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Abstract: An accurate estimation of spatially and temporally continuous latent heat flux (LE) is 
essential in the assessment of surface water and energy balance. Various satellite-derived LE 
products have been generated to enhance the simulation of terrestrial LE, yet each individual LE 
product shows large discrepancies and uncertainties. Our study used Extremely Randomized Trees 
(ETR) to fuse five satellite-derived terrestrial LE products to reduce uncertainties from the 
individual products and improve terrestrial LE estimations over Europe. The validation results 
demonstrated that the estimation using the ETR fusion method increased the R2 of five individual 
LE products (ranging from 0.53 to 0.61) to 0.97 and decreased the RMSE (ranging from 26.37 to 33.17 
W/m2) to 5.85 W/m2. Compared with three other machine learning fusion models, Gradient Boosting 
Regression Tree (GBRT), Random Forest (RF), and Gaussian Process Regression (GPR), ETR 
exhibited the best performance in terms of both training and validation accuracy. We also applied 
the ETR fusion method to implement the mapping of average annual terrestrial LE over Europe at 
a resolution of 0.05 ◦ in the period from 2002 to 2005. When compared with global LE products such 
as the Global Land Surface Satellite (GLASS) and the Moderate Resolution Imaging 
Spectroradiometer (MODIS), the fusion LE using ETR exhibited a relatively small gap, which 
confirmed that it is reasonable and reliable for the estimation of the terrestrial LE over Europe. 

Keywords: Terrestrial latent heat flux; Machine learning method; Europe 
 

1. Introduction 

The latent heat flux (LE) governs the associated heat flux of the interaction between land surface 
and its atmosphere [1], including vegetation transpiration, soil evaporation, and plant canopies 
interception evaporation [2]. In general, LE returns approximately 60% of rain back to the atmosphere 
and also helps to cool the land surface by consuming an enormous amount of heat [3]. Europe makes 
up the western fifth of the Eurasian landmass. Thus, an accurate LE estimation over Europe plays a 
key role in many climatic, hydrologic, and agricultural applications [4]. As a confederation of regional 
observation networks, FLUXNET routinely provides long-term eddy covariance (EC) flux 
measurements of carbon, water vapor, and energy exchange over America, Europe, Asia, Africa, and 
Australia. About one-third of FLUXNET's EC sites are located in Europe. However, as result of the 
spatial heterogeneity, point-based measurements of terrestrial LE cannot be applied for continuous 
monitoring on a large scale [5]. 
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Satellite-based observations can provide us with a more readily available monitoring for land 
surface and atmospheric properties. Combined with well-known flux equations [6,7], we can 
effectively derive spatially and temporally continuous LE estimates over large areas. Currently, 
various satellite-derived LE products at moderate spatial resolution are generated, including the 
Moderate Resolution Imaging Spectroradiometer (MODIS) LE product (MOD16) with a resolution of 
0.5 km / 1 km and 8 days [8,9], the Global Land Evaporation Amsterdam Model (GLEAM) LE product 
with a resolution of 0.25 ◦ and 1 day [10], the Global Land Surface Satellite (GLASS) LE product with 
a resolution of 1 km / 5 km and 8 days [11], or the Breathing Earth System Simulator (BESS) LE 
product with a resolution of 1 km and 8 days [12]. However, when intercomparing and evaluating 
with long-term ground measurements from in situ flux networks, satellite-derived LE products 
showed large discrepancies. Previous studies over China [13,14], Brazil [15], Spain [16], and South 
Africa [17] found that in the arid and semiarid climate, MOD16 underestimated the LE of the irrigated 
crop in the growing season [18]. Additionally, some reanalysis and data assimilation LE products 
have a relatively high temporal resolution but a relatively coarse spatial resolution, such as the Global 
Land Data Assimilation System (GLDAS) datasets with 0.25 degree spatial resolution and 3 hour 
temporal resolution [19,20]. Validation against tower flux measurements indicates that LE datasets 
with a relatively coarse spatial resolution tend to contain large uncertainties regarding the 
heterogeneous terrestrial biosphere [2]. Therefore, deriving terrestrial LE estimates accurately with 
both a high spatial resolution (e.g., 1 km) and a reasonable temporal resolution (e.g., daily) remains 
a central challenge. 

To meet this demand, many satellite-derived algorithms are designed to implement LE 
terrestrial estimates, mainly using process-based algorithms and empirical/semi-empirical 
algorithms, etc. Traditional process-based algorithms, such as the Surface Energy Balance System 
(SEBS) [21], the Single-Source models [21–24], the Two-Source models [25–30], the Penman–Monteith 
(PM) equation [8,9], and the Priestley–Taylor (PT) algorithm [7,31–33], calculate terrestrial LE using 
satellite-derived datasets related to meteorological observations based on the surface energy balance 
(SEB) equation [34]. However, as a result of the uncertainties that exist in different model structures, 
the simulation results of each algorithm show large discrepancies [35]. Empirical/semi-empirical 
algorithms are convenient to apply but the need to determine the site-specific parameters makes them 
difficult to implement accurately with variable surface conditions [36]. As the most viable empirical 
algorithms, machine learning methods have demonstrated great success in predicting complex 
problems and have been widely used to estimate LE. For instance, Wang [37] used artificial neural 
network (ANN) combined with meteorological parameters, remote sensing variable (NDVI), and 
ground-measured LE from 85 EC flux tower sites to predict LE over North America. Bodesheim et al. 
[38] obtained a global half-hourly LE product using FLUXNET observations, remotely sensed and 
meteorological data with the Random Forests (RF) method. Xu et al. [39] generated daily ET from in 
situ flux tower sites on the Heihe River Basin scale at a spatial resolution of 1km by using remote 
sensing variables (LAI, land cover), air temperature (Ta), relative humidity (RH), solar radiation (Rs), 
and precipitation (P) with the RF method. However, simulation under complex heterogeneity 
conditions by these data-driven methods remains questionable because of the spatial representation 
limitation of sparse training data at certain sites. 

