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Abstract: Many people use smartphone cameras to record their living environments through captured
images, and share aspects of their daily lives on social networks, such as Facebook, Instagram, and
Twitter. These platforms provide volunteered geographic information (VGI), which enables the
public to know where and when events occur. At the same time, image-based VGI can also indicate
environmental changes and disaster conditions, such as flooding ranges and relative water levels.
However, little image-based VGI has been applied for the quantification of flooding water levels
because of the difficulty of identifying water lines in image-based VGI and linking them to detailed
terrain models. In this study, flood detection has been achieved through image-based VGI obtained
by smartphone cameras. Digital image processing and a photogrammetric method were presented
to determine the water levels. In digital image processing, the random forest classification was
applied to simplify ambient complexity and highlight certain aspects of flooding regions, and the
HT-Canny method was used to detect the flooding line of the classified image-based VGI. Through
the photogrammetric method and a fine-resolution digital elevation model based on the unmanned
aerial vehicle mapping technique, the detected flooding lines were employed to determine water
levels. Based on the results of image-based VGI experiments, the proposed approach identified
water levels during an urban flood event in Taipei City for demonstration. Notably, classified images
were produced using random forest supervised classification for a total of three classes with an
average overall accuracy of 88.05%. The quantified water levels with a resolution of centimeters
(<3-cm difference on average) can validate flood modeling so as to extend point-basis observations to
area-basis estimations. Therefore, the limited performance of image-based VGI quantification has
been improved to help in flood disasters. Consequently, the proposed approach using VGI images
provides a reliable and effective flood-monitoring technique for disaster management authorities.

Keywords: volunteered geographic information (VGI); social network; random forest; water level
detection; image processing; smartphones

1. Introduction

Much evidence shows that rainfall has intensified globally in recent years [1,2]. Within only a
few hours, considerable amounts of rainfall can occur in an urban area, leading to large amounts of
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water in the drainage system. When the amount of accumulated water exceeds the design capacity of a
drainage system, flooding occurs on roads. The characteristics of a flash flood can be estimated using
simulation models for urban areas, such as SOBEK [3], SWMM [4], and Flash Flood Guidance [5,6].
These models are computed based on their requisition of a small area, uniform rainfall, and an
operating drainage system. Moreover, these simple simulations rely on rainfall, the design capacity
of the drainage system, and numerical model data regarding elevation. Thus, flood simulations are
limited by data indeterminacy and physical complexity and are subject to the appropriateness of the
model and computational efficiency [7]. Several studies attempted to use open-source and multiperiod
data, such as optical and synthetic aperture radar (SAR) remotely sensed images, to overcome model
limitations and assess the extent of flooding [8–13]. In large river basins, remote sensing data provide
geographical identification of flooding areas, and combines with local hydrological monitoring data to
effectively predict or restore flooding impacts. However, these satellite telemetry spatial data were
mostly presented in meters of ground resolution. When in situ water level monitoring data are lacking,
the accuracy of flooding range assessments is limited by the spatial data resolution. Moreover, satellite
and airborne optical and radar images are not suitable for detecting the water level on a city road,
especially under severe weather.

