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Abstract: Precipitation serves as a crucial factor in the study of hydrometeorology, ecology, and the
atmosphere. Gridded precipitation data are available from a multitude of sources including precipitation
retrieved by satellites, radar, the output of numerical weather prediction models, and extrapolation by
ground rain gauge data. Evaluating different types of products in ungauged regions with complex
terrain will not only help researchers in applying scientific data, but also provide useful information
that can be used to improve gridded precipitation products. The present study aims to evaluate
comprehensively 12 precipitation datasets made by raw retrieved products, blended with rain gauge
data, and blended multiple source datasets in multi-temporal scales in order to develop a suitable method
for creating gridded precipitation data in regions with snow-dominated regions with complex terrain.
The results show that the Multi-Source Weighted-Ensemble Precipitation (MSWEP), Global Satellite
Mapping of Precipitation with Gauge Adjusted (GSMaP_GAUGE), Tropical Rainfall Measuring Mission
(TRMM_3B42), Climate Prediction Center Morphing Technique blended with Chinese observations
(CMORPH_SUN), and Climate Hazards Group Infrared Precipitation with Stations (CHIRPS) can
represent the spatial pattern of precipitation in arid/semi-arid and humid/semi-humid areas of the
Qinghai-Tibet Plateau on a climatological spatial pattern. On interannual, seasonal, and monthly
scales, the TRMM_3B42, GSMaP_GAUGE, CMORPH_SUN, and MSWEP outperformed the other
products. In general, the Precipitation Estimation from Remotely Sensed Information using Artificial
Neural Networks-Cloud Classification System (PERSIANN_CCS) has poor performance in basins of
the Qinghai-Tibet Plateau. Most products overestimated the extreme indices of the 99th percentile of
precipitation (R99), the maximal of daily precipitation in a year (Rmax), and the maximal of pentad
accumulation of precipitation in a year (R5dmax). They were underestimated by the extreme index of
the total number of days with daily precipitation less than 1 mm (dry day, DD). Compared to products
blended with rain gauge data only, MSWEP blended with more data sources, and outperformed the
other products. Therefore, multi-sources of blended precipitation should be the hotspot of regional and
global precipitation research in the future.
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1. Introduction

Precipitation serves as a crucial factor used by decision makers who are tasked with water allocation
as well as in understanding hydrological processes, atmospheric research, and hazard prevention [1–4].
Data sources related to precipitation mainly include ground-based rain gauges, numerical weather
prediction (NWP) models, weather radar retrieval, and satellite data retrieval. However, traditional
precipitation measurements based on rain gauges and weather radar are usually collected near human
settlements, and these observations are sparsely scattered across regions with vulnerable environments
(e.g., Central Asia, Northern Africa and polar areas). Therefore, satellite-retrieved precipitation
(SRP) and NWP’s precipitation estimates could solve problems involving the scarcity of precipitation
observations in those regions.

Although SRP and NWP model precipitation estimates can cover ungauged regions, such as the
Qinghai-Tibet Plateau, potential uncertainties caused by various factors (e.g., deficiency of the retrieved
algorithm as well as systematic and random errors) still exist [5]. Thus, these gridded precipitation
datasets should be carefully evaluated before applying these data. An evaluation of SRPs in China
is summarized in Table 1. It shows that most studies, which employed gauge observations and
hydrological models (e.g., the Soil and Water Assessment Tool [SWAT], Variable Infiltration Capacity
[VIC], and Xinanjiang models), have been using the SRP products at a hydrological basin scale or
China regional scale. The SRP with bias correction from gauge observations (e.g., the product of
Climate Prediction Center morphing technique with corrected bias [CMORPH_adj], Tropical Rainfall
Measuring Mission (TRMM) Multisatellite Precipitation Analysis [TRMM_3B42/43], Precipitation
Estimation from Remotely Sensed Information using Artificial Neural Networks-Climate Data Record
[PERSIANN-CDR], and Global Satellite Mapping of Precipitation [GSMaP_analysis]) is usually better
than near real-time raw SRP data (e.g., TRMM_3B42 RT and the product of Climate Prediction
Center morphing technique in near real-time [CMORPH_RAW]), which is only bias-corrected with
climatological gridded observations. Therefore, if SRPs were bias-corrected with gauge information in
an area, the SRP would be evaluated as having better performance and vice versa. The auto-correlation
between bias correction of SRP and the evaluation of SRP becomes a mathematical game.

Table 1. Summary of satellite retrieved precipitation data in China.

No. Basin/
Region

Products with Better
Performance Evaluated Precipitation Datasets Ref.

1. Yellow and Yangtze
River Basins

PERSIANN-CDR,
GLDAS, and TRMM

3B42.

PERSIANN, PERSIANN-CDR,
GLDAS, TRMM 3B42, and

CMORPH.
[6–8]

2. Tibetan Plateau EMSPD-DBMA, 3B42,
and CMORPH-CRT.

ITPCAS, CN05.1, APHRO,
CMORPH-CRT, PERSIANN,
PERSIANN-CDR, IMERG,

GSMaP-MVK, MSWEP,
EMSPD-DBMA, TRMM 3B42, and

TRMM 3B42 RT.

[9–14]

3. Western China TRMM 3B42 and TRMM
3B43.

CMORPH, PERSIANN, TRMM
3B42, and TRMM 3B43. [15]
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Table 1. Cont.

No. Basin/
Region

Products with Better
Performance Evaluated Precipitation Datasets Ref.

4. Eastern China
EMSIP, CMORPH,

TRMM 3B42, and TRMM
3B43.

EMSIP, TRMM 3B42, TRMM 3B43,
TRMM 3B42 RT, CMORPH,

PERSIANN, GSMaP MWR+, and
GSMaP MVK+

[4,16–18]

5. Northern China MSWEP.
MSWEP, CHIRPS, CMORPH,

TRMM 3B42 V7, and
PERSIANN-CDR

[19,20]

6. Southern China TRMM 3B42,
PERSIANN.

TRMM 3B42, TRMM 3B42 RT,
GCMs, and CMORPH. [21,22]

7. Northeastern
China

GSMAP-MVK+,
Fengyun-2, and
CMORPH_BLD.

TRMM 3B42, TRMM 3B42 RT,
GLDAS, APHRO, PERSIANN,

CMORPH_BLD, CMORPH_RAW,
Fengyun-2, and GSMAP-MVK+.

[23,24]

8. China
GPM IMERG,

GSMaP_REANALYSIS,
and BMEP.

GPM IMERG,
GSMaP_REANALYSIS,

CMORPH_RAW, PERSIANN_CDR,
CMORPH_BLD, BMEP, NCEP-2,

and GPCP.