Far from discouraging the development of LE simulation methods over large scales, the 
discrepancies and uncertainties lie in the individual LE products, thus providing an opportunity to 
foster further research. In recognition of above challenges, the approach of fusing multiple LE 
products would be preferable. Aiming to develop effective fusion methods, these efforts have ranged 
from the simple model averaging method (SMA) [40] to more complex approaches such as Bayesian 
model averaging (BMA) [11], empirical orthogonal function (EOF) [41], or integration methodologies 
considering consistency with water cycle products [42]. Yao et al. generated the GLASS LE product 
by fusing of five LE products using the BMA method to enhance terrestrial daily LE estimates [11]. 
Zhu et al. also reported that merging ET products using the BMA method can achieve more reliable 
estimations than the SMA method across north China [43]. However, a limitation associated with 
these fusion methods concerning the weight calculating efficiency of the individual products has 
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somewhat affected their wider application [2]. Regarding this, approaches involving multiple LE 
product ensembles based on machine learning techniques have the potential to provide accurate 
terrestrial LE estimates. Extremely Randomized Trees (ETR) as a new tree-based machine learning 
ensemble method has shown better robustness and regression accuracy compared with other 
traditional models [44]. Experiments show that ETR is generally competitive and even superior to RF 
in terms of accuracy [45]. Although ETR has been substantially applied to regression approaches, 
there is a lack of experiments on datasets fusion problems, especially in improving terrestrial LE 
estimates by merging multiple LE products 

With the aim of reducing uncertainties in individual satellite-derived LE products, in this study, 
we used Extremely Randomized Trees (ETR) to enhance terrestrial LE estimations over Europe by 
fusing five individual LE products. We had three major objectives: (1) to evaluate individual satellite-
derived terrestrial LE products produced by five classic LE algorithms using ground-measured EC 
data from the FLUXNET; (2) to evaluate the ETR fusion method by comparing it with three other 
machine learning methods using the EC observations and two other global LE products; and (3) to 
apply the ETR method to map the mean annual terrestrial LE with 0.05° spatial resolution in the 
period from 2002 to 2005 based on MODIS and Modern Era Retrospective Analysis for Research and 
Applications (MERRA) meteorological data over Europe. 

2. Data  

We produced individual satellite-derived terrestrial LE products using five traditional LE 
algorithms. Table 1 describes the five LE products in detail. The forcing data included MODIS 
Fraction of Absorbed Photosynthetically Active Radiation (FPAR) data with 500m spatial resolution, 
MODIS NDVI and GLASS LAI data with a 0.05 degrees spatial resolution, MERRA meteorological 
data with a 1/2 * 2/3 degrees spatial resolution. The daily surface net radiation (Rn), shortwave 
radiation (Rs), relative humidity (RH), air temperature (Ta), vapor pressure (e), and wind speed (WS) 
from MERRA were used in this study. The FPAR and MERRA meteorological data were spatially 
interpolated into 0.05 degrees by the bilinear method in order to be consistent with the MODIS pixel 
size. The individual LE products are briefly described in the following. 

2.1. Satellite-derived terrestrial LE products 

2.1.1. Revised remote sensing-based Penman (RS-PM)- LE product 

The RS-PM-based LE product was generated by an improved Penman–Monteith equation [9]. 
The total LE consisted of four components: the canopy transpiration (LEc), interception evaporation 
(LEi), saturated wet soil evaporation (LEws), and unsaturated soil evaporation (LEds). FPAR was used 
as an improved vegetation cover fraction. The calculations of aerodynamic, boundary-layer, and 
canopy resistance were also modified compared to the beta version [11]. A more detailed description 
of the RS-PM algorithm can be found from Mu et al. (2011) [9]. The input variables include Rn, Ta, Tmin, 
RH, and e from the MERRA data, FPAR derived from the MOD15C2 product, and LAI derived from 
the GLASS product. The daily RS-PM-based LE product has a 0.05 degrees resolution and covers 
Europe from 2000 to 2006. 

2.1.2. Shuttleworth–Wallace dual-source (SW)-based LE product 

The SW-based LE product was generated by the Shuttleworth–Wallace dual-source (SW) model 
[46]. On the basis of the energy balance theory, the SW algorithm divided the total LE into two 
components: the vegetation transpiration (LEv) and the soil evaporation (LEs). Assuming 
aerodynamic mixing occurring at a mean canopy source height within the canopy [35], the LEv and 
LEs can be estimated separately using two Penman–Monteith equations. A more detailed description 
of the SW algorithm can be obtained from Shuttleworth and Wallace (1985) [46]. The input variables 
include WS, Rn, Ta, RH, and e from the MERRA data and GLASS LAI. The daily SW LE product covers 
Europe with a 0.05 degrees spatial resolution for the period from 2000 to 2006. 
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2.1.3. Priestley-Taylor of the Jet Propulsion Laboratory (PT-JPL)-based LE product 

The PT-JPL-based LE product was generated by a novel Priestley–Taylor equation proposed by 
Fisher et al. [31]. The atmospheric constraints (RH, Vapor Pressure Deficit) and ecological constraints 
(LAI, FPAR) were associated to determine dynamic coefficients to transform potential ET to actual 
ET [7]. The extended empirical parameters were determined without using any ground 
measurements. More formal information about the PT-JPL can be obtained from Fisher et al. (2008) 
[31]. The input variables to generate the PT-JPL-based LE product include Rn, RH, Ta, and e from the 
MERRA data, NDVI and FPAR derived from the MODIS product, and LAI derived from the GLASS 
product. The daily PT-JPL-based LE product covers Europe during the period from 2000 to 2006 with 
a spatial resolution of 0.05 degrees. 