A condensed urban perspective of critical geospatial technologies and techniques includes
four components, (i) remote sensing; (ii) geographic information systems; (iii) object-based image
analysis; and (iv)sensor webs, all which were recommend to be integrated within the language of
open geospatial consortium (OGC) standards [14]. Schnebele and Cervone combined volunteered
geographic information (VGI) with high-resolution remote sensing data, and the resultant modified
contour regions dramatically assisted in the presentation of detailed flood hazard maps [15]. In addition
to employing smartphone sensors in professional fields, such as construction inspection [16], many
people use smartphone cameras to record their living environments through captured images and
share aspects of their daily lives on social networks, such as Facebook, Instagram, and Twitter, so
that crowdsourcing data regarding various phenomena can be inexpensively acquired. Kaplan and
Haenlein classified social media applications subsumed into specific categories by characteristic,
including collaborative projects, blogs, content communities, social networking sites, virtual game
worlds, and virtual social worlds [17]. Social networks, which provide platforms for sharing VGI,
enable citizens to easily obtain information such as texts, images, times, and locations. Recently, the
framework and applications of a civic social network, FirstLife, was developed following a participatory
design approach and an agile methodology by VGI with social networking functionalities [18]. Those
platforms allow users to create a crowd-based entity description and offer an opportunity to disseminate
information and engage people at an affordable cost. Therefore, VGI has grown in popularity with
the development of citizen sensors in natural hazards [19]. Granell and Ostermann employed a
method of systematic mapping to investigate researches using VGI and geo-social media in the disaster
management context, and found the majority of the studies searching potential solutions of data
handling [20]. Many applications for disaster detection and flood positioning using crowdsourcing
have been built to identify disaster relevant documents based on merely keyword filtering or classical
language processing on user-generated texts. Currently, most VGI applications handle text information
with positioning and time—so-called text-based VGI. With a dramatic increase of multi-source images,
the image-based SGI provides great opportunities for relatively low-cost, fine-scale, and quantitative
complementary data. A collective sensing approach was proposed to incorporate imperfect VGI and
very-high-resolution optical remotely sensed data for the mapping of individual trees by using an
individual tree crown detection technique [21]. In addition to accurate image localization [22], massive
amounts of street view photographs from Google Street View were used for estimating the sky view
factor, which was proven to assist with urban climate and urban planning research [23].

In one study, user-generated text and photographs concerning rainfall and flooding were retrieved
from social media by using feature matching, and deep learning was used to detect flooding events
through spatiotemporal clustering [24]. Based on credible and accurate data, image-based VGI was
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evaluated for validation of land cover maps [25–27] and flood disaster management plans [28–30].
Most feasible image-based VGI properties in the aforementioned studies were used for land cover
and change identification. In addition, scales of detected objects such as flooding areas and heights
are expected be quantified through spatial computation of image-based VGI and three-dimensional
spatial information; however, VGI studies still face challenges, which include exploring the use
of image-based VGI as data interpreters; improving methods to estimate water level from images;
and harmonizing the time frequency and spatial distribution of models with those of crowdsourced
data [31,32]. Rosser et al. mentioned that, when image-based VGI, hydrological monitoring data and
flooding simulations are integrated to estimate flooding extents, the accuracy of calculation is affected
by the resolution of the terrain model [33]. However, high-resolution urban models from LiDAR and
airborne photogrammetry can provide 3D information over a large urban area, but such data are not
always available due to budget and time limitations. As a novel remote sensing detection technology,
unmanned aerial vehicles (UAVs) equipped with cameras can help build high-resolution spatial
information and monitor disasters [34]. UAV-based spatial data provides a high ground resolution to
facilitate VGI corresponding ground information, and VGI supplies a reference for flooding simulation
to confirm the moment and verify the assumption of flood modeling.

Quantitative observations of rainfall and flooding events extracted from social media by applying
machine learning approaches to user-generated photos can play a significant role in further analyses.
Thus, the aim of the present study is to develop an image-based VGI water level detection approach by
considering unknown smartphone camera parameters and imaging positions. Image-based VGI records
flooding scenes and also contains a lot of flooding-irrelevant information, such as trees, buildings, cars,
and pedestrians. Image classification was initially employed to reduce scene complexity and identify
flooding regions, in which water lines were exacted by edge detection and straight line detection.
Then, in order to reveal the imaging positions of the image-based VGI and heights of the detected
water lines, a UAV-based orthophoto with a centimeter ground resolution was provided to identify the
scene features, the same as in image-based VGI. A UAV-derived digital elevation model was applied
to obtain camera parameters and determine water levels based on the photogrammetric principle.
Finally, the proposed method of water level calculation was performed in an urban flood case study,
and was compared with the simulated water levels through flood modeling. Through the difference
between the VGI-derived and simulated water level values, the assumption of the flood modeling was
evaluated. The quantified water levels with the resolution of centimeters can validate flood modeling
so to extend point-basis observation to area-basis estimation that verify the applicability and reliability
of the image-based VGI method. Finally, analyses and case studies are conducted during an urban
flooding event in Gongguan in Taipei City, Taiwan for demonstration and discussion.

2. Methods

The proposed water level detection using VGI involves two processes: identifying water lines
in an image-based VGI and measuring the water level based on photogrammetric principles (i.e.,
collinearity equations). A schematic is presented in Figure 1.