[25–28]

Notes: The abbreviations of precipitation data retrieved from satellite data and other gridded precipitation
products are as follows: Asian Precipitation-Highly Resolved Observational Data Integration Toward Evaluation
of Water Resources (APHRODITE) [29], National Climate Center of China Meteorological Administration
(CN05.1) [30], Institute of Tibetan Plateau Research, Chinese Academy of Sciences (ITPCAS) [31], Global Land
Data Assimilation System (GLDAS) [32], Beijing Climate Center Merged Estimation of Precipitation (BMEP) [33],
National Centers for Environmental Prediction (NCEP) Climate Forecast System Reanalysis (CFSR) [34], Global
Satellite Mapping of Precipitation (GSMaP) based on a Kalman filter model (GSMAP-MVK+.) [35], Tropical Rainfall
Measuring Mission (TRMM) Multi-satellite Precipitation Analysis (TMPA, 3B42, and 3B43, etc.) [36], Climate
Prediction Center morphing technique global precipitation estimates (CMORPH) [37], Precipitation Estimation
from Remotely Sensed Information using Artificial Neural Networks (PERSIANN) [38], gauge-adjusted GSMaP
(GSMaP_REANALYSIS) [39], bias-corrected CMORPH precipitation blended with gauges (CMORPH_BLD) [40],
precipitation based on Fengyun-2 geostationary satellite (Fengyun-2) [41], East Asian multi-satellite integrated
precipitation (EMSIP) [42], NCEP-DOE (Department of Energy) Reanalysis 2 (NCEP2) [43], Ensemble Multi-Satellite
Precipitation Dataset using the Dynamic Bayesian Model Averaging scheme (EMSPD-DBMA) [12], Global
Climate models in CMIP5 (GCMs) [44], the Global Precipitation Measurement (GPM) mission [45], Multi-Source
Weighted-Ensemble Precipitation (MSWEP) [46], Climate Hazards Group Infrared Precipitation with Stations
(CHIRPS), and Integrated Multi-satellite Retrievals (IMERG) of Global Precipitation Mission (GPM IMERG). BLD,
CRT, and CDR indicate the CMORPH bias-corrected SRP blended with rain gauge, CMORPH bias-corrected SRP,
and PERSSIANN bias-corrected SRP, respectively. RT indicates the climatologically bias-corrected SRP without
blending rain gauge data.

With the development of NWP models and the increased availability of computational resources,
models have the ability to simulate precipitation in horizontal resolutions from meters to kilometers.
The highest horizontal resolution in the High Asia Reanalysis (HAR) [47] and Western China Reanalysis
(WCR) datasets were 10 km and 12 km, respectively, which is close to the horizontal resolution of
SRP (e.g., Global Precipitation Measurement Integrated Multi-satellite Retrievals (GPM IMERG, 0.10◦,
~11.1 km), GSMaP (0.10◦, ~11.1 km), and CMORPH (8 km)). In East China [48] and Europe [49], NWP
models used for operational weather forecast had a horizontal resolution of less than 4 km. Therefore,
the global/regional atmospheric reanalysis dataset provides a promising proxy of SRP. The precipitation
observations were not assimilated into the model without the evaluation problem of SRP mentioned
above. In addition, these high-resolution regional reanalysis datasets have not been comprehensively
evaluated for use in the Qinghai-Tibet Plateau.

Convective precipitation systems (e.g., heavy precipitation and typhoons) can be easily captured
by SRP in a fine time-scale [50,51], but the studies listed in Table 1 show that SRP failed to fairly
represent a front precipitation system in cold seasons. However, NWP models have performed well
in cold seasons and cold regions [47,52,53], when compared with its weak performance in warm
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seasons and locations [54]. Multi-source blended precipitation (MSBP), which blends precipitation
datasets from ground-based gauges, precipitation retrieved from ground-based radar, SRP, and NWP
models, compensates for the advantages and shortcomings of both NWP models and SRP. Thus,
MSBP provides a useful tool for gaining insight into meteorological and hydrological processes
in snow-dominated areas with complex terrain (e.g., the Qinghai-Tibet Plateau and the Tianshan
Mountains). Multi-Source Weighted-Ensemble Precipitation (MSWEP), which is an MSBP, has been
evaluated in Iran [55], East Africa [56], India [57], and Eastern China [20]. A brief evaluation of MSWEP
in the Qinghai-Tibet Plateau has been conducted with a new dataset of the EMSPD-DBMA (Ensemble
Multi-Satellite Precipitation Dataset using a Dynamic Bayesian Model Averaging scheme), which
contains more ground-based gauges than other SRPs [12]. However, this new dataset has not been
evaluated comprehensively with other SRPs to compare the spatiotemporal pattern and intensity.

Previous studies (Table 1) have normally evaluated the SRP on a climatological scale (e.g., daily,
seasonal and annual scales). This paradigm could fit the climatological spatiotemporal variation
because SRP has corrected the bias at a climatological scale. However, at a weather synoptic scale, even
CMORPH and TRMM fail to the capture the spatiotemporal patterns of extreme precipitation [58].
Studies using SRP have shown an uneven performance in different latitudes when used at a basin
scale [59]. Because the scarcity of ground gauge observations creates limitation, previous studies have
normally evaluated the Qinghai-Tibet Plateau as a whole. Those studies have always statistically
averaged the small amount of precipitation received in arid lands (e.g., the Qaidam Basin) with
precipitation falling in humid regions with abundant precipitation, thus ignoring the specified
statistical properties of arid climates. Therefore, an evaluation should be conducted to distinguish the
difference between precipitation in arid and the humid regions.

Most gridded precipitation datasets entail a great amount of uncertainty in the Qinghai-Tibet
Plateau because of its complex terrain [60]. Thus, gridded precipitation should be comprehensively
evaluated before being applied. The main objective in this study is to provide further insight into
evaluating the reliability of SRP, high-resolution regional reanalysis datasets, and MSBP in basins of
the Qinghai-Tibet Plateau on different temporal scales, and to compare their strengths and weaknesses.