2.1.4. Modified satellite-based Priestley–Taylor (MS-PT)-based LE product 

The MS-PT-based LE product was generated by a modified satellite-based PT (MS-PT) model 
proposed by Yao et al. [32]. The MS-PT algorithm separated LE into four components: the canopy 
transpiration (LEc), vegetation interception evaporation (LEi), unsaturated soil evaporation (LEds), 
and saturated wet soil evaporation (LEws). The diurnal air temperature range (DT) was used to 
quantify the apparent thermal inertia (ATI), which parameterized surface soil moisture (SM) 
constraints [2]. It only requires four parameters as input: the surface net radiation, air temperature, 
DT, and NDVI. A more formal introduction to the MS-PT algorithm can be obtained from Yao et al. 
(2013) [32]. The LE product input variables include Rn, Ta, Tmax, and Tmin from the MERRA data and 
MODIS NDVI data. The MS-PT LE product has the same spatial and temporal resolution as the PT-
JPL-based LE product from 2000 to 2006. 

2.1.5. Semi-empirical Penman algorithm (SEMI-PM)-based LE product 

The SEMI-PM-based LE product was generated by a Semi-empirical Penman algorithm (SEMI-
PM) equation proposed by Wang et al. [47]. The obvious difference between this algorithm and the 
other four is that the SEMI-PM used wind speed to make the terrestrial LE estimation, which may 
influence the annual or decadal LE variability [11]. The empirical coefficients for this algorithm were 
calibrated by 64 global flux tower sites, and the average correlation coefficient of this algorithm was 
up to 0.94. More formal information about SEMI-PM can be acquired from Wang et al. (2010) [47]. 
The SEMI-PM LE product requires Rs, Ta, WS, and RH from the MERRA data and MODIS NDVI data. 
This daily LE product with a 0.05 degrees spatial resolution is also available over Europe during the 
period from 2000 to 2006. 

Table 1. Summary of the five satellite-derived terrestrial latent heat flux (LE) products in this study 
for 2000–2006. 

ID LE product algorithms 
Spatial 

resolution 

Temporal 

resolution 
Forcing Inputs References 

1 Revised remote sensing-

based Penman LE product 

(RS-PM) 

0.05 

degrees 
Daily 

Rn , Ta , Tmin , RH, FPAR, 

LAI 
Mu et al. (2011) 

2 Shuttleworth–Wallace dual-

source-based LE product 

(SW) 

0.05 

degrees 
Daily Rn , Ta , RH , WS , LAI 

Shuttleworth 

and Wallace 

(1985) 

3 Priestley–Taylor of the Jet 

Propulsion Laboratory-

based LE product (PT-JPL) 

0.05 

degrees 
Daily 

Rn , Ta , Tmax , RH, FPAR, 

NDVI, LAI 

Fisher et al. 

(2008) 
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4 Modified satellite-based 

Priestley–Taylor LE 

product (MS-PT) 

0.05 

degrees 
Daily Rn , Ta , Tmax, Tmin, NDVI Yao et al. (2013) 

5 Semi-empirical Penman-

based LE product (SEMI-

PM) 

0.05 

degrees 
Daily Rs , Ta , RH, WS, NDVI 

Wang et al. 

(2010a) 

2.2. Eddy covariance data 

Our study used FLUXNET eddy covariance (EC) data to evaluate and validate the five satellite-
derived terrestrial LE products and four machine learning fusion methods. The ground 
measurements were mainly gathered from 76 Europe flux tower sites (Figure 1) and each site spanned 
more than one growing season from 2000 to 2009. These sites were covering five major plant function 
types (PFTs): deciduous broadleaf forest (DBF, 12 sites), evergreen needleleaf forest (ENF, 18 sites), 
grassland (GRA, 27 sites), mixed forest (MIF, 2 sites), cropland (CRO, 17 sites), and these PTFs 
represent the major terrestrial biomes in Europe. Evenly distributed in space, half of the sites were 
uniformly chosen to train the machine learning models, and the rest of the sites were used to validate 
the model fusion performance. These ground-measured data included half-hourly or hourly Rn, 
ground heat flux (G), Rs, WS, Ta, RH, e, sensible heat flux (H), and LE. Because the EC observation 
method suffers a problem related with energy imbalance, the sum of obtained H and LE is generally 
less than the total available energy [48]. Therefore, the measured LE can be corrected as follows [49]: 𝐿𝐸௖௢௥ = (𝑅௡ − 𝐺)/(𝐻௨௡௖௢௥ +  𝐿𝐸௨௡௖௢௥) × 𝐿𝐸௨௡௖௢௥  
where 𝐿𝐸௖௢௥  is the corrected LE, and the 𝐻௨௡௖௢௥  and 𝐿𝐸௨௡௖௢௥  are the uncorrected H and LE, 
respectively.  

 
Figure 1. Distribution of the 76 FLUXNET eddy covariance (EC) sites for different terrestrial biomes 
over Europe. The “Train” represents the training sites and the “Test” represents the validation sites. 