The proposed method aims to cope with three problems in VGI water level detection: (1) unknown
smartphone camera orientation parameters and VGI shooting positions, (2) VGI water line detection,
and (3) VGI water level measurement. Figure 2 presents the analysis flowchart for the proposed
method. To solve the collinearity equations, the coordinate system of the object (world) must be
defined according to the description in Section 2.1, which also introduces the parameters establishing
the relationship between the object space and image space. Subsequently, Section 2.2 introduces a
compound method for detecting water lines and measuring water levels. Section 2.3 describes a rainfall
runoff simulation to estimate flooding water levels. Finally, the simulated water levels were compared
with the corresponding VGI-derived water levels at a designated time.
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2.1. Establishing Coordinate Systems Using Image-Based VGI

Several pretreatment processes need to be conducted to establish the relationship between the
object coordinate system and image coordinate system. These processes are described as follows: (1)
identifying feature points in the image-based VGI such as road markings, zebra crossings, street lights,
traffic signals, and buildings; (2) measuring the coordinates of calibration points by using a digital
surface model (DSM); and (3) determining the interior and exterior orientation of the camera. Based on
image-based VGI, categories such as flooding, vegetation, and buildings are classified by RF classifiers
to generate a classified image. Using HT-Canny, the classified image is then transformed into an edge
image to detect water line positions in an image system.

Object-scale computing using the photogrammetric method can be facilitated by introducing
control points to link an image to world coordinates [35]. Previous studies employed image
information, including camera-known parameters and water gauges, to develop water level monitoring
systems [36–38]. The interior orientation includes the focal length, the location of the principal point,
and the description of lens distortion. These parameters are determined based on camera calibration or
recommended reference values. The exterior orientation describes the position and orientation of the
camera in the object space, which contains six independent parameters: (XL, YL, ZL) for position and
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(
θx, θy, θz

)
for orientation. These parameters can be obtained by solving the following collinearity

equations [35]:  x− x0 = − f m11(X−XL)+m12(Y−YL)+m13(Z−ZL)
m31(X−XL)+m32(Y−YL)+m33(Z−ZL)

y− y0 = − f m21(X−XL)+m22(Y−YL)+m23(Z−ZL)
m31(X−XL)+m32(Y−YL)+m33(Z−ZL)

, (1)

where (x, y) represent the image coordinates of the calibration point, (X, Y, Z) represent the object
coordinates of the calibration point, m11–m33 are the elements in a 3 × 3 rotation matrix M, (x0, y0) are
the offsets from the fiducial-based origin to the perspective center origin, and f is the focal length.

In Equation (1), (x, y) represent the calibration point in the photo coordinates transformed from
the digital image coordinates (c, r) and can be expressed as follows: x =

(
c− W

2

)
· dw

y =
(
−r + D

2

)
· dD

, (2)

where W and D are the pixel dimensions, and dW and dD are the nominal sizes of the pixel.
The rotation matrix M represents the camera orientation in the object space and can be expressed

as follows:

M =


1 0 0
0 cosθx sinθx

0 − sinθx cosθx




cosθy 0 − sinθy

0 1 0
sinθy 0 cosθy




cosθz sinθz 0
− sinθz cosθz 0

0 0 1

. (3)

In Equation (1), x0, y0, and f are interior parameters and should be determined in advance based
on a smartphone camera reference. Once seven or more calibration points have been identified and
measured, at least 14 new equations can be written based on Equation (1). The camera’s position
(XL, YL, ZL), orientation

(
θx, θy, θz

)
, and focal length f can then be uniquely determined through a

least squares (LSQ) technique.

