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Abstract: Aircraft recognition has great application value, but aircraft in remote sensing images
have some problems such as low resolution, poor contrasts, poor sharpness, and lack of details
caused by the vertical view, which make the aircraft recognition very difficult. Especially when
there are many kinds of aircraft and the differences between aircraft are subtle, the fine-grained
recognition of aircraft is more challenging. In this paper, we propose a non-locally enhanced feature
fusion network(NLFFNet) and attempt to make full use of the features from discriminative parts of
aircraft. First, according to the long-distance self-correlation in aircraft images, we adopt non-locally
enhanced operation and guide the network to pay more attention to the discriminating areas and
enhance the features beneficial to classification. Second, we propose a part-level feature fusion
mechanism(PFF), which crops 5 parts of the aircraft on the shared feature maps, then extracts the
subtle features inside the parts through the part full connection layer(PFC) and fuses the features of
these parts together through the combined full connection layer(CFC). In addition, by adopting the
improved loss function, we can enhance the weight of hard examples in the loss function meanwhile
reducing the weight of excessively hard examples, which improves the overall recognition ability
of the network. The dataset includes 47 categories of aircraft, including many aircraft of the same
family with slight differences in appearance, and our method can achieve 89.12% accuracy on the test
dataset, which proves the effectiveness of our method.

Keywords: aircraft recognition; remote sensing images; non-locally enhanced; part-level feature fusion

1. Introduction

With the development of space technology, the remote sensing image has become an effective
means to survey and monitor resources, environment, urban layout, and traffic facilities, playing an
increasingly important role in these fields. As a subtask of remote sensing image processing, aircraft
recognition is of great practical demand and application value. In our study, a remote sensing dataset
with 47 types of aircraft is collected from GoogleEarth, and many types belong to the same family
with very slight differences between them. Therefore, our research is a fine-grained recognition task of
aircraft in remote sensing images, which is very challenging.

On the one hand, aircraft recognition in remote sensing images is more difficult than in ordinary
optical images. Generally, remote sensing images of aircraft are acquired at different times and on
different platforms, and the light condition, atmospheric transparency, and sensor performance will
cause great differences in the imaging effect. Compared with ordinary optical images, remote sensing
images have their own unique characteristics which cause difficulties in image recognition: (1) The size
of aircraft is generally tens of meters, so the aircraft has only a few pixels in the remote sensing image
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with low resolution. (2) Weather conditions have a great impact on the image, especially atmospheric
damping, diffusion and scattering may reduce contrasts and sharpness considerably. (3) In addition,
due to the limitation of the vertical view, many details of aircraft in the vertical direction are occluded.
These factors will make it difficult to recognize the type of aircraft.

On the other hand, because there are many kinds of aircraft and the differences between them are
subtle, aircraft recognition in remote sensing images is much more challenging. Our dataset includes
47 types of aircraft, to our best knowledge, this is the aircraft recogniton research with the most types
of aircraft. By contrast, 7 kinds of aircraft are studied in Reference [1], while 8 kinds of aircraft in
Reference [2] and 10 kinds of aircraft in Reference [3]. Even in Reference [4], which studies aircraft
recognition as a fine-grained classification problem, only uses a dataset of 17 kinds of aircraft. In our
dataset, there are not only large categories such as passenger aircraft, transport aircraft, and fighter
aircraft but also many subcategories under each category, many of which belong to the same family.
The differences between these subcategories are very subtle, such as only a little difference on the
engine or empennage, so our research has to distinguish and recognize aircraft from fine-grained
features, which make it more difficult.

However, aircraft also have some available attributes, such as symmetrical shape, obvious
geometric features, obvious contour edges, and many repetitive structures. Fully exploiting these
attributes will be helpful to the aircraft recognition in remote sensing images.