3. Methods 

3.1. Extremely Randomized Trees 

Extremely Randomized Trees (Extra-Trees, ET) proposed by Geurts is a tree-based machine 
learning ensemble model for supervised learning of classification and regression [50]. Extra-Trees 
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Regression (ETR) constructs an ensemble of regression trees based on a classical top-down procedure. 
The obvious discrepancy with other ensemble models is that ETR constructs the trees with all the 
learning sample instead of a bootstrap replica, and it selects a random cut-point for each feature 
under consideration rather than computing a locally optimal one [50]. ETR has three important 
parameters: the K, nmin, and M. These three parameters can be adapted to the specific case either 
manually or automatically, using cross-validation for example. 

The parameter K denotes the number of random splits and its available range is 1 to n, where n 
denotes the number of attributes. The smaller the K is, the stronger the randomization of the trees 
will be. Experiments have shown that the optimal values of K are K = √n for classification and K =n for regression [50]. 

The parameter nmin denotes the sample counts to split a node. Lager nmin leads to a higher bias 
and smaller of both trees and variances. Optimal default values of nmin depend, in principle, on the 
output dataset noise. Fully grown trees will generate a very noisy output which always leads to an 
over-fit problem. 

The parameter M is the count of trees. The more trees, the better accuracy, in principle [51]. The 
compromise between computational requirements and accuracy is the deciding factor for the choice 
of an appropriate value of M. 

The score measure in ETR is the relative variance reduction. For a sample 𝑆 and a split 𝑠, the 
score is defined as follows: 

𝑆𝑐𝑜𝑟𝑒(𝑠, 𝑆) =  𝑣𝑎𝑟ሼ𝑦|𝑆ሽ −  |𝑆௟||𝑆| 𝑣𝑎𝑟ሼ𝑦|𝑆௟ሽ −  |𝑆௥||𝑆| 𝑣𝑎𝑟ሼ𝑦|𝑆௥ሽ𝑣𝑎𝑟ሼ𝑦|𝑆ሽ  (1) 

 
where 𝑆௟ and 𝑆௥ denote the two subsets of cases from 𝑆 corresponding to the two outcomes of a 
split 𝑠. The 𝑣𝑎𝑟ሼ𝑦|𝑆ሽ represents the variance of the output 𝑦 in the sample 𝑆.  

The ETR method has no need for the optimization of the discretization thresholds, so it is 
competitive with other ensemble models in terms of the accuracy, computing times, and ease of 
implementation. 

3.2. Other machine learning fusion methods 

3.2.1. Gradient Boosting Regression Tree 

The Gradient Boosted Regression Tree (GBRT) model, also known as the gradient boosting 
decision tree, is a boosting regression model consisting of an ensemble of decision trees [52]. GBRT 
builds the model by a stage-wise way, and it generalizes them by optimizing an arbitrary loss 
function. The approximation function for GBRT can be expressed as 

𝑓(𝑥) = ෍𝛽௠ℎ(𝑥; 𝑎௡ே
௡ୀଵ ) (2) 

where 𝛽௠ denotes the weight for an individual decision tree ℎ(𝑥; 𝑎௡). Each individual decision tree 
can be defined as follows: 

ℎ(𝑥; 𝑎௡) =  ෍ 𝛾௠௡𝐼 (𝑥 ∈ 𝑅௠௡ெ
௠ୀଵ ) (3) 

where 𝑥  represents the input variables, and 𝑎௡  denotes the classifier of each decision tree. The 
input dataset would be parted into 𝑀  regions by the trees. The 𝛾௠௡  represents the predicted 
constant for the corresponding region. 

The GBRT can generate an appropriate nonlinear relationship automatically by the ensemble 
trees [53] and process skewed variables without transformations. GBRT can overcome the problem 
of over-fitting by combining hundreds of weak decision trees. The computational robustness and 
high scalability of GBRT make it a superior model as compared to a single decision tree [54]. 
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3.2.2. Random Forests 

Random Forests (RF) [51] as an enhancement of bagging [55] is an ensemble of single trees. The 
independent tree predictor in the ensemble is generated by randomly selecting input variables using 
the bootstrap [56] sampling method. The optimal split can be found either from all input variables or 
a preset-sized random subset during the construction of a single tree. The estimate variance of the 
trees can be reduced by increasing the randomness. Experiments found that RF methods significantly 
outperform other decision tree methods because the single trees typically generate high variance and 
are prone to over-fit [50]. The randomness injected into forests when generating decision trees may 
decouple prediction errors. Some errors can be cancelled out by taking an average of those 
predictions. As a result of the low correlation between independent trees, the RF can avoid falling 
into over-fitting problems in the process of regression [39]. 

3.2.3. Gaussian Process Regression 

The Gaussian Process Regression (GPR) algorithm is a classical stochastic process method in 
probability theory. The GPR is a combination of random variables obeying the normal distribution 
[57]. The kernel of GPR is the Gaussian Process (GP) learning framework which is competitive in 
handling nonlinear relationships [58]. The kernel function of GPR is GP, which is a collection of finite 
random variables with a Gaussian distribution that can be used to describe the distribution of 
functions. The output data y and the input vector 𝑥 can be expressed as y = 𝑓(𝑥) +  𝜀 (4) 

where 𝜀 is Gaussian noise. The prior distribution of the observation y after considering the noise 
can be written as 

y ~ 𝑁(0,𝑀(𝑋,𝑋) + 𝜎௡ଶ𝐼௡ ) (5) 

where the 𝑀(𝑋,𝑋) is the auto-covariance matrix of the input vector 𝑋 and the 𝜎௡ଶ is the variance 

of noise. The union prior distribution of the observation y and the prediction 𝑓∗ can be written as ቂ𝑦𝑓∗ቃ  ~ 𝑁 ൬0, ൤𝑀(𝑋,𝑋) + 𝜎௡ଶ𝐼௡       𝑀(𝑋, 𝑥∗) 𝑀(𝑥∗,𝑋)            𝑚(𝑥∗, 𝑥∗) ൨ ൰ (6) 

GPR can obtain both predictive mean and predictive variance, and it can obtain the optimal 
estimates through the predictive distribution of sample data. 