2. Datasets and Methodology

2.1. Datasets

Daily rain gauge observations were downloaded from the China Meteorological Administration
(CMA) website (http://data.cma.cn). Before using these observational data, we performed strict data
quality control in order to improve the reliability and credibility of the evaluation. First, we checked the
missing values in the raw records and deleted the records of any rain gauge station with >100 missing
values during 9 years. Second, we labeled daily precipitation outliers as missing; here, an outlier was a
value >100 mm/day. Finally, the present study selected 83 stations covering most of the Qinghai-Tibet
Plateau and having coverage by all products from 2003–2010. Figure 1 shows the topography of the
Qinghai-Tibet Plateau including 10 river basins. Because observations were limited by the total number
of weather observation stations, each river basin should have at least three stations. Therefore, eight
river basins were selected: (1) Brahmaputra River (BRA; 23 stations), (2) Hei River Basin (HEX; three
stations), (3) Inner Tibetan Plateau (INN; five stations), (4) Mekong River Basin (MEK; seven stations),
(5) Qaidam Basin (QAI; seven stations), (6) Salween River (SAL; eight stations), (7) Yangtze River Basin
(YAN; 15 stations), and (8) the Yellow River Basin (YEI; 15 stations). Both QAI and INN have a climate
classification of arid land, while all of the others are humid regions.

The present study evaluated 12 gridded precipitation datasets (Table 2). The first is TRMM_3B42
V7, which has a long-term series of almost 20 years. GSMaP_GAUGE was retrieved by an ensemble
Kalman Filter (EnKF). Datasets 3–5 are the CMORPH family of datasets created by the National
Oceanic and Atmospheric Administration (NOAA) and CMA, respectively. Datasets 6–8 provide
SRP retrieved from infrared information. Datasets 9–11 are precipitation datasets output from NWP

http://data.cma.cn
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models. The last is the MSBP dataset. In these precipitation datasets, only CMORPH_RAW and
Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks-Cloud
Classification System (PERSIANN_CCS) are pure SRP datasets, while TRMM_3B42, GSMaP_GAUGE,
CMORPH_ADJ, Climate Prediction Center Morphing Technique blended with Chinese observations
(CMORPH_SUN), Precipitation Estimation from Remotely Sensed Information using Artificial Neural
Networks-Climate Data Record (PERSIANN_CDR), and Climate Hazards Group Infrared Precipitation
with Stations (CHIRPS) are SRP with bias correction from ground-based rain gauge data, or blended
with ground-based rain gauge data. MSWEP is blended with ground-based rain gauge data, reanalysis,
and SRP. Furthermore, CMORPH_SUN use more ground-based rain gauge data than the other products
covering China mainland, China.Remote Sens. 2020, 12, x FOR PEER REVIEW 5 of 27 
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Figure 1. Rain gauge observation network and main hydrological basins in the Qinghai-Tibet Plateau.
The base map of elevation is based on dataset of the global digital elevation model known as Global
30 Arc-Second Elevation (GTOPO30) [61]. The registered number of the map is GS2016 (2925). River
basins include: BRA, Brahmaputra River Basin; HEX, Hei River Basin, INN, inner Tibetan Plateau;
MEK, Mekong River Basin; SAL, Salween River Basin; QAI, Qaidam Basin; YAN, Yangtze River Basin;
YEL, Yellow River Basin.

Table 2. Precipitation datasets employed in the present study.

No Name
Temporal

and Spatial
Resolution

Temporal
Coverage Domain Main

Technique
Download

Website

1 TRMM_3B42 V7 0.25◦/3 h 1998–2015 50◦S–50◦N MW+IR + GPCP [62]
2 GSMaP_anl_gauged 0.10◦/1 d 2000–2017 60◦S–60◦N MW+IR + EnKF + CPC [63]
3 CMORPH_ADJ 0.07◦/1 h 1998–2017 60◦S–60◦N MORPHing + CPC [64]
4 CMORPH_RAW 0.07◦/1 h 1998–2017 60◦S–60◦N MORPHing [64]
5 CMORPH_SUN 0.0625◦/1 h 1998–2017 0◦–65◦N CMORPH + STMAS [41]
6 PERSIANN_CDR 0.25◦/1 d 1983–2017 60◦S–60◦N IR + ANN + GPCP [65]
7 PERSIANN_CCS 0.04◦/1 h 2003–2017 60◦S–60◦N IR + ANN [65]
8 CHIRPS 0.05◦/1 d 1981–2017 50◦S–50◦N IR + gauges [66]
9 WCR 0.11◦/3 h 1979–2013 Western China WRF3.5.1 + NCEP2 [67]

10 HAR 0.09◦/3 h 2000–2014 Tibet Plateau WRF3.3.1 + Lake model+FNL [68]

11 CFSR
(CFSR-LAND) 0.313◦/1 h 1979–2010 Global CFSR + CMAP [69]

12 MSWEP V1 0.25◦/3 h 1979–2015 Global Multi sources [70]

Notes: (1) MW is Active/Passive microwave sources; (2) IR is infrared sources; (3) ANN is artificial neural
networks; (4) STMAS is Space-Time Mesoscale Analysis System; (5) CPC is CPC Global Unified Gauge-Based
Analysis of Daily Precipitation [71]; (6) CMAP is CPC Merged Analysis of Precipitation (CMAP) [72]; (7) NCEP2 is
NCEP-DOE Reanalysis-2; (8) FNL is NCEP FNL Operational Model Global Tropospheric Analyses; (9) GPCP is
Global Precipitation Climatology Project; (10) WRF is Weather Research and Forecasting Model; (11) HAR is High
Asia Reanalysis.

The datasets in Table 2 have different spatiotemporal resolutions. If we processed these gridded
precipitation data into a coarse grid or lower horizontal resolution, the few, unevenly distributed in situ
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observations in the Qinghai-Tibet Plateau could only adequately evaluate the data in the areas with
the observations located. In addition, precipitation evaluation on complex terrain like Qinghai-Tibet
Plateau has great uncertainty. Thus, we regrid all gridded data into a grid of 0.1◦, and interpolate the
data into spatial point that represent rain gauge by bilinear interpolation method. The evaluation work
in this study is done by a point-to-point method.

2.2. Evaluation Methods

Three statistical metrics were utilized in this study. First, the mean error (ME) (Equation (1)) was
used to assess the difference between precipitation datasets and rain gauge data. The other metrics
were the root-mean-square error (RMSE) (Equation (2)) and Pearson’s correlation coefficient (CC)
(Equation (3)). The mathematical expressions are as follows:

ME =
1
N

N∑
i=1

(
PEi −GNDi

)
(1)

RMSE =

√√√
1
N

N∑
i=1

(
PEi −GNDi

)2
(2)

CC =
Cov(PE, GND)

σPE · σGND
(3)

where PE and GND denote rainfall amounts from precipitation datasets and rain gauge data, respectively.
For extreme precipitation, the cases with high spatiotemporal resolution observations (e.g.,

radar-retrieved precipitation and high-density rain gauge observation networks) should be selected for
evaluation. The complex topography of the Qinghai-Tibet Plateau limits the range of several weather
radars, however. The valley-peak topography also limits the deployment of automatic weather stations.
Therefore, the present study used R99, Rmax, R5dmax, and DD to measure extremely wet conditions
and extremely dry conditions. R99 is precipitation in the 99th percentile of a year after excluding zero
values for daily precipitation. Rmax is the day with the maximal amount of daily precipitation in a year.
R5dmax is the maximal of pentad accumulation of precipitation in a year. It ranges from 0–73. DD
indicates the total number of days with daily precipitation is <1 mm.