In the early days, traditional aircraft recognition methods are mostly based on manual features by
extracting the texture, color, geometry, and other features of the image, and making certain reasoning
to classify the aircraft. References [5–7] utilize rotation-invariant characteristics to recognize aircraft.
These methods use thresholds to segment the overall contour or shape of the target and extract
rotation-invariant features, such as Hu moment, Zernike moment, wavelet moment, Fourier descriptor,
and scale invariant feature transform (SIFT) [8] for recognition. Dudani et al. [5] utilize Hu moment
invariant features extracted from binary images to automatically identify six aircraft types. Liu et al. [6]
combine Zernike invariant features with an independent component algorithm for aircraft recognition.
Zhang et al. [7] first use contour tracking technology to eliminate noise, and then use moment
invariants to identify the type of aircraft. Hsieh et al. [9] propose a hierarchical classification algorithm
based on four different features: wavelet transform, Zernike moment, distance transform, and bitmap.
Some methods are based on template matching technology [10–12], they utilize the extracted features
to match the parametric shape templates. Ge et al. [11] propose a coarse-to-fine process. In the
coarse stage, the pose of aircraft is roughly estimated by a single template matching with a defined
score criterion, and in the fine stage, a parametric shape model is derived by applying principal part
analysis and kernel density function. An et al. [12] propose a new idea to address the aircraft type
recognition problem by aircraft’s landmark as a template. In addition to the above methods, there
are also a few recognition methods [9,13] that estimate the direction first after binarization and then
recognize the types of aircraft, which actually takes advantage of aircraft shape characteristics, such as
symmetry. However, these methods rely heavily on handcrafted features, thus lack generalization and
discriminative representation ability, which are very important when there are many categories and
the differences between categories are subtle.

In recent years, deep learning has achieved great success and developed many excellent neural
networks such as Alexnet [14], VGG [15], ResNet [16], which are widely used in image processing
fields such as classification, detection, and segmentation. Because of its better fitting ability and
robustness, more and more remote sensing images of aircraft begin to be processed and recognized
by deep neural networks. Henan et al. [17] use the multilayer perceptron for aircraft identification.
Fang et al. [18] remove the interference area and leave the suspended target area in the image using
the contour tracing method, normalizing moment invariants of the aircraft by extracting them from
the sample, then training the BP neural network for the recognition of the aircraft. Diao et al. [19]
attempted to utilize thedeep belief network (DBN) to solve the aircraft recognition task. Given a
training set of images, a pixel-wise unsupervised feature learning algorithm is utilized to train a mixed
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structural sparse restricted Boltzmann machine (RBM). An et al. [12] propose a new idea to address the
aircraft type recognition problem by the aircraft’s landmark detection, and use a convolutional neural
network called the vanilla network for all landmark regressions. Zuo et al. [20] use a convolutional
neural network (CNN) for semantic segmentation, and then put the segmented aircraft mask into
the classification algorithm. Zhang et al. [2] train a conditional generation of adversarial network
from which the multi-scale characteristics of aircraft can be extracted. Fu et al. [4] adopt a multi-class
activation map to locate the aircraft in the image and use a mask filter to eliminate interference in the
original image.

In the field of image processing, self-similarity in an image has received growing interest.
Perceptual grouping follows some principles, such as the proximity and the similarity to extract
groups from initial primitives (such as edges and curves), organize them into sets that have similar
"perceptual" content, and use the sets for recognition. Kim et al. [21] propose a hierarchical approach
to extracting lines and polygons in digital images based on perceptual grouping. Randall et al. [22]
propose a Hierarchical Cluster Model to extract object symmetries from a digital image. Michaelsen
et al. [23] propose a method for building recognition in high-resolution SAR images based on
perceptual grouping, which make use of symmetry and repetitive similar structure in remote sensing
images. Bag of visual words model is another way to exploit similarity, which cluster similar visual
descriptors together to form a visual vocabulary. Csurka et al. [24] assign patch descriptors to a set of
predetermined clusters, construct a bag of keypoints, which counts the number of patches assigned
to each cluster, and then train multi-class classifiers using the bags of keypoints as feature vectors.
Batista et al. [25] propose a technique based on a bag-of-keypoints representation to identify images
containing buildings in the APM photographic collection. The self-correlation matrix of the image is a
simple and straightforward method to model the correlation between long-distance pixels. Des et al.
[26] first propose a non-local denoising algorithm based on image self-correlation. References [27–29]
use non-local means algorithms to remove noise in remote sensing images such as hyperspectral
images and radar images.