2.2. Water Line Detection and Water Level Calculation

To highlight notable objects in images, image blur processing and deep learning techniques were
applied to reduce noise interference and for the removal of background objects [39,40]. Other studies
used supervised classification methods, such as random forest (RF), nearest neighbor, support vector
machines, genetic algorithm, wavelet transform, and maximum likelihood classification to identify
land coverage [41–44]. Of these methods, RF outperforms most others because having fewer tuning
parameters prevents overfitting and retains key variables [45–47]. According to relevant research on
classification algorithms, an RF classifier effectively improves the classification accuracy and provides
the best classification results, even when it is used to classify remotely sensed data with strong
noise [48,49]. In this study, RF classification is used to simplify complex scenes and highlight water
lines in collected image-based VGI. The RF algorithm is developed through bootstrap aggregating
(bagging) and the random selection of features to be used for classification and regression [50,51].
In bagging, a training dataset containing K random replacement examples (pixels) is selected for each
feature, and the pixels are defined by all decision trees. The decision trees are involved in the attribute
selection measure; a commonly used attribute selection measure is the Gini impurity, which is based
on the impurity of an attribute with respect to the classes involved. When randomly selected pixels
belong to class Ci, the Gini impurity according to a given training set T can be expressed as follows:

IG(T) =
C∑

i=1

p(i|T)(1− p(i|T)), (4)

where p(i|T) is the probability of the selected case belonging to class Ci.
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In the random selection of features, the numbers of features and trees are the two provisional
parameters in the RF classifier [52]. After the bagging process and parameter setting are completed,
the classification analysis generates classified images and the accuracy of classified pixels. Accurate
assessments of the classification results can be evaluated through the commonly used indicators,
including producer’s accuracy, user’s accuracy, F1 score, and Kappa statistics [53]. These indexes
were calculated through the validation dataset obtained from more than one-third of the reference
locations [54].

After category classifications are ensured through the RF classifier, these boundaries of categories
are identified through edge detection. The popular methods of edge detection include Canny, Sobel,
Robert, Prewitt, and Laplacian operators, in which the performance of the Canny edge detector is
considered superior to that of all other edge detection operators [55,56]. Canny edge detection is
performed by smoothing images through the Gaussian filter and then calculating edge gradients with
a mask. In the implementation of Canny edge detection, a smoothed image processed by Gaussian
filter is used to calculate edge gradient of characteristics by moving a mask, and the gradient image is
used as a reference for identifying edge lines. The Hough transform, which is based on the Canny
edge detector (hereafter, “HT-Canny”), is useful to detect straight line features [57–59]. In Hough
transform, the detected edge lines are signified by a standard line model constituting of the detected
line slope and length. Through properly setting the thresholds of slope and length, the water straight
lines are found out through image-based VGI. The water line, generally a straight line representing the
intersection between an object and the water surface, is a recognizable feature in a classified image
and thus can be identified using a line detection method. Subsequently, the Canny edge detector can
extract structural information from the image. The Hough transform is then applied to identify the
position (xw, yw) of the water line in the image. The equation of the water line is expressed in the
Hesse normal form as follows:

d = x cosθ+ y sinθ, (5)

where d is the distance from the origin to the closest point on the straight line, and θ is the angle
between the x-axis and the line connecting the origin to the closest point.

After the water line (xw, yw), camera’s shooting position (XL, YL, ZL), orientation
(
θx, θy, θz

)
,

and focal length f parameters have been determined, the collinearity equations define the relationship
between the photo coordinate system and object coordinate system. The collinearity equations can be
rewritten and inferred water level in the following basic form: X =

(m11xw+m21 yw−m31 f )
(m13xw+m23 yw−m33 f ) (h−ZL) + XL

Y =
(m12xw+m22 yw−m32 f )
(m13xw+m23 yw−m33 f ) (h−ZL) + YL

(6)

h =
1
2

[
(X −XL)(m13xw + m23yw −m33 f )

(m11xw + m21yw −m31 f )
+

(Y −YL)(m13xw + m23yw −m33 f )
(m12xw + m22yw −m32 f )

]
+ ZL. (7)

The approximate location (X, Y) can search the corresponding position of detected water line
through the UAV orthophoto and DSM data. UAV imagery through image-based modeling has been
proven efficient in 3D scene reconstruction and damage estimation [60]. At the beginning of urban
flooding, the flooding depth started from road surfaces, so the initial water level h is considered as
the same height as the road elevation. Under setting the fixed water line (xw, yw), camera’s shooting
position (XL, YL, ZL), orientation