In the present study, spring, summer, autumn and winter are defined as March–May, June–August,
September–November, and December–February, respectively. In addition, the ranges of light rain,
moderate rain, and heavy rain are 0–10 mm/day, 10–25 mm/day, and 25–50 mm/day, respectively.

3. Results

3.1. Comparison of the Spatial Pattern of Multi-Year Mean Annual Precipitation

Figure 2 shows that most precipitation products (except PERSIANN_CCS) can represent the
spatial pattern of precipitation in arid and semi-arid land (annual precipitation <200 mm and between
200–400 mm, respectively). In Figure 2, the GSMaP_GAUGE (b), PERSIANN_CDR (f), CHIRPS (h), and
MSWEP (l) datasets present the climatological spatial pattern of precipitation with a smooth boundary
in basins of the Qinghai-Tibet Plateau, compared with the TRMM_3B42 (a) and CMORPH family (c–e)
datasets, which have slightly high values points for precipitation in the study basins. These products
may neglect the local and orographic spatial pattern of precipitation, even if the horizontal resolution
of CHIRPS reaches 0.05◦. Therefore, these quantitative precipitation estimate (QPE) products with
gauges are suitable for research related to climatological change or for synoptic analysis on a large scale.
In the INN and QAI basins, CMORPH_RAW (c) and reanalysis products (i–k) reproduced the zones of
high precipitation (400–800 mm) near the Kunlun and Altun mountains (35◦N), and nothing in other
products. In terms of multiyear mean annual precipitation in Figure 2, it was discovered that the WCR



Remote Sens. 2020, 12, 683 7 of 26

(1117 mm/year) and PERSIANN_CCS (989 mm/year) provided overestimates compared to observation
(446 mm/year). Of the NWP models, HAR (532 mm/year) outperformed CSFR (625 mm/year) and WCR.
In the CMORPH family, the annual precipitation values from CMORPH_RAW, CMORPH_ADJ, and
CMORPH_SUN were 765 mm/year, 421 mm/year and 427 mm/year, respectively. CMORPH_RAW
lacked bias correction compared to CMORPH_ADJ and CMORPH_SUN. Thus, bias correction with
ground-based rain gauges is a key factor, that impacts performance. The TRMM 3B42 (535 mm/year)
and GSMaP_GAUGE (458 mm/year), which were bias-corrected, displayed small differences from
the observations.
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following datasets: (a) Tropical Rainfall Measuring Mission Multi-satellite Precipitation Analysis 

Figure 2. Spatial patterns of multi-year mean annual precipitation (2003–2010) based on the following
datasets: (a) Tropical Rainfall Measuring Mission Multi-satellite Precipitation Analysis Version 7
(TRMM_3B42 V7); (b) Global Satellite Mapping of Precipitation with Gauge Adjusted (GSMaP_GAUGE);
(c) Climate Prediction Center Morphing Technique origin version (CMORPH_RAW); (d) Climate
Prediction Center Morphing Technique with bias-correction (CMORPH_ADJ); (e) Climate Prediction
Center Morphing Technique blended by Shuai Sun (CMORPH_SUN); (f) Precipitation Estimation from
Remotely Sensed Information using Artificial Neural Networks-Climate Data Record (PERSIANN_CDR);
(g) Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks-Cloud
Classification System (PERSIANN_CCS); (h) Climate Hazards Group Infrared Precipitation with Stations
(CHIRPS); (i) Western China Reanalysis (WCR); (j) High Asia Reanalysis (HAR); (k) NCEP Climate
Forecast System Reanalysis (CFSR); (l) Multi-Source Weighted-Ensemble Precipitation Version 1.0
(MSWEP V1); (n) rain gauge observations. The “pre” in each subplot indicates the multiyear mean annual
precipitation (unit: mm/year), which was calculated by 83 stations from each product interpolation.
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In the BRA Basin, CMORH_ADJ (d) and CMORPH_SUN (e) indicated the presence of a larger
number of arid/semi-arid areas than the other databases. In the YAN Basin, PERSIANN_CDR (f)
showed an annual precipitation of 800–1200 mm compared to annual precipitation of 400–800 mm in the
TRMM_3B42 and CMORPH family datasets (with the exception of CMORPH_RAW). In other basins,
some spatial shape in the form of a “bull’s eye” was observed in precipitation products. In regions
covered with a dense rain gauge network, rain gauge data were available for correcting QPE products.
However, in ungauged areas, incorrect spatial patterns may be created. In the middle and western
parts of the Qinghai-Tibet Plateau, CMORPH_RAW (c) and PERSIANN_CCS (g) indicated the presence
of regions with annual precipitation >2000 mm when compared with the other products. In the HEX
Basin, the products with gauge bias correction could represent conditions in the relatively dry and wet
regions in western and eastern basins, respectively. For reanalysis products, WCR (i) and HAR (j) also
reproduced these spatial pattern. Global/regional reanalysis products can reproduce the arid climatic
conditions in the QAI Basin, and the current semi-arid areas in the INN Basin; this was especially true
for the WCR dataset. Furthermore, only CFSR showed discrete strips with high precipitation rates in
the INN Basin. In the YAN and YEL basins, HAR and CFSR present a spatial pattern similar to that of
MSWEP with precipitation in the range of 800–1200 mm annually.

3.2. Evaluation on an Annual Scale

On an interannual scale, great differences were obvious between products and rain gauges (Figure 3a).
The GSMaP_GAUGE was closest to the observations. In contrast, PERSIANN_CCS, and WCR exhibited
the largest biases. CMORH_ADJ, and CMORPH_SUN slightly underestimated precipitation from
2003–2005. After 2006, the two products were close to observation. This is because CMORPH_SUN
originated from CMORPH_ADJ, which blends more surface rain gauges during production. Meanwhile,
TRMM_3B42 and CHIRPS overestimated precipitation by <100 mm annually. In addition, CFSR and
MSWEP overestimated precipitation by 200 mm annually. PERSIANN_CCS dataset also resulted in
overestimation. Although WCR overestimated precipitation, it could still capture the variability of the
change in precipitation over time. HAR performed better than WCR with obvious overestimation of
precipitation after 2006.