Inspired by the process of human visual recognition, when the differences between categories are
very subtle, we need to locate some important parts in the object firstly, and then carefully observe the
subtle features inside the parts. Zhang et al. [30] utilize Selective Search [31] algorithm and R-CNN
[32] to locate the head and body of birds in the sub-classification task of 200 species of birds [33],
but Selective Search algorithm consumes a lot of computational resources. Huang et al. [34] adopt
a full convolutional network to locate key points on the bird, then take a 6 x 6 size region as the
concerned part, and propose a two-stream classification network to encodes object-level and part-level
cues simultaneously. Zhou et al. [35] propose a generic technique called class activation mapping
(CAM), which enables CNN to locate distinguishing or informative areas on an image without using
any bounding box annotations. Peng et al. [36] obtain the saliency map by CAM, which is used as the
target-level attention, then the object-part spatial constraints are used to select discriminant parts from
the candidate parts.

One of the problems existing in recognition methods for aircraft in remote sensing images based
on deep learning is that the long-distance correlation in the aircraft images is not properly utilized to
enhance the distinguishing features. They use CNN for feature extraction, but CNN is limited in the
receptive field, and can only utilize local information within a certain range, unable to establish the
relationship between long-distance pixels, and unable to comprehensively utilize global information.
In fact, the long-distance correlation in the aircraft image is very obvious, such as significant object
edges, symmetrical wings, recurring engines and so on. To carry out fine-grained classification,
it is especially necessary to pay attention to some structures or details of aircraft. However, due to
such adverse factors as low resolution, poor contrasts and sharpness, some structures are easy to be
neglected by CNN. If there exist some similar structures elsewhere, the use of the correlation between
them can enhance such useful structures for classification, suppress interferential and irrelevant
information, and reduce the error rate of recognition.
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Although perceptual grouping and bag of visual words model are both effective ways to group or
cluster similar structures but their representation ability is not as good as that of deep neural network,
and it is difficult for them to adjust the weight of the clusters for fine-grained classification. On the
other hand, References [27–29] use non-local means algorithm to remove noise in remote sensing
images, but self-correlation is only used for filtering and denoising, just as a preprocessing method of
remote sensing images, and it is not integrated into the training process of deep neural network. Wang
et al. [37] introduce non-local operation into the deep neural network for the first time and design a
residual non-local module in the video classification task, which makes up for the deficiency of CNN
in global information perception. Li et al. [38] use non-local operation to remove the superimposed
raindrops on the image and achieve a good effect. In this paper, non-local operation is introduced into
neural network for fine-grained classification of aircraft in remote sensing images, so that the network
can make full use of the redundant mode in the aircraft image, learn the long-distance correlation of
aircraft, and with the guide of loss function, it can gradually focus on the structures and details that
are beneficial to classification and suppress other useless features during iterative training.

Another problem existing in recognition methods for aircraft in remote sensing images based
on deep learning is that they all treat the aircraft as a whole to extract features, instead of examining
detailed features inside its parts. They distinguish only a few types of aircraft, and the differences
between categories are relatively obvious. Therefore, the aircraft can be classified correctly by only the
overall features, and there is no need for further feature extraction and fusion of the internal details of
the parts. However, there are 47 kinds of aircraft in our dataset, especially different subcategories in
the same series, many of which are only slightly different from each other, so we must locate the parts
of aircraft and distinguish internal details inside the parts subtly.