3.3. Evaluation metrics 

To evaluate the accuracy of individual satellite-derived LE products and the four machine 
learning fusion methods, the R2, Bias, and RMSE were selected as the evaluation metrics. R2 is the 
square of correlation coefficient R and it is a metric to assess the agreement between estimates and 
observations. Bias is the average value of the differences between the estimates and ground 
measurements. Bias can be written as 

Bias =  1𝑁෍(𝐸௜ −  𝑂௜)ଶே
௜ୀଵ  (7) 

where 𝑁 denotes the number of samples, 𝐸௜ and 𝑂௜ denote the ith estimates and ground-measured 
LE, respectively. The RMSE is the root mean square error between estimates and observations; it 
measures the predictive skill and the closeness with the target. RMSE is calculated as 

RMSE =  ඩ1𝑁෍(𝐸௜ −  𝑂௜)ଶே
௜ୀଵ  (8) 
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3.4. Experimental setup 

Before fusion model construction, we produced five individual LE products using the RS-PM, 
SW, PT-JPL, MS-PT, and SEMI-PM algorithms based on the remote sensing variables (NDVI, LAI and 
FPAR) and MERRA meteorological data. EC ground measurements at all 76 flux tower sites were 
collected to evaluate the accuracy of these LE products. 

Our study constructed the ETR, GBRT, and RF model by using the Ensemble modules on the 
Python platform. The main parameters to fit these three modules included n_estimators ，
max_features, max_depth，learning_rate, and subsample. These optimal parameters can be adapted 
to the specific case either manually or automatically using cross-validation for example. The GPR 
was implemented using the Gaussian Processes for Machine Learning (GPML) toolbox in MATLAB, 
developed by Carl Edward Rasmussen and Hannes Nickisch. Different mean functions and 
covariance functions were evaluated and the one with lowest error was used. For all four machine 
learning models, ten-fold cross-validation was used to find the optimal parameter. 

To compare the fusion methods, we trained and validated ETR and three other machine learning 
models using the same EC flux site data. Considering the influences of the representation of multiple 
PFTs on the model construction, for each PFT, our study chose half of the sites for training and the 
rest sites for inversion. As for DBF/ ENF/GRA/MIF /CRO, there were 6/9/14/1/9 sites for training and 
6/9/13/1/8 sites for inversion. Finally, we trained the ETR model using all 76 available EC flux tower 
sites and enhanced the terrestrial LE estimates over Europe by the fusion of the five satellite-derived 
LE products. 

4. Results 

4.1. Evaluation of satellite-derived terrestrial LE products 

To evaluate the five satellite-derived LE products, the corresponding estimates extracted from 
the individual products were directly compared with ground measurements from the 76 EC flux 
tower sites. Figure 2 shows the scatter plots for the daily LE observations and estimates of different 
LE products. The results show that the SEMI-PM product demonstrated the best performance with 
the highest R2 (0.61) and a small RMSE (26.42 W/m2) among the five LE products. The R2 of the SW is 
the smallest at 0.53, and the R2 of three other LE products vary from 0.55 to 0.57. The MS-PT obtained 
the smallest RMSE of 26.37 W/m2; the ascending RMSE order of the four other algorithms is SEMI-
PM (26.42 W/m2), PT-JPL (27.91 W/m2) RS-PM (30.34 W/m2), and SW (33.17 W/m2). 
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Figure 2. The scatter plots for daily LE observations at 76 flux tower sites and the estimates from the 
five LE products during the period from 2000 to 2006. 

The five LE products showed large discrepancies and uncertainties for different PFTs. Figure 3 
shows the statistical summary of the evaluation parameters of the five satellite-derived products for 
each PFT. The results show that the MIF sites have the highest R2 which varies from 0.64 to 0.70, and 
the CRO sites have the smallest RMSE (22.89 W/m2 to 25.10 W/m2) and Bias (-6.54 W/m2 to 7.74 W/m2) 
for the different LE products. For the CRO, ENF, and GRA sites, the SEMI-PM performs better with 
the highest R2 (0.61 to 0.64) and the smallest RMSE (22.89 to 26.08 W/m2). For the DBF and MIF sites, 
the MS-PT performs better with a high R2 (0.62 to 0.66) and the smallest RMSE (26.98 and 24.35 W/m2) 
compared with other four LE products. 

 

Figure 3. The evaluation parameters (R2, RMSE, and Bias) comparison between the five satellite-
derived LE products for different plant function types (PFTs). 

The results show that the accuracies of each LE product for different PFTs vary greatly and there 
are significant uncertainties between individual LE products. Moreover, we found that none of the 
individual satellite-derived terrestrial LE products can provide the most accurate LE estimates for all 
PFTs. 
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4.2. Fusion of five satellite-derived terrestrial LE products using Extremely Randomized Trees 

4.2.1. Model development using 39 training flux tower sites 

To implement the fusion of five satellite-derived LE products using ETR and other three machine 
learning methods, the ground measurements collected at the 39 training sites were used to train the 
models. Figure 4 presents the scatter plots for the observations and LE training results using ETR and 
three other fusion models. ETR yields the best training performance with the highest R2 of 0.98 and 
the lowest RMSE of 4.93 W/m2 among the four fusion methods, followed by RF with an R2 of 0.97 and 
RMSE of 5.94 W/m2. The descending training performance order of the four algorithms is ETR, RT, 
GBRT, and GPR.  