The MSWEP, CMORPH_SUN, and GSMaP_GAUGE datasets had a CC of more than 0.40, and
higher than the other datasets; in particular, the CC of MSWEP was more than 0.50. Meanwhile,
PERSIANN_CCS had the lowest CCs, at less than 0.20. The CC of the other products ranged from
0.20–0.40. The CC in various products peaked in 2006–2007. The CC in TRMM 3B42 was higher than
the CC in CMORPH ADJ. In some years, the CC of PERSIANN_CDR was higher than the CC in
TRMM 3B42. The CC in CMORPH_RAW was a little higher than those in PERSIANN_CCS. The CC
in CFSR and HAR were close. Recently, more rain gauges in China have become available in the
Global Telecommunication System; as a result, the availability of CC in products with bias correction is
expected to increase. However, slightly variability occurred in Figure 3b. CC has been increasing in
only HAR and CMORPH_SUN.

The ME in most products was ±0.5 mm/d (Figure 3c) including in PERSIANN_CCS, WCR, and
CMORPH_RAW in particular, it was more than 1.5 mm/d in PERSIANN_CCS. The ME was positive
TRMM, PERSIANN_CDR, CFSR, and MSWEP and negative in CMORPH_ADJ, CMORPH_SUN, and
GSMAP_GAUGE. Among them, the positive ME in CMORPH_RAW increased rapidly over time.
The ME of HAR and CHIRPS varied slightly.

The RMSE in most products was stable and stayed within 2 mm/d (Figure 3d). In addition,
CMORPH_RAW, CHIRPS, WCR, and PERSIANN_CCS had relatively large RMSEs while those of
GSMAP_GAUGE, HAR, MSWEP, and CFSR were relatively small. In 2006 and 2009, the RMSEs in all
products were relatively small compared with the larger values in 2007 and 2008.
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Quantitative precipitation estimates (QPE) were higher than observations in most products
(Table 3) including in GSMAP_GAUGE, CMORPH_SUN, and CMORPH_ADJ. The QPEs of CHIRPS
were close to observation. However, PERSIANN_CCS and WCR severely overestimated precipitation.
On a seasonal scale, products without bias correction (CMORPH_RAW and PERSIANN_CCS) more
severely overestimated precipitation than Global/Regional reanalysis datasets (CFSR and HAR).
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Table 3. Multi-year mean annual and seasonal total precipitation of precipitation datasets (2003–2010)
employed in the present study (unit: mm).

No. Product Winter Spring Summer Autumn Annual

1 TRMM_3B42 20.4 99.4 314.2 101.7 535.6
2 GSMAP_GAUGE 15.1 77.5 277.6 88.5 458.8
3 CMORPH_ADJ 12.0 62.9 262.9 83.7 421.5
4 CMORPH_RAW 74.6 135.9 377.7 177.4 765.7
5 CMORPH_SUN 13.9 67.1 272.8 74.1 428.0
6 PERSIANN_CDR 18.9 118.1 400.7 122.5 660.2
7 PERSIANN_CCS 266.1 310.5 402.7 138.1 1117.3
8 CHIRPS 11.3 79.7 304.5 96.2 491.7
9 WCR 98.8 207.5 462.9 220.1 989.4
10 HAR, 24.4 103.0 296.4 108.7 532.5
11 CFSR 47.2 141.3 298.3 138.7 625.6
12 MSWEP 25.7 115.0 336.2 114.0 590.8
13 Observation 15.4 82.4 269.4 90.5 457.8

3.3. Evaluation on a Seasonal Scale

Most products overestimated and underestimated the intensity of precipitation of heavy and
relatively light rain, respectively (Figure 4). However, GSMaP_GAUGE (b), CMORPH_ADJ (c), and
CHIRPS (h) overestimated light rain and underestimated moderate and heavy rain. In spring, WCR
(i) overestimated precipitation intensity. CMORPH_SUN (e) showed a slight underestimation of
precipitation intensity. The QPE in products exhibited a general overestimation of precipitation in
summer; this was especially true for TRMM_3B42 (a), CMORPH_RAW (d), PERSIANN_CDR (f),
PERSIANN_CCS (g), WCR (i), and MSWEP (l). In addition, other QPEs overestimated heavy rain,
while underestimating light and moderate rain. In autumn, the bias in QPE and observation was
the smallest of all seasons. GSMaP_GAUGE, CMORPH_ADJ, and CMORPH_SUN underestimated
precipitation intensity in all bins, which can be compared with overestimation of CMORPH_RAW,
WCR, and CFSR (k). In winter, except for PERSIANN_CCS and WCR, other QPEs overestimated
the precipitation during light rain events, and underestimated it during moderate and heavy rain.
The frequency of precipitation intensity of TRMM_3B42, GSMAP_GAUGE, CMORPH_SUN, CHIRPS,
and MSWEP had a similar pattern with small bias when compared with observations. Bias between
QPE and observation was present in summer and winter. For precipitation intensity, QPE overestimates
light and moderate rain and underestimates heavy rain. In winter, the precipitation intensity was
normally <25 mm.
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Figure 4. Seasonal statistical characteristics of precipitation datasets in the Qinghai-Tibet Plateau.
The left subplot in each part of the figure indicates the seasonal scatter plot between rain gauge
observations and precipitation datasets (QPEs). The right subplot indicates the seasonal frequency
distribution of rain gauge observation and precipitation datasets (QPEs). The black line in left subplot
is 1:1 line and the dotted lines indicate the regression lines between rain gauge and QPEs. The seasons
are: MAM, March–May; JJA, June–August; SON, September–November; DJF, December–February.