Although Zhang et al. [30], Huang et al. [34], Zhou et al. [35], and Peng et al. [36] propose
some methods for part location, these methods are not suitable for our classification task of aircraft
in remote sensing images. Firstly, part localization and cropping methods do not take full advantage
of the geometric features of aircraft. Unsupervised localization methods [35,36] generate fuzzy and
irregular boundary of parts, easy to contain irrelevant areas, and have poor positioning accuracy.
While the supervised localization method [34] adopts a part cropping strategy that is not suitable
for aircraft, which takes the key point as the center to crop a box, and so makes the bounding box
relatively loose and may include some background. Secondly, when fusing features of each part, some
methods [30,36] need to put each part into a separate network for feature extraction, without sharing
the feature extractor, while others such as the method [34] have shared the feature extractor, but each
part has no chance to set any unique parameters, and cannot be adjusted respectively. In this paper,
we address these problems as follows: when locating the parts, according to the geometric features
of the aircraft, we align the posture of aircraft and adopt a reasonable cropping strategy to directly
crop 5 geometric regions based on key points, so can localize parts accurately and efficiently; when
fusing features of each part, we first put the whole image into the shared feature extractor, then crop
the corresponding feature sub-maps of each part on the output of the feature extractor, and then add a
part full connection layer (PFC) after the feature sub-maps of each part to learn the detailed features
inside the part, which cannot only share feature extractor, but also keep the flexibility of each part to
adjust independently, so can improve the network’s ability of extracting detailed features.

In this paper, a complete classification framework of aircraft is constructed based on the deep
learning method. Firstly, we adopt the CNN feature extractor to obtain the feature map of the original
image, and in view of the symmetry, repetitive structure, and obvious geometric shape of the aircraft,
we insert a non-locally enhanced module into the feature extractor, which utilizes the self-correlation
operation to enhance the effective features for aircraft classification. On this basis, we use key points
to crop 5 parts of the aircraft on the feature map, and extract the detailed features of each part by the
part full connection layer (PFC), and then integrated the features of each part by the combined full
connection layer (CFC) to complete the final classification. The main contributions of this paper include:
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(1) As far as we know, our proposed NLFFNet is the first piece of work that attempts to
incorporate non-local operations into the remote sensing image processing task based on neural
network architecture, which can get the global receptive field by the self-correlation algorithm,
and guide the network to pay more attention to the discriminating structures or details, so as to
enhance the effective features for classification.

(2) We propose an efficient method for part localization. According to the appearance
characteristics of the aircraft, we develop a reasonable cropping strategy, based on which we utilize
5 key points to generate the part masks, and then crop 5 parts by using these masks. On one hand,
the acquired parts provide the prerequisite for the subsequent extraction of subtle features inside each
part; on the other hand, these parts combine together to form the mask of the whole aircraft, which can
eliminate the interference of irrelevant backgrounds.

(3) We realize an efficient part-level feature fusion mechanism. By shared feature extractor, we get
the feature map of the original image, and then crop corresponding feature sub-maps of each part,
after that the part full connection layer (PFC) is utilized to extract the detail features inside each part,
on this basis, we adopt the combined full connection layer (CFC) to fuse features of all parts. In this
way, we cannot only share the feature extractor, but also keep the flexibility of each part to adjust
independently, and greatly enhance the recognition ability of subtle difference.

(4) By adopting the improved loss function, we increase the weight of hard examples in the loss
function and reduce the weight of examples that are too hard to be recognized, such as outliers, so as
to improve the overall recognition performance of the network.

2. Proposed Method

As described in Figure 1, the fine-grained aircraft recognition framework consists of four parts:
the part detection sub-network, the feature extraction sub-network, the feature fusion sub-network,
and the no-locally enhanced module inserted into the feature extraction.

The workflow is as follows:

(1) we get an image (denote as Image I) from the dataset, and the nose of the aircraft in Image I
may be oriented in any direction. We feed Image I into the part detection sub-network, and get
5 key points of the aircraft;

(2) we utilize the detected key points to correct the posture of the aircraft in Image I (Image I is
rotated accordingly), and generate 5 part bounding boxes according to the strategy, as described
in Section 2.2.1;

(3) we feed the rotated Image I into the feature extractor, and get the feature maps of the whole
image;

(4) we map the part bounding boxes generated in Step 2 to the feature maps generated in Step 3,
and get the corresponding feature sub-maps of each part;

(5) we further extract detailed features of each part and then integrate these features, as described
in Section 2.2.2.

In addition, according to the long-distance correlation of aircraft image, a non-locally enhanced
module is inserted into the feature extractor, which utilizes self-correlation calculation to improve the
features that are beneficial to classification.
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Figure 1. Framework of non-locally enhanced feature fusion network (NLFFnet).