(
θx, θy, θz

)
, and focal length f, (X, Y) and h are repeatedly iteratively

modified by the least squares (LSQ) technique. After i iterations, the elevation is treated as a new
candidate water level hi+1 and compared with the previous water level hi. When the elevation difference
|hi+1 − hi| is less than 0.1 m, the water level hi+1 is determined at the location (Xi+1, Yi+1).
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2.3. Rainfall Runoff Simulation to Estimate Flooding Water Level

The rainfall runoff model used in this study is a simple conceptual model also known as the
lumped model. A lumped model is the most widely used tool for operational applications, since the
model is implemented easily with limited climate inputs and streamflow data [61]. Water storage can
be expressed as the following discrete time continuity equation:

S j = S0 +

j∑
i = 1

(Ii −Qi) , j = 1, 2, · · · i, (8)

where Ii is the inflow at time i; Qi is the outflow at time i, which is the designed drainage capacity of
the sewage system; and S0 is the initial storage at time 0, which is assumed to be 0. All units of storage
are cubic meters.

The proposed method is based on the following basic assumptions: (1) Rainfall and design
drainage capacity in the small study area are uniform; (2) Rainfall in the study area is drained directly
through the sewage system with a completely impermeable landcover and without baseflow and soil
infiltration; (3) The sewage system is fully functioning; and (4) Water detention by buildings and trees
is ignored. Based on these assumptions, rainfall is accumulated in a DSM, and the design drainage
capacity is the homogeneous outflow in each DSM grid. When the accumulated water exceeds the
design drainage capacity of the DSM grid, the inundation water level is obtained from the lowest
elevation. Finally, the flooding water level and flooding map are updated by unit observation time.
The flooding water level can be expressed as follows:

ĥ j =
S j

A
+Z, (9)

where A is the study area, S j is the water storage at time j, and Z is the ground elevation.

3. Case Study

The proposed VGI water level detection method was tested in an urban field. The test was
conducted in Gongguan in Taipei City, Taiwan, which repeatedly faces flash floods and road safety
problems because of its high population density and heavy traffic. A heavy rainfall event occurred
in Gongguan between 13:00 and 17:00 on 14 June 2015. This event had high-intensity rainfall over
a short duration (≤131.5 mm/h) and precipitation exceeding the design drainage capacity of 78.8
mm/h [62]. This was a severe flood such as rarely occurs on this important road near National Taiwan
University, so no water level monitoring equipment had been installed in the neighborhood. The
nearest hydrological station, located 1.3 km from the flooding area, is the C1A761 rain gauge station
(Figure 3). In this study, the C1A761 rain gauge record was used as the reference value of rainfall and
was converted to the volume of water inflow in the area. The inflow volume deducted by the design
drainage capacity was distributed in a spatial model to show the elevation of flooding level.

Spatial information was collected by an unmanned aerial vehicle, DJI Phantom 2 Vision+ (Dà-Jiāng
Innovations Science and Technology Co, Shenzhen). In total, 589 positioned images of 2.84cm spatial
resolution were used to generate a 0.03-m ground resolution DSM and an orthophoto in Pix4Dmapper
Pro Version 1.4.46 (Prilly, Switzerland). The study area covered 0.0637 km2, and elevation of 5.5 m to
55.8 m is denoted in blue to red in Figure 4. The accuracy of the DSM was examined by three ground
control points acquired through static positioning using the Global Navigation Satellite System. The
root mean square errors of the X, Y, and Z directions are ±0.018 m, ±0.046 m, and ±0.009 m, respectively.
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The image-based VGI collected from social networks, including Facebook and the popular bulletin
board system in Taiwan named PTT, were used in this study. These three images were photographs
posted at approximately 15:20, 16:10, and 16:20 on 14 June 2015. Approximate shooting locations for
these photographs could be visualized in the study area, as shown in Figure 5. The coordinates of
these locations were obtained from the DSM as references for calculating the VGI water level.
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Figure 5. Image-based VGI illustrating photograph shooting locations and acquisition times of (a) 15:20,
(b) 16:10, and (c) 16:20 through the point cloud.