   

   

Figure 4. The scatter plots for daily LE observations at 39 training flux tower sites and LE estimates 
from the four fusion models during the period from 2000 to 2006. 

Figure 5 presents the statistical summary of the evaluation parameters of the four fusion 
methods at the 39 training sites for each PFT. One can notice that the fusion estimates using ETR for 
different PFTs have the highest R2 and lowest RMSE compared to the three other methods. For all the 
PFTs of the 39 training sites, the performance of the RF method is lower than ETR, but behaves better 
than the other two models, and GPR yields the lowest simulation accuracy. 
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Figure 5. The evaluation parameters (R2, RMSE, and Bias) comparison between the four LE fusion 
methods at 39 training tower sites for different PFTs. 

4.2.2. Model evaluation against 37 validation flux tower sites 

Figure 6 presents the scatter plots for the LE observations at the 37 validation sites and the LE 
inversion results using ETR and the three other fusion models. The results show that ETR yields the 
best training performance with the highest R2 (0.76) and the lowest RMSE (16.87 W/m2) among the 
four fusion models. At the specific site scale, the performance of the ETR fusion method is 
significantly superior to the best performance any individual LE product (SEMI-PM with an R2 of 
0.61 and RMSE of 26.42 W/m2). The accuracy of the GPR fusion method is lower than ETR but much 
higher than RF and GBRT with an R2 of 0.76 and RMSE of 16.88 W/m2. The GBRT yields the lowest 
R2 (0.72) and the highest RMSE (18.25 W/m2) compared with the three other machine learning fusion 
methods, but it is still superior to the best performance of any individual LE product (SEMI-PM). The 
results show that the machine learning fusion estimates are superior to the five individual LE 
products, and among the four machine learning fusion methods, the ETR exhibits the best fusion 
performance. 

   

   
Figure 6. The scatter plots for daily LE observations at 37 validation flux tower sites and the LE 
estimates from the four fusion models during the period from 2000 to 2006. 

Figure 7 shows the R2, Bias, and RMSE statistics of ETR and the three other fusion models for 
different PFTs at the 37 validation sites. Overall, whether it is R2 (varying from 0.74 to 0.84), Bias 
(varying from -1.71 to 7.53 W/m2), or RMSE (varying from 13.56 to 18.27 W/m2), ETR is superior to 
the other three fusion models at most PFTs. The performance of the GPR method is lower than ETR, 
but better than RF and GBRT. GBRT yields the lowest validation accuracy with an R2 ranging from 
0.69 to 0.80, and RMSE ranging from 14.90 W/m2 to 19.87 W/m2. For all the PFTs, MIF has the highest 
R2 from 0.80 to 0.84 and the lowest RMSE from 13.35 to 14.90 W/m2, but yields the highest Bias, 
ranging from 6.93 to 7.53 W/m2. This may be affected by the original individual LE products, which 
have the same estimate tendency. The evaluation results of satellite-derived terrestrial LE products 
are shown in Figure 3. The DBF validation sites behave better than the three other PFTs with an R2 
ranging from 0.77 to 0.82 and RMSE ranging from 16.43 to 18.02 W/m2. CRO, ENF, and GRA with 
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lower R2, varying from 0.69 to 0.75 compared with other PTFs, are also superior to the individual LE 
products which obtained R2 varying from 0.53 to 0.64. 

Overall, compared to the other three machine learning fusion methods, ETR exhibits a relatively 
high validation accuracy and stability. The enhanced accuracy of the ETR fusion method makes it a 
reasonable option for improving LE terrestrial estimates over Europe. 

     
Figure 7. The evaluation parameters (R2, RMSE, and Bias) comparison between the four LE fusion 
methods at 37 validation tower sites for different PFTs. 

4.2.3. Implementation of fusing five LE products using Extremely Randomized Trees 

To implement the fusion of five satellite-derived terrestrial LE products using ETR over Europe, 
we retrained the ETR model based on the EC ground measurements at all 76 sites from 2000 to 2006 
and the corresponding LE estimates extracted from five individual LE products. Figure 8 shows the 
statistics (R2, RMSE, and Bias) of the comparison between multiple individual LE products and the 
fusion LE estimates using ETR for different PFTs. In general, whether it is the R2 (0.97), RMSE (5.85 
W/m2), or the Bias (approximately equal to 0 W/m2), the fusion LE estimates are superior to the five 
satellite-derived terrestrial LE products. For all five PFTs, fusion LE estimates reduced the RMSE by 
20.52 to 27.31 W/m2, representing 77.80% to 82.35% of the corresponding RMSE of the individual LE 
products. The Bias of individual LE products vary from 3.08 to 16.55 W/m2, and the fusion LE 
estimates reduced the Bias to about 0 W/m2. Therefore, the accuracy of the individual LE products 
was significantly improved by the fusion of multiple satellite-derived terrestrial LE products using 
the ETR method. The results showed that the ETR fusion method in this study could be implemented 
to generate a reasonable and stable regional terrestrial LE product. 
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Figure 8. The comparison of evaluation parameters (R2, RMSE, and Bias) for the five individual LE 
products and fusion LE estimates using Extremely Randomized Trees (ETR) for different PFTs. 