3.4. Evaluation on a Monthly Scale

In addition to PERSIANN_CCS most products can capture the monthly bell-shaped temporal
pattern of precipitation, more so in the warm season and less in the cold season. The WCR dataset
systematically overestimated monthly precipitation (Figure 5a). In the warm season (July–September),
WCR, PERSIANN_CDR, and CMORPH_RAW severely overestimated precipitation. Even in the cold
season (September–April), CFSR and CMORPH_RAW also overestimated the monthly precipitation.
It is known that lower brightness temperatures of cloud tops indicate stronger precipitation intensity.
Since lower clouds (e.g., cumulus and nimbostratus), have heights > 5 km in the Qinghai-Tibet Plateau
(the average height of the Qinghai-Tibet Plateau is 4 km.), their means the brightness temperatures are
quite low. So, IR-retrieved precipitation (the PERSIANN family) may overestimated. The parameters
of the WCR are suitable for Xinjiang since this region has a lower elevation than the Qinghai-Tibet
Plateau. Thus, the WCR also overestimates precipitation due to its inappropriate parameters for
the altitude of the plateau. A higher CC was observed in CMORPH_SUN, GSMAP_GAUGE, and
MSWEP, which exceeded 0.60. The CCs in CHIRPS and TRMM were similar and relatively low in
November and December. For reanalysis, the CCs in CFSR and HAR were more than that of WCR.
The monthly changes in CC for CMORPH_ADJ and CMORPH_RAW were similar to the high values
in April–October, with CMORPH_ADJ being only a little higher than CMORPH_RAW. Although
TRMM_3B42, CMORPH_RAW and CMORPH_ADJ had relatively low values in the cold season,
TRMM_3B42 was generally better than CMORPH_RAW and CMORPH_ADJ.
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ME in most products was greater in the warm season (May–August; Figure 5c). In each month,
ME in PERSIANN_CCS, WCR, CMORPH_RAW, and PERSIANN_CDR was over 20 mm while the ME
for other products was less than 20 mm. The CMORPH_ADJ and CMORPH_SUN datasets had a negative
ME, and the ME in GSMaP_GAUGE was almost zero. The temporal pattern of RMSE was basically
the same with a greater RMSE in the warm season (May–September; Figure 5d). With a precipitation
intensity of 50–150 mm, RMSE in PERSIANN_CCS and WCR were greater than the other datasets.
GSMaP_GAUGE had a relatively small annual RMSE throughout the year, especially in winter (less than
20 mm/month).

3.5. Evaluation by Scorecard

Scorecards are normally utilized when evaluating numerical weather prediction. In Figure 6,
the middle column is the CC for eight hydrological regions. The y-axis is the gridded precipitation,
and the x-axis represents the 12 months of a year. The red color represents the positive CC, and the
blue color represents negative CC. Colors appearing more red or warmer indicate higher positive CC,
while colors appearing more blue or cooler indicate higher negative CC. The same color representation
is used for ME in the third column. The varying color intensities should assist in making quick and
judgements of the statistical metrics.
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Figure 6. Statistical metrics of monthly precipitation in eight basins of the Qinghai-Tibet Plateau.
The quantitative precipitation estimates (QPEs), Correlation coefficients (CCs), and mean error (MEs)
are shown respectively in eight river basins as follows: (a–c) Brahmaputra, BRA; (d–f) Hei, HEX; (g–i)
Inner Tibetan Plateau, INN; (j–l) Mekong River Basin, MEK; (m–o) Salween River, SAL; (p–r) Qaidam
Basin, QAI; (s–u) Yangtze River Basin, YAN; (v–x) Yellow, YEL.
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In the BRA Basin, CC in TRMM_3B42 and GSMaP_GAUGE was greater than 0.60 in a year,
and CC in the CMORPH family of datasets (except CMORPH_SUN) was below 0.40 (Figure 6b).
Regional reanalysis of WCR and HAR had a higher CC in the cold season (September–April). Most
products overestimated the monthly precipitation except for an underestimation by CMORPH_ADJ
in Mar–July. In the HEX Basin, most products performed poorly, especially the CMORPH family
of datasets (except CMORPH_SUN). The CMORPH_SUN had a higher CC than other products
(Figure 6e). CFSR had a comparatively ME in May–September, and PERSIANN_CDR had small ME
in July–September. In the INN Basin, CC in GSMaP_GAUGE and CMORPH_SUN was relatively high
(Figure 6h). The CC in other products performed better in the warm season and more poorly in the
cold season. The PERSIANN_CCS and WCR had an obvious positive ME. The ME in GSMaP_GAUGE,
CMORPH_ADJ, and CMORPH_SUN was lower than other products in a year. In the MEK Basin
(Figure 6k), the CC in TRMM_3B42, GSMaP_GAUGE, MSWEP, CHIRPS, and CMORPH_SUN was
>0.60 in a year. The CC of the HAR was <0.30 in June–September, and the CC in CFSR was a little higher
than the CCs in WCR. TRMM_3B42, GSMAP, MSWEP, CHIRPS, CMORPH_SUN, and CMORPH_ADJ
had smaller MEs than those of other products.

In the QAI Basin (Figure 6n), for the CMORPH family of datasets (with the exception of
CMORPH_SUN) the CC was lower during the cold season and higher during the warm season.
In general, the CCs in TRMM_3B42, GSMaP_GAUGE, CMORPH_SUN, and MSWEP were higher than in
other databases. Moreover, the CC in CHIRPS and PERSIANN_CDR was also relatively high. In addition
to WCR, and HAR, which had a weakly negative ME in the warm season, the other products had a small
positive ME in a single year. In the SAL Basin (Figure 6q), the CC in CMORPH_ADJ, CMORPH_RAW,
PERSIAN CDR, and WCR (except PERSIANN_CCS) was relatively low in July–September. In addition,
these products also had a negative ME. In the YAN and YEL basins (Figure 6u,x), the ME in TRMM_3B42,
GSMAP_GAUGE, CMORPH_ADJ, CMORPH_SUN, and CHIRPS was relatively small compared with
other datasets having positive ME.

3.6. Evaluation of Precipitation Intensity

In general, QPE products in the present study could capture the pattern of intensity for daily
precipitation in the Qinghai-Tibet Plateau. In addition to CMORPH_RAW, PERSIANN_CCS, and
WCR, Figure 7a,b show that most products in the INN and QAI basins overestimated precipitation
at intensities of 0.1–1.0 mm/d. Moreover, they underestimated precipitation intensity that was more
than 10 mm/d. For precipitation intensities over 15 mm/d in other basins, WCR, CMORPH_RAW,
and PERSIANN_CCS obviously overestimated and could be compared to the underestimation in
MSWEP, CFSR, and GSMAP_GAUGE. The CHIRPS dataset, underestimated precipitation intensity of
0.1–3.0 mm/d, but overestimated precipitation intensity over 3 mm/d. In contrast, MSWEP overestimated
precipitation intensity of 0.1–2.0 mm/d and underestimated it in other precipitation intensity bins.

In all basins, PERSIANN_CCS obviously underestimated precipitation intensity of 0.1–1.0 mm/d,
and overestimated precipitation intensity of >5 mm/d. For CMORPH_RAW, it slightly underestimated
precipitation intensity of 0.1–1.0 mm/d and overestimated precipitation intensity of >20 mm/d compared to
PERSIANN_CCS. However, CHIRPS, which was infrared (IR)-retrieved precipitation with ground-based
rain gauge bias correction, only underestimated in precipitation intensity of 2–5 mm/d. In precipitation
intensity of 0.1–1.0 mm/d, MSWEP, TRMM_3B42 and CMORPH_ADJ overestimated compared to
observations. However, these products always keep the overestimating order of TRMM_3B42 > MSWEP
> CMORPH_ADJ. In precipitation intensity of >15 mm/d, MSWEP showed a stronger underestimating
trend than TRMM_3B42 and CMORPH_ADJ. In most basins, CMORPH_SUN showed a stronger
underestimating trend than CMORPH_ADJ in precipitation intensity of >15 mm/d.