4. Results

In this study, RF, maximum likelihood (ML), and support vector machine (SVM) classification
were used to identify three classes (vegetation, water, and building) in the image-based VGI. A total
of 26,933 pixels were selected for all three classes through equalized random sampling, divided into
13,000 pixels as a training set and 13,933 pixels as a test set. Regarding the RF parameter settings, three
classified features at each node and 60 trees were used. Table 1 shows the percentages of producer’s
and user’s accuracy, F1 score, overall accuracy, and kappa statistic for three classification categories
at three times. The results of RF classification are the best with overall accuracies are 80.10% (15:20),
80.12% (16:10), and 79.93% (16:20), respectively. The average overall accuracy of the test data is 80.05%.
Kappa coefficient values are 70.03% (15:20), 70.11% (16:10), and 68.80% (16:20), respectively. In the
classified image-based VGI, vegetation appears in green, water areas in blue, and buildings in black.
The edges of water lines detected using HT-Canny were marked as red lines; their positions in each
digital photo coordinate system were calculated (Figure 6).
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Figure 6. VGI classified images (upper) and water line detection (bottom). Image-based VGIs were
simplified into three classification categories, namely water in blue, vegetation in green, and buildings in
black based on the classifications of RF (left), ML (middle), and SVM (right). The classified image-based
VGIs were processed using HT-Canny to detect water lines (red lines) at the acquisition times of (a)
15:20, (b) 16:10, and (c) 16:20.

Table 1. The percentage of Producer’s accuracy, user’s accuracy, F1 score, overall accuracy, and kappa
statistic for three classification categories of RF, ML, and SVM classifications.

RF classification

15:20 16:10 16:20

User’s
accuracy

Producer’s
accuracy F1 Score User’s

accuracy
Producer’s
accuracy F1 Score User’s

accuracy
Producer’s
accuracy F1 Score

Water 82.55 93.32 87.61 84.41 88.72 86.51 85.66 79.78 82.61
Vegetation 76.58 78.90 77.73 82.58 82.03 82.30 88.49 86.95 87.71
Building 80.31 67.35 73.26 72.00 68.37 70.14 58.95 69.48 63.78

Overall accuracy 80.10 80.12 79.93
Kappa coefficient 70.03 70.11 68.80

ML classification

15:20 16:10 16:20

User’s
accuracy

Producer’s
accuracy F1 Score User’s

accuracy
Producer’s
accuracy F1 Score User’s

accuracy
Producer’s
accuracy F1 Score

Water 80.09 81.79 80.93 77.80 86.41 81.88 77.68 67.38 72.17
Vegetation 70.41 76.91 73.52 81.71 75.61 78.54 76.13 81.94 78.93
Building 71.08 63.95 67.33 67.19 64.21 65.66 43.94 51.63 47.48

Overall accuracy 74.18 75.85 68.79
Kappa coefficient 61.20 63.68 51.77

SVM classification

15:20 16:10 16:20

User’s
accuracy

Producer’s
accuracy F1 Score User’s

accuracy
Producer’s
accuracy F1 Score User’s

accuracy
Producer’s
accuracy F1 Score

Water 80.28 86.44 83.25 81.20 86.89 83.95 81.87 71.30 76.22
Vegetation 72.46 75.32 73.86 79.92 79.04 79.48 81.50 84.42 82.93
Building 75.73 67.15 71.18 69.98 65.29 67.55 53.51 65.79 59.02

Overall accuracy 76.50 77.51 74.40
Kappa coefficient 64.63 66.17 60.50

After water line extraction was completed, the calculation of VGI water levels relied on the
shooting position, camera orientation parameters, and control point coordinates. The approximate
shooting positions were confirmed using the collected image-based VGI, Google Street View, and DSM.
The camera interior orientation parameters, including the focal length and charge-coupled device
(CCD) size, are referred to as smartphone camera parameters.

This study calculated the average value of the public smartphone parameters as an initial value. For
the initial interior parameters, the focal length was 4.6 mm, and the CCD size was 1/2.5”. Considering
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human postures that a person normally holds a camera to shoot ground scene, the initial camera
three-axis orientations of the exterior parameter

(
θx, θy, θz

)
were set as (80◦, 5◦, 80◦), respectively. To

solve seven uncertain parameters, including shooting position (XL, YL, ZL), orientations
(
θx, θy, θz

)
,

and the focal length f, more than seven control points were provided as redundant observations for
LSQ calculation. In this case study, nine control points can be distinguished from each image-based
VGI and the UAV orthophoto. The point coordinates are listed in Table 2.

