi

)
∑N

i=1 POi

× 100 (A4)

where RSi and ROi depict satellite and observed rainfall values respectively. N is the number of observations.

Appendix A.5. Mean Absolute Error

Mean absolute error is employed to demonstrate average magnitude of error in satellite and observed
rainfall values.

MAE =

∑N
i=1

∣∣∣RSi −ROi

∣∣∣
N

(mm) (A5)

where RSi and ROi depict satellite and observed rainfall values respectively. N is the number of observations days
over a particular grid.

Appendix A.6. Root Mean Square Error

Root mean square error is similar to MAE. However, it gives higher priority to calculate the mean magnitude
of error in satellite and in situ measurement [33].

RMSE =

√√√
1
N

N∑
i=1

(
RSi −ROi

)
2(mm) (A6)
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where RSi and ROi depict satellite and observed rainfall values respectively. N is the number of observations.

Appendix A.7. Correlation Coefficient

The correlation coefficient is widely used to portrait spatial agreement between observed and gridded data
sets. Perfect relationship specifies towards +1.

CC =

∑N
i=1

(
RSi −RS

)(
ROi −RO

)
√∑N

i=1

(
RSi −RS

)
2
√∑N

i=1

(
ROi −RO

)
2

(A7)

Appendix A.8. Coefficient of Variation

The coefficient of variance is used to determine the degree of variability from one data series to another by
simply the ratio of mean and standard deviation.

CV =
Mean

Standard Deviation
× 100 (A8)

where RSi and ROi depict satellite and observed rainfall values respectively. N is the number of observations.

Appendix A.9. Uncertainty

The uncertainty is estimated using the amount of random fluctuations in an observation. This can be
measured by difference of maximum and minimum value in a series of observations, divided by two. Such
undercities arise mainly due to observation error from the instrument.

Uncertainty =
Max−Min

2
(A9)

Appendix A.10. Normalised Standard Deviation

Normalised standard deviation (NSD) standardises the values of SDs. The ranges of NSD varies from zero
to one [75].

NSD =
Standard Deviation of gridded rainfall
Standard Deviation of observed rainfall

(A10)

Appendix B.

Appendix B.1. Mann–Kendall

The MK test [76,77] computes S statistics as:

S =
n−1∑
k=1

n∑
j=k−1

sgn
(
x j − xk

)
(A11)

where S = normal distribution with the mean, n = number of observation (≥10) and xj is the jth observation and
sgn () is the sign function, defined as sgn (θ) = 1 if θ > 0; sgn (θ) = 0 if θ = 0; and sgn (θ) = −1 if θ < 0 [78].

As per the autocorrelation result, all selected datasets are individually independent and normally distributed,
then mean and variance of S statistics are given by Kendall, [77], Basistha et al. [13].

E(S) = 0 (A12)

Var[S] = (n(n− 1)(2n + 5) −
∑

t
t(t− 1)(2t + 5))/18 (A13)

where n = number of groups of tried ranks, each with ti tied observations and t = limitation of the data in any
given nexus. The actual MK statistic, designed by Z, can computed as:

Z =

 s− 1

[var(s)]
1
2

, IfS > 0 (A14)

Z = 0, if S = 0 (A15)
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Z =

 s + 1

[var(s)]
1
2

, IfS < 0 (A16)

Theoretically: if the statistic value lies within ±1.96 (alpha ≤ 0.05) then there is no statistically significant
trend at the 95% significance level and vice-a-versa [79]. Two hypotheses are made, i.e., H0 (null hypothesis)
and H1 (alternative hypothesis). H0 indicates no statistically significant trend, while H1 indicates a statistically
significant trend [80].

Appendix B.2. Sen.’s Slope Estimation

Identification of magnitude in any particular dataset is known as Sen.’s slope [81]. This is a simple linear
regression method, which can estimate the slope of the median of two different variables (dependent and
independent). The slope of in the data series can be estimated on following equation:

dijk =
Xi j− xik

j− k
(A17)

where xij and xik are the data value, j and k are the time series.
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