In the Qinghai-Tibet Plateau, the instrument used to measure precipitation is the tipping bucket
rain gauge, without protection from the wind. After 2013, weighing rain gauges began to deploy. Most
official weather stations in the Qinghai-Tibet Plateau do not experience summer, during which the
2 m air temperature is >22 ◦C for five consecutive days. The majority of the time, when precipitation



Remote Sens. 2020, 12, 683 16 of 26

intensity is low, the precipitation type is either snowfall or sleet. Therefore, precipitation observations
are strongly impacted by wind. Moreover, most rain gauges located in valleys are indicated as points,
whereas the precipitation products are grids, indicating an area. In complex terrain, rain gauges in the
mountains could get more precipitation than the ones in valleys. Therefore, heavy rain observations
have great uncertainty, and it is possible that the precipitation products were correct.Remote Sens. 2020, 12, x FOR PEER REVIEW 16 of 27 
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Figure 7. The probability density function of precipitation in eight basins of the Qinghai-Tibet
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Basin (QAI); (d) Yellow River Basin (YEL); (e) Brahmaputra River Basin (BRA); (f) Mekong River Basin
(MEK); (g) Yangtgz River Basin (YAN); (h) Salween River Basin (SAL); (i) all eight river basins.

3.7. Evaluation of Extreme Precipitation

Most products overestimated R99 more than the observations did (Figure 8a). Most products
performed better in the INN and QAI basins than other basins. CMORPH_RAW, PERSIANN_CCS,
and WCR generated a larger value of R99 than that of other products. Most products maintained
a similar intensity for Rmax when compared with Rmax of observation (Figure 8b), with the exception of
CMORPH_RAW, and PERSIANN_CCS. This illustrates that most products could capture the daily
extreme precipitation events, but overestimated their intensity. R5dmax (Figure 8c) had the same pattern
as Rmax. In the MEK Basin, R5dmax was greater than in the other basins. The DD in CMORPH_RAW,
PERSIANN_CCS, WCR, and MSWEP had lower values than for other products (Figure 8d). In addition,
these products underestimated R5dmax in the MEK, SAL, and YAN basins than in other basins.

In the view of extreme precipitation intensity (including R99, Rmax and R5dmax), observations in BRA,
MEK and SAL showed bigger values of extreme precipitation index than one in other basins. In these
products, TRMM_3B42, CMORPH_ADJ, CMORPH_SUN, PERSIANN_CDR, and MSWEP could capture
the spatial pattern of these extreme precipitation index in all basins. In addition, GSMaP_GAUGE, CHIRPS
and CFSR also show insignificant spatial pattern. For CFSR, it shows stronger extreme precipitation
intensity in HEX. Moreover, HAR could capture extreme precipitation intensity in SAL and MEK, but fail
in BRA.
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4. Discussion and Future Work

Western China Reanalysis more severely overestimated precipitation than HAR, especially in
mountainous areas (Figures 2 and 3; Table 3). However, the horizontal resolution in the regional
reanalysis of HAR and WCR was close to 10 km. The two differences that may cause these errors exist
in both datasets. First, the forcing datasets of the HAR and WCR are the NCEP FNL (Final) Operational
Global Analysis data and the NCEP2 reanalysis datasets, respectively. The data assimilation technology
in FNL was four-dimensional variational data assimilation (4DVar), which was more advanced than
three-dimensional variational data assimilation (3DVar) used in NCEP2. Thus, the atmospheric
moisture in FNL, which plays an important role in predicting precipitation, was more accurate than
NCEP2. Second, the Weather Research and Forecasting Model (WRF) in HAR runs a 36-h simulation,
which uses 12 h for initialization and retains the subsequent 24-h simulation. For WCR, this simulation
from 1979–2013 was separated into 35 running streams in order to reduce climatic drift. Hence,
the precipitation simulation in WCR was mainly affected by the cloud microphysics and cumulus
convective schemes in WRF. However, HAR can refresh the initialization by FNL during cyclical
data assimilation. For the global reanalysis dataset of CFSR, which has a horizontal resolution of
0.313◦ (~38 km), this dataset can retain the annual trend with observation in the Qinghai-Tibet Plateau
with a little overestimation. In addition, even CFSR reanalysis data had its bias corrected by gridded
observation. Therefore, the statistical metrics in CFSR were close to those of SRP (Table 3 and Figure 3).
That means global/regional reanalysis can replace the SRP in the specified region. The highest horizontal
resolutions of NOAA’s global forecast system and the European Centre for Medium-Range Weather
Forecasts’ Integrated Forecasting System are 11 km and 9 km, respectively These horizontal resolutions
were quite close to the state-of-the-art horizontal resolution of the Global Precipitation Mission of
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Integrated Multi-satellite Retrievals. Thus, horizontal resolution will not limit the development of
applications used for global/regional reanalysis.

Furthermore, WCR showed that many high values of precipitation were centered in the lake
regions of the Qinghai-Tibet Plateau in comparison with the natural orographic spatial pattern of
precipitation in HAR (Figure 2). First, HAR uses the Lake Model [73], which was migrated from
the Common Land Model 4.5 in WRF while WCR does not. There was a hypothesis that these high
precipitation values were caused by higher temperature on the water surface in WCR, which may come
from the process of interpolating the nearest ocean’s (warmer Indian Ocean’s) sea surface temperature
into the water surface of the lake regions of the Qinghai-Tibet Plateau by WPS (in the WRF preprocess
system). Hence, the surface temperature in lake regions was higher than the surface temperature of
the surrounding environment. When the atmospheric moisture was high enough, the warmer surface
of lake regions in WCR can form more frequent and intense local convective systems, which can cause
more local convective precipitation than actually occurred from the surface of lakes in the regions
in HAR. However, the lake model in HAR can decrease the intensity of this surface temperature
difference between the surface of lake regions and the surrounding environment after the first 12 h of
initialization in WRF.

Aside from WCR, TRMM, and CMORPH also had relatively high value points of annual precipitation
in the lake regions of the Qinghai-Tibet Plateau (Figure 2). Tian et al. indicated that water surface
produce a rainfall-like signature when higher-frequency passive microwave channels are used for
scattering-based algorithms tuned to land surfaces [74]. Western China has many lakes, especially in
the Qinghai-Tibet Plateau. These will lead to some abnormally large values for precipitation when
precipitation is retrieved by passive microwave instruments (e.g., TRMM and CMORPH) when compared
with ground gauge observations.