Table 2. Control point coordinates.

Time NO. Object Coordinates Digital Image Coordinates
X [m] Y [m] Z [m] c [pix] r [pix]

15:20

1 304967.703 2767764.523 9.342 366 630
2 304930.212 2767771.009 20.861 493 181
3 304888.931 2767800.201 23.167 750 132
4 304982.202 2767780.765 19.039 1111 462
5 304985.403 2767777.323 17.207 1030 652
6 304968.113 2767772.073 9.051 593 620
7 304949.462 2767770.772 9.412 642 455
8 304953.401 2767779.186 17.128 698 301
9 304959.769 2767778.158 9.089 708 511
1 304883.466 2767793.211 25.673 166 197
2 304916.648 2767807.092 17.152 311 180
3 304917.138 2767808.913 14.081 382 264
4 304908.909 2767803.371 11.312 319 394
5 304915.582 2767804.933 9.218 263 454
6 304869.703 2767828.152 25.313 623 243
7 304861.271 2767834.319 21.512 665 299
8 304925.581 2767815.242 9.141 400 472

16:10

9 304916.924 2767822.723 13.183 847 306

16:20

1 304835.051 2767847.961 8.801 42 378
2 304836.242 2767849.642 8.869 31 332
3 304857.942 2767869.852 12.231 124 174
4 304841.014 2767851.058 8.802 194 285
4 304854.977 2767868.233 8.552 100 228
5 304849.758 2767850.121 9.023 426 253
6 304845.532 2767844.932 8.802 550 275
7 304916.336 2767861.181 22.791 575 42
8 304849.412 2767846.383 9.104 569 255
9 304835.053 2767847.962 8.802 42 378

Through the rainfall observations and simple discrete time continuity Equations (8) and (9),
the flooding process and simulated water level were determined. The parameters of rainfall runoff

simulation are shown in Table 3. The initial flood water level is assumed to be the lowest ground
elevation (5.670 m), which was lower than the average ground elevation (8.989 m) of the VGI scene.
When the simulated water level, which refers to the lowest ground elevation plus the depth of flooding,
is higher than the ground elevations of the DSM, the flooding ranges are drawn in the UAV-derived
DSM and orthophoto.

Table 3. The parameters of the rainfall runoff simulation.

Parameters in Simulation Value

Time interval 10 min
Inundation starting from the lowest grid of the DSM in the study area (A) 5.670 (m)

Discharging rate of sewer system in Taipei City (Q i) 78.8 (mm/hour)
The fitting curve between inundated water volume (S j) and inundated water depth (d) d = 6.952 S j0.0348
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Using Equation (7), the control points, orientation parameters of image-based VGI, detected water
lines, and VGI water levels were calculated though LSQ, as listed in Table 4. The VGI water levels of
9.398 m, 9.326 m, and 9.273 m occurred at 15:20, 16:10, and 16:20, respectively. The differences between
the VGI water levels and simulated water levels were between 0.018 m and 0.045 m. Notably, all of the
VGI water levels were higher than the simulated water levels, possibly because the simulated water
levels had been underestimated; this highlighted the problem of baseflow not being considered in the
simple conceptual model. By contrast, these differences could be used to estimate the baseflow in the
study area. Since VGI images convey ground-truth information to assist in the correction of hypothetical
lumped models, the water level differences were considered as a result of neglecting baseflow and
soil infiltration. The neglected values are between 0.318 and 0.796 m3/hr, which are estimated by
multiplying the study area (0.0637 km2) by the hourly water level differences (between 0.018 and 0.045
m) per hour. The estimated values provided references for revising hydrological modeling.

Table 4. Comparison between simulated water levels and VGI water levels determined based on the
orientation parameters.