2.1. Non-locally Enhanced Module

2.1.1. Long-distance Correlation of Aircraft in Remote Sensing Images

The remote sensing image dataset of the aircraft is collected from GoogleEarth. When using
imaging from different times and using different equipment, many images are greatly affected by the
external environment. Our dataset reflects the real situation of aircraft in remote sensing images.

It can be seen from Figure 2 that the image of the aircraft has obvious geometric features and
symmetrical structures, and there are many redundant modes, such as repeated engines and loads,
so there is obvious strong correlation information between the long-distance pixels, this characteristic
is of great value for aircraft recognition. At the same time, we find that some structures or details are
difficult to be observed because of low resolution, poor contrasts and sharpness (as show in Figure 2).
These structures or details may be right the differences between aircraft, if similar structures happen to
exist elsewhere, correlation between them can guide neural network to pay more attention to these
structures and enhance these effective structures and details.

Figure 2. Aircraft examples of our dataset. The aircraft has obvious geometric features and symmetrical
structure, and there are many redundant modes, which have strong long-distance correlation.
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2.1.2. Principle of Non-locally Enhanced Operation

In our processing framework, we utilize the front part of VGG19 [15] as the feature extractor.
The input image size is 224× 224× 3, after multiple convolution and pooling operations, output
the feature map with size of 14× 14× 512. Convolution operation in the extractor is a kind of local
operation, the output value of each position is obtained by convolution calculation between kernel
and the local pixels. Convolution operation assumes that adjacent pixels have a strong correlation,
while the correlation of pixels with a long distance is weak. However, there is an obvious correlation of
long-distance correlation in the remote sensing images of the aircraft, therefore, non-locally enhanced
operation should be adopted in aircraft recognition task.

Non-locally enhanced operation is essentially a self-attention mechanism, and its basic principle
is to construct the model’s long-distance dependence by a triple (key, query, value): obtain the
corresponding attention weight by dot product between key and query, and then multiply the weight
and value to get the final output. It is formalized as follows:

yi =
1

C(x) ∑
∀j

f(xi, xj)g(xj) (1)

and f(xi, xj) is defined as

f(xi, xj) = eθ(xi)
Tφ(xj) (2)

where x and y denote the input and output, i and j are the coordinates of pixels, the value range of
j is any coordinate in the image. C(x) is a normalized constant, f(.) is a two-input function used to
construct the correlation information between point i and point j, g(.) is a single input function to
calculate the influence of point j on point i, xi corresponds to the query in the triple, xj corresponds to
the key, and g(xj) corresponds to the value, while θ and φ denote the embedding of query and key
respectively. The summation operation is to synthesize the influence of all other pixels on xi(query).

As shown in Figure 3, key1 and key2 have a high similarity to the query, while key3 and key4 have
a low similarity to the query. The weight factor f (query, key1) and f (query, key2) are correspondingly
high, so the output value at the coordinate of the query point can be enhanced by the contribution of
high-correlation pixels such as key1 and key2.

query

key1 key2

key3

key4

Figure 3. Schematic diagram of the correlation between query and key.

2.1.3. The Realization of Non-locally Enhanced Module

The left middle part of Figure 1 briefly depicts the non-locally enhanced module. The input of
this module can be any feature layer in the neural network, and the output is exactly the same size as
the input, therefore, the module can be inserted into any position in the network without changing the
original network. This module adopts residual structure, which makes the gradient of self-correlation
operation more easily propagating in the network.
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Figure 4 shows the internal calculation process of non-locally enhanced operation. Before
calculating the correlation coefficient f (xi, xj), three embeddings are obtained respectively, so that the
module has one more chance to adjust before calculating the correlation coefficient, which enable the
network to enhance or suppress features more flexibly.
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Figure 4. Calculation of non-locally enhanced operation.