The PERSIANN family is retrieved from the brightness temperature on top of cloud. The lower
brightness temperature indicates stronger precipitation intensity. However, the lower cloud (e.g., Cumulus
clouds) normally exists in the height of 5~6 km in the Qinghai-Tibet Plateau, as the average height of
the Qinghai-Tibet Plateau is more than 4 km. This means the brightness temperature of these lower
cloud is quite low. Therefore, IR-retrieved precipitation might overestimate. Generally, IR-retrieved
precipitation model is based on a machine-learning algorithm (e.g., Artificial Neural Network, ANN).
It strongly depends on train datasets, especially ground-based rain gauges that represents local climatic
characteristics. If a region lacks rain gauges observations, the IR-retrieved precipitation could not get
good performance. The product with bias correction, such as PERSIANN_CDR, could be better than
PERSIANN_CCS, even though it has higher spatiotemporal resolution. In all of the above analyses,
MSWEP generally outperformed other SRPs. Because MSWEP dynamically blended precipitation datasets
from SRPs, rain gauges, and NWP models with difference weights. MSWEP has obvious advantage
when compared with SRP with bias correction. Hence, in the future, MSBP can blend SRP-retrieved data
from the third generation of geostationary satellite (e.g., Japanese Himawari-8, Chinese Fengyun-4A,
and US Geostationary Operational Environmental Satellite-R), which have a horizontal resolution higher
than 2 km. Meanwhile, MSBP can also blend regional NWP models from WRF, ARPS, and COSMO
datasets. Thus, the problems related to downscaling and uncertainty can be solved. In China, the
China Meteorological Administration blends data from radar-retrieved precipitation, a dense network of
ground-based rain gauge observations, and SRP [75], which had a horizontal resolution of 1 km and
performed well. In addition, a previous study using WRF assimilated SRP by 4D-Var Data Assimilation
significantly improved WRF precipitation estimation over the Huaihe River Basin, China [76]. Therefore,
in future, two-way blending or hybrid blending may provide a new method for MSBP.

In this study, there are still some limitations. The relationship between observation and SRPs with
bias correction in Figure 9 is summarized from references [36,46,77–81]. All SRPs are bias-corrected by
gridded observation. These gridded observations (with the exception of GPCP) are only interpolated
by rain gauges from surface rain gauge databases, which include Global Telecommunication System
(GTS), Global Historical Climate Network (GHCN) and Global Surface Summary of the Day (GSOD).
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Therefore, these SRPs shares the same surface rain gauge database for bias correction. The different
performances come from difference between the products’ satellite sources and precipitation retrieval
algorithms. However, the number of rain gauges in these rain gauge databases and CMA’s database are
46 stations and 143 stations, respectively. The CMA’s database includes those rain gauges (46 stations)
used in the SRPs’ bias correction. Thus, it should be cautious that the evaluation in this study is not
completely independent, especially CMORPH_SUN. To avoid this evaluation problem, the reference
observation could be used the proxy gridded precipitation (e.g., precipitation retrieved from soil
moisture [82]), and the evaluation method could be used in the hydrological model (e.g., HBV model
[Hydrologiska Byråns Vattenbalansavdelning model] [46]) in future.
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5. Conclusions

In a complex terrain, such as the Qinghai-Tibet Plateau, knowing which precipitation datasets can
be suitably applied in hydrometeorology and understanding the effects of climatic change are distinct
challenges. In the present study, we evaluated the daily precipitation estimates from 12 precipitation
datasets from global/regional reanalysis, satellite-retrieved precipitation, and multiple sources of
blended precipitation in 2003–2010. The main conclusions are as follows.

1. For the spatial pattern of climate, MSWEP, GSMaP_GAUGE, TRMM_3B42, CMORPH_SUN,
and CHIRPS can be used to represent the spatial pattern of precipitation in arid/semi-arid and
humid/semi-humid areas of the Qinghai-Tibet Plateau. Although the horizontal resolution of
GSMaP_GAUGE and CHIRPS was more than 0.10◦, they fail to reproduce the spatial pattern of
orographic precipitation (e.g., in the Kunlun Mountains of the northern Qinghai-Tibet Plateau).
Furthermore, the CMORPH family, TRMM_3B42 and WCR have high value regions, which are
incorrect values caused by an algorithm from NWP models and a satellite retrieved algorithm.

2. Except for CMORPH_RAW and PERSIANN_CCS, most precipitation products can capture the
variability of change on an interannual scale. On an interannual scale, the correlation coefficients
in MSWEP, GSMaP_GAUGE, and CMORPH_SUN were higher than those of the other products.
In addition, the mean errors in TRMM_3B42, GSMaP_GAUGE, CMORPH_ADJ, CMORPH_SUN,
and CFSR were close to zero. GSMaP_GAUGE, CMORPH_SUN, and MSWEP had a smaller root
mean square error than the other products. In basins of the Qinghai-Tibet Plateau, the correlation
coefficients in the Hei River Basin and Inner Tibetan Plateau were relatively low. In the Qaidam
River Basin, the mean error had smaller values than in other basins. In addition, in the Salween
River Basin, mean error generally had negative values.

3. On a seasonal scale, the quantitative precipitation estimate in all precipitation datasets performed
poorly in summer and winter. Precipitation datasets generally overestimate light rain and
underestimate heavy rain. On a monthly scale, TRMM_3B42, GSMaP_GAUGE, CMORPH_SUN,
and MSWEP performed better than the other products. On a daily scale, quantitative precipitation
estimates in all precipitation datasets can basically reproduce the pattern of daily probability
density function. In arid/semi-arid areas, most products overestimate the probability of light
rain (0.1–1.0 mm) and underestimate the probability of moderate and heavy rain (over 10 mm),
even including MSWEP, CFSR, and GSMAP_GAUGE. Most extreme precipitation was generally
overestimated the extreme indices of R99, Rmax, and R5dmax and underestimated the extreme
index of the total number of days with daily precipitation less than 1 mm.

4. MSWEP, which employed three sources datasets (global reanalysis precipitation, satellite retrieved
precipitation, and ground-based) rain gauge observations, performed better than satellite-retrieved
precipitation with gauge bias correction and reanalysis. Furthermore, TRMM_3B42, GSMaP_GAUGE,
and CMORPH_SUN, which are blended and have bias correction with ground observations,
performed better than single-source precipitation (CMORPH_RAW, PERSIANN_CCS, WCR, and
HAR). Therefore, multi-source blended precipitation products will be expected to be the hotspots of
global and regional precipitation research in the future.
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