4.3. Mapping of terrestrial LE products over Europe  

Figure 9 shows the maps of annual terrestrial LE averaged from 2002 to 2005 for the RS-PM-, 
SW-, PT-JPL-, MS-PT-, and SEMI-PM-based LE product over Europe. All of the five products yielded 
lower LE estimates over the northern portion of Europe. In the high latitudes, the highest annual LE 
was approximately less than 20 W/m2, appearing on the area with latitudes higher than 65°N. As the 
latitude decreases, LE shows a trend from low to high. The most prominent difference between the 
five LE products was the RS-PM- and SW-based LE products estimated higher LE values in the 
central and southern portions of Europe. Compared with SEMI-PM-based LE product, the PT-JPL 
and MS-PT yielded higher LE estimation in Austria and Bulgaria. These discrepancies maybe caused 
by the spatial heterogeneity and the uncertainty existing in the structures of different LE product 
algorithms. 

 

0

7

14

21

28

35

42

CRO DBF ENF GRA MIF ALL

RMSE (W/m2)

RS-PM SW PT-JPL MS-PT SEMI-PM ETR

-12

-6

0

6

12

18

24

30

CRO DBF ENF GRA MIF ALL

Bias (W/m2)

RS-PM SW PT-JPL MS-PT SEMI-PM ETR



Remote Sens. 2020, 12, 687 14 of 24 

 

 

 

 
Figure 9. Maps of average annual terrestrial LE in the period from 2002 to 2005 for Revised remote 
sensing-based Penman LE product (RS-PM), Shuttleworth–Wallace dual-source-based LE product 
(SW), Priestley–Taylor of the Jet Propulsion Laboratory-based LE product (PT-JPL), Modified 
satellite-based Priestley–Taylor LE product (MS-PT), and Semi-empirical Penman-based LE product 
(SEMI-PM) with a resolution of 0.05° over Europe. 

We applied the fusion of five individual terrestrial LE products using ETR, GBRT, RF, and GPR 
to estimate the mean annual LE in the period from 2002 to 2005 with a resolution of 0.05° over Europe, 
respectively (Figure 10). Four fusion products showed highly consistent spatial characteristics over 
Europe. 

   



Remote Sens. 2020, 12, 687 15 of 24 

 

   

 

Figure 10. Maps of average annual terrestrial LE in the period from 2002 to 2005 using the Extremely 
Randomized Trees (ETR), Gradient Boosting Regression Tree (GBRT), Random Forest (RF), and 
Gaussian Process Regression (GPR) fusion methods with a resolution of 0.05° over Europe. 

When compared with the fusion terrestrial LE product using ETR, the three other fusion 
products generate some spatial differences (Figure 11). The GBRT yields a higher annual LE than ETR 
over northern Europe. As the latitude increases, the discrepancy reaches up to 6 W/m2. The fusion LE 
product generated by RF shows consistent spatial characteristics with ETR. The difference between 
the two fusion LE products was within 1 W/m2 in most parts of Europe. The GPR fusion product 
yields lower annual terrestrial LE in Spain, Austria, Romania, Belarus, and a higher LE in Norway, 
Poland, Hungary, and Italy. The difference between the two LE products was approximately within 
4 W/m2 in most areas. This is possibly caused by the uncertainty existing in the structures of different 
machine learning fusion methods. 
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Figure 11. Maps of spatial difference in the annual LE average between ETR and the three other fusion 
methods over Europe from 2002 to 2005. 

5. Discussion 

5.1. The performance of the Extremely Randomized Trees fusion method 

Figure 12 shows the seasonal variation both of ground-measured LE and the estimate LE by the 
four fusion methods for different PFTs. For each PFT, we randomly selected a site which completely 
contains at least one year of ground measurements, and the corresponding estimate LE data was 
compared to this. The daily observed data and estimate LE were replaced by the eight-day average 
value. The five sites were BE-Lon (CRO), FR-Hes (DBF), DE-Har (ENF), DE-Gri (GRA), and BE-Bra 
(MIF).  

Figure 12 illustrates that all the four machine learning fusion methods’ LE values showed great 
consistency with the observations for each PFT in 2005. For the DE-Har (ENF) and DE-Gri (GRA) 
sites, the GBRT, RF, and the GPR estimations were lower than the observations on most days of 2005. 
However, for the BE-Bra (MIF) and FR-Hes (DBF) sites, the three fusion models overestimated the LE 
with the same trend. In comparison with the GBRT, RF, and GPR methods, the seasonal LE variations 
generated by ETR were closest to the observations. Moreover, the RF estimate performed closely to 
ETR.  

Of all the five sites in different PFTs, the BE-Lon (CRO) site showed a poor performance in the 
growing season. Studies showed that differences in crop types, and irrigation and fertilization 
practices may lead to noticeable influence on the accurate estimation of LE [59]. For the FR-Hes (DBF) 
and DE-Har (ENF) sites, a greater overlap of leaves resulting in a lower bare soil exposure ratio [60], 
NDVI saturates, and clouds cover [61] all contributed to the inaccurate LE estimates in these two 
PFTs. All four machine learning methods yielded poor performance in the BE-Bra (MIF) site, mainly 
because there were fewer samples available (only two sites, one for training and one for validation), 
which lowered the learning performance of the fusion models. In addition, all the four models 
presented significantly higher estimations with the same trend in BE-Bra (MIF). This may be caused 
by the original higher estimation of the five individual LE products at the MIF sites, which can be 
seen in Figure 3. 
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Figure 12. Comparison of LE seasonal variations between estimates by the four fusion methods and 
ground-measures for different PFTs in 2005. 