When faced with large size feature map, correlation operation will lead to large-scale matrix
calculation. As a compromise, the feature map can be sliced and calculated separately, and then the
parts can be combined together, as shown in Figure 5. In Section 3.5, we need to perform non-locally
enhanced operation on the feature map output by conv1_2, but the size of the feature map is 112× 112,
and the computational cost is too large. We adopt this strategy: firstly, divide the 112× 112 feature
map into four sub-maps with size of 56× 56; secondly, perform non-locally enhanced operation on
each sub-maps, refer to Figure 4, the matrix calculation cost of each sub-map is 1/16 of the feature map
with size of 112× 112, and the total calculated cost of the four sub-maps can be reduced to a quarter;
thirdly, combine the four outputs of non-locally enhanced operation into a whole feature map with
size of 112× 112.

Non-local op

Non-local op

Non-local op

Non-local op

.
.
.

Figure 5. Decomposition of non-locally enhanced operation.

2.2. Part-level Feature Fusion

The general classification network directly accesses several full connection layers and a softmax
layer after the convolution layers, so as to obtain the probability of each category. In this way, all
the pixels in the feature maps of the input image are treated as the same. When there are large
differences between classes, the network can distinguish the categories correctly, but in the face
of the classification task with slight differences between sub-classes, because the details are easily
overwhelmed by irrelevant or distracting information, this processing method is not competent. We
need to help the network locate the target and its parts in a certain way, then look for details in these
regions. In our method, we generate part’s bounding boxes by key points, extract the subtle features
inside each part, improve the network’s ability to distinguish subtle features, and then fuse these
features together for classification.
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2.2.1. The Strategy to Generate Bounding Boxes of Part

Aircraft are symmetrical in structure and have obvious key points in appearance, so the
corresponding parts can be cropped according to the key points. Compared with the part detection
method based on proposal boxes, the method based on key points has an obvious advantage, which can
reduce the search space and computation. According to the characteristics of the aircraft, five key points
are designed, which are located in nose, fuselage, empennage, left-wing and right-wing. We realize
key point detection by adopting the method proposed in Reference [39], build a simple and efficient
key point detection network based on resnet50 and 3 layers of deconvolution, and use the gaussian
heatmap of the key point coordinates as the monitoring information of the network.

According to the appearance characteristics of the aircraft, we develop a set of strategies as the
cropping rule of the part. We first correct the aircraft’s posture, we take the line between the nose and
fuselage as the datum line and rotate the image to make this line perpendicular to the X-axis.

After posture correction, the size of the aircraft is calculated by the following formula:

Wobj = |xlwing − xrwing| (3)

Hobj = |ynose − yempennage| (4)

For the parts of nose and fuselage, we offset the key point (Nose or Fuselage) by 5 pixels up as
the top boundary of the bounding box and take Wobject/2 and Hobject/2 as the width and height of the
bounding box. For the empennage, we also take Wobject/2 and Hobject/2 as the width and height of the
part’s box, take the x coordinate of empennage as the X-axis midpoint of box, took the y coordinate
of empennage as a reference, and Hobject*3/8 above the reference, Wobject1/8 down the reference as
the Y-axis interval of the box. The goal of this strategy is to take into account that the left and right
horizontal stabilizers are not on the same horizontal plane as the empennage, and most of the areas
will be skewed towards the top, this method can better contain the tail area without adding more
background areas.

For the bounding box of the wing, we deal with it in two cases according to the angle of wing,
where the angle is calculated by the line between fuselage and left-wing (or right-wing) and the line
between fuselage and empennage. As shown in Figure 6a–c, when the angle is less than or equal
to 60 degrees, draw a rectangular box diagonally with the line connecting fuselage and left-wing or
right-wing. Figure 6d–f is the case that the angle is greater than 60 degrees, and in this case, we use the
difference between the y-coordinates of Fuselage and left-wing (or right-wing) as the height of the
wing (denoted as Hwing). When cropping the wing, we reserve Hwing/2 above and below the wing, so
as to capture engines when the wing is spread horizontally. The wing clipping method is formalized
as follows:

Hwing = {α|ywing − y f uselage|} = f (x) =

{
2|ywing − y f uselage|, angle > 60

|ywing − y f uselage|, angle <= 60
(5)

Wwing = |xwing − x f uselage| (6)
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(a) (b) (c)

(d) (e) (f)

Figure 6. Two ways to crop wings.