Time Orientation Parameters
(XL, YL, ZL,θx, θy, θz,f)

VGI
Water-Level h [m]

Simulated
Water-Level ĥ [m]

Difference
∆h [m]

15:20 (304999.44, 2767768.66, 26.97,
74.49◦, 2.85◦, 80.79◦, 4.42) 9.398 9.353 0.045

16:10
(304940.476, 2767809.813,

10.43, 92.82◦, 1.72◦,
85.37◦, 4.49)

9.326 9.296 0.030

16:20 (304828.98, 2767839.16, 3.62,
62.45◦, 5.16◦, 124.33◦, 5.67) 9.273 9.255 0.018

The rainfall hyetograph and simulated water level are shown in Figure 7, and the simulated
flooding process from 14:30 to 17:40 is shown in Figure 8. The simulation analysis confirmed that the
significant water level of 9.252 m was reached at 15:00, and the flood area was located on the trunk
road. At 15:20, the peak water level of 9.353 m was reached, and the flood spread over all roads in
the study area. By 16:30, the flood had gradually receded, and the water level decreased to 8.586 m.
Finally, at 17:40, the flooding event ended.
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The analysis was conducted in MATLAB R2018a 64bit (Natick, MS, USA) and was tested on a
personal computer, processor: Intel Core i7-4700HQ 2.4 GHz (Santa Clara, CA, USA); memory: 8.00 GB
DDR3; operating system: Windows 7 (Redmond, WA, USA). The average computation time required
to classify image-based VGI and detect water lines was 355 s. The average time required to determine
VGI water levels and orientations was 42 s. In summary, the proposed approach quantified the water
levels to within 0.001 m by using image-based VGI and real field information; thus, this approach can
determine warning water levels and positions as references for disaster relief.

5. Discussion and Conclusions

In the past few decades, many studies have used urban flood simulation models to estimate the
temporal impact of flooding. These flood simulations are limited by hydrological observations and
physical complexity, which affect the model’s suitability and calculation efficiency. Furthermore, the
collection and verification of in situ observation data are crucial for the evaluation of the simulation.
Especially on busy roads in urban areas and in the absence of water gauges, image-based VGI that
records flooding provides an opportunity for spatial and temporal verification.

This study combined image classification, line detection, collinearity equations, and LSQ to
quantify water levels based on image-based VGI acquired by smartphone cameras. Based on the
theoretical analysis and validation described in this paper, image-based VGI classified using the RF
classifier can be used to identify flooded areas. The proposed novel approach successfully manages the
ambient complexity of urban image-based VGI to detect water lines. Through a centimeter-accurate
DSM, the detected waterlines are used to quantify flood water levels. Therefore, the fact that there
is no water level monitoring equipment at the flooding site is no longer a barrier to the acquisition
of information. Moreover, by employing photogrammetric principles, the proposed method can
determine imaging locations, water levels, and smartphone camera parameters. In addition, differences
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between VGI and simulated water levels provide a baseflow reference for simple flood modeling. The
quantified water levels with a resolution of centimeters (<3-cm difference on average) can validate
flood modeling so as to extend point-basis observations to area-basis estimations. Therefore, the limited
performance of image-based VGI quantification has been improved to deal with flood disasters.

Overall, this research reveals that flooding water levels can be quantified by linking the VGI
classification images with a UAV-based DSM through photogrammetry techniques, thus overcoming
the limitations of past studies that used only image-based VGI to qualitatively assess the impact ranges
of flooding. Based on our results, we suggest that the use of image-based VGI to obtain flooding
water level must meet two requirements. The first requirement is orthographic images and a DSM
with a centimeter-level ground resolution, to provide spatial identification of control point features in
image-based VGI, such as building corners, ground markings, and streetlights. The other requirement
is that the shooting perspective of image-based VGI should avoid being close to parallel or vertical to
the ground, in order to decrease the difficulty of identifying the flooding water line on images and any
resulting errors. Fortunately, most VGI images are shot at an oblique perspective. In other words, a
better spatial distribution of image-based VGI is able to capture the outlines of buildings or bridges as
spatial references in a frame of images, such as in Google Street View.

In the future, the proposed VGI setup can be promoted through the execution of street-monitoring
techniques to supply long-term continuous imagery; these images, acquired by smartphone cameras,
can then be incorporated into Google Street View to construct and update local spatial information.
Eventually, by employing more deep learning techniques with distribution computation [63], a great
amount of VGI photos can be processed and integrated into a disaster-monitoring system for flooding
and traffic management in an economical and time-efficient manner.
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