Figure 13 illustrates the probability density distributions of estimate errors in the five satellite-
derived LE products and four machine learning fusion LE products, respectively. For the single LE 
products, the error distributions of the MS-PT are more closely centered on zero, and compared with 
MS-PT, the other four LE products show the same trend of overestimation. The SEMI-PM showed 
relatively small errors maybe because the regression coefficients of this product algorithm were 
calibrated using 64 global flux tower sites [47]. Overall, MS-PT and SEMI-PM yield better 
performance than the other products, which is also consistent with the global validation result from 
Yao [11]. 

For the fusion LE products, all the four fusion predictive errors are closely centered on zero and 
even the GPR method, which got the largest biases, performs better than the MS-PT and SEMI-PM. 
The ETR method decreased the substantial positive and negative biases. Consistent with the 
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experiments from Geurts [50], the ETR method showed a competitive and even superior fusion 
performance to RF. This may be due to the ETR method having the advantage of removing the need 
for the optimization of the discretization thresholds which leads to its efficient implementation [45]. 
Therefore, the ETR strategy can accurately capture the LE variance and exhibits the best prediction 
performance. 

 
     a)                                              b) 

Figure 13. Probability density distributions of the predictive errors in a) five satellite-derived LE 
product algorithms and b) four machine learning fusion methods, respectively. 

5.2. Spatial discrepancy with global LE products 

Figure 14 shows the mean annual spatial differences between the GLASS LE product and the 
fusion LE estimates using ETR from 2002 to 2005. As indicated in Figure 14, relative to the GLASS LE 
product, the fusion result yielded lower LE (-15 ~ 10 W/m2) in most southern portions of Europe, and 
higher LE (0 ~ 5 W/m2) in northern Europe. This may be caused by insufficient site data and 
representation, as well as the characteristics of the ETR algorithm. The discrepancies between the two 
LE products were within 15 W/m2 in most portions of Europe. 
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Figure 14. Maps of the spatial difference in the annual LE average between the Global Land Surface 
Satellite (GLASS) LE product and LE estimates using ETR over Europe from 2002 to 2005. 

As indicated in Figure 15, when compared with the MODIS LE product (MOD16), the fusion LE 
using ETR had lower estimates in central and northeast Europe and higher estimates in most parts of 
Spain, Portugal, United Kingdom, and Iceland. This may be caused by land surface heterogeneity 
and spatial continuity underrepresentation of MOD16. The difference between the two products was 
small and no more than 15 W/m2 in most areas. 

 

 

Figure 15. Maps of the spatial difference in the annual LE average between the Moderate Resolution 
Imaging Spectroradiometer LE product (MOD16) and LE estimates using ETR over Europe from 2002 
to 2005. 

Given the accuracy of the GLASS and MOD16 LE products, we can conclude that the fusion LE 
using ETR exhibits a relatively small gap compared with them, and it proved to be reasonable and 
reliable for the terrestrial LE estimation using the ETR fusion method over Europe. 

5.3. Uncertainties of the merged LE estimates 

Several studies have shown that the uncertainties in the MERRA meteorology data and satellite-
based observations (e.g., LAI, NDVI, or FPAR), errors in tower EC observations, and mismatched 
spatial scales between different data sources, as well as structural differences between machine 
learning models all lead to the inaccuracy of LE estimates [8,9].  

Firstly, studies showed that there are large biases in the MERRA data and satellite-based 
vegetation parameter products when validated by ground measurements at flux tower sites [62,63]. 
Therefore, the uncertainty of the satellite-derived LE estimates would be inherited through errors 
from both the MERRA and satellite-based data inputs [2]. Secondly, Foken found that large eddies 
cannot be measured with the EC method, which leads to the energy imbalance [48]. Although we 
corrected the measured LE using the method proposed by Twine [49], the corrections based on the 
limited understanding of the nature of the energy imbalance still result in large errors in EC 
measurements [64]. In addition, Hui found that gap filling of EC measurements from hourly and half-
hourly data to daily averages also generates uncertainties for LE estimations [65]. Thirdly, the spatial 
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scale mismatch among the different data sources may have introduced errors into the LE estimations. 
As a result of the limitation of the spatial representation of ground observation technology, no 
effective means exist of evaluating spatially distributed regional LE products at scales greater than a 
few kilometers—particularly over nonhomogeneous surfaces [66]. Finally, all machine learning 
methods may fall into local optimization, which results in a poor generalization performance [35]. 
Moreover, the fitting performance of the machine learning methods is also closely dependent on the 
representativeness of the training data. 

6. Conclusions 

We applied the Extremely Randomized Trees method to implement the fusion of five satellite-
derived terrestrial LE products (RS-PM, SW, PT-JPL, MS-PT, and SEMI-PM) based on flux tower 
observations. By evaluating against ground measurements, we found that there are substantial 
uncertainty and discrepancies in the individual LE products. 

On the basis of five satellite-derived terrestrial LE products, we trained and validated ETR and 
three other machine learning models at 76 EC flux tower sites to compare the model prediction 
performance. We found the ETR algorithm achieved the best fusion accuracy with the highest R2 (0.98 
and 0.76) and the lowest Bias (0 W/m2 and -0.55 W/m2) and RMSE (4.93 W/m2 and 16.87 W/m2) for 
training and validation, respectively. Furthermore, the performance of the ETR fusion method is 
significantly superior to the best performance of an individual LE product at the specific site scale. 
When compared with moderate spatial resolution satellite-derived global LE products, such as 
GLASS and MOD16, the fusion LE using ETR exhibits relatively small spatial differences. 

Overall, we conclude that the ETR method improved daily LE estimates over Europe by fusing 
five satellite-derived terrestrial LE products driven by MERRA meteorology and MODIS products. 
The improved accuracy of the ETR fusion method makes it a reasonable and reliable option for the 
estimation of terrestrial LE over Europe. 
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