2.2.2. Feature Extraction and Feature Fusion of Parts

Firstly, feature maps of each part are obtained by the shared feature extractor based on the part
bounding boxes. On this basis, we extract the subtle features inside each part by the part full connection
layer(PFC), and then fuse feature maps of each part by the combined full connection layer (CFC),
as shown in the right part of Figure 1.

To get the features of each part, the traditional method is to crop the original image, scale the
cropped part to meet the input requirements of the feature extraction network, and then obtain
the corresponding feature maps of each part through several separate neural networks. However,
this method would require a large amount of calculation, specifically 5 times for 5 parts.

In our method, a shared feature extractor is adopted, and transfer the cropping operation of part
to the feature maps, to directly obtain the corresponding feature sub-maps of five parts. After multiple
convolutions and pooling operations, the original image is transformed from the size of 224× 224 to
the feature map with size of 14× 14, and the scaling ratio is 16:1, the coordinates of the part boxes are
mapped to the feature map according to this ratio, and then crop the five-part boxes in the shared
feature map.

Different parts have different sizes and aspect ratios according to the cropping strategy, to facilitate
the subsequent feature fusion, it is necessary to align the feature maps of the cropped parts to the same
size. The size range of the cropped parts can be expressed as Psize = m× n, 2 < m < 7, 2 < n < 7.
We adjust these different sizes to 6× 6 and use bilinear interpolation to obtain the value of each pixel
after resize. Bilinear interpolation prevents the precision loss caused by the rounding operation and
retains the precision before resize.

We designed a part full connection layer (PFC), which is built by two full connection layers after
feature maps of each part, to further extract the details inside the part, which can be formulated as

yi = f (Wixi), i = 1, 2, ...5 (7)

where xi represents the input feature of part i, and yi represents the output feature of part i in the
PFC layer, Wi represents the weight parameter, and f represents the nonlinear activation function.
Especially Wi of each part are not shared because we need the network to extract the characteristics of
different parts separately.
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The PFC layer abandons the irrelevant areas and focuses on the features inside the parts. Each part
adopts a separate fully connected parameter matrix, which allows the network to learn individually
about each part and further focus on the subtle features that need to be paid attention to inside the part.

After the PFC layer, we adopt the combined full connection layer (CFC) to integrate the
information of all parts together. The outputs of the full connection layer of all parts are the same size,
which can be concatenated together as the input of the CFC layer. The CFC establish a connection
with each node in the PFC, so can model the internal relationship between different parts correctly,
which can be formulated as

y = fc(Wc(
5

∑
i=0

fp(Wixi))) (8)

where xi represents the input features of part i, Wi represents the weight parameters of part i,
Wc represents the weight parameters of the CFC layer, fc and fp respectively represent the activation
function of the CFC layer and the PFC layer, ∑ represent the concat operation between parts, and y
represents the final output feature vector of the CFC layer.

2.3. Hard Example Mining

As shown in Figure 7, in the fine-grained recognition task of the aircraft, there exist many hard
examples that are difficult to be accurately recognized by the neural network. There are mainly three
reasons: firstly, the differences between some categories are subtle; secondly, there are adverse factors
such as poor contrasts and sharpness in remote sensing images, which may cause images of different
classes to look the same; thirdly, as some labels come from the Internet, inaccurate labels may exist in
the dataset.

AN-12 AN-22 AN-26 C-160

Type 1 Type2 Type3 Type4

Figure 7. Some hard examples in the dataset. Type-1, Type-2, Type-3, and Type-4 are four sub-categories
of transport aircraft, they are very difficult to be distinguished in low-resolution remote sensing images.

In general, we use cross-entropy as the loss function of classification, which reflects the degree of
difference between the predicted value and the ground truth. The formula is as follows:

H(pgt, ppred) = −
n

∑
i

pgt(i) log ppred(i) (9)

where pgt is the ground truth, and ppred is the prediction value, n is the number of categories.
When the training reaches a certain stage, most examples can be accurately recognized by the

network, while only a few hard examples exist. As mini-batch is used to calculate loss function,
the value of loss function is mainly dominated by easy examples, and it is difficult for the network to
perceive loss changes caused by difficult examples, so cannot continue to optimize, resulting in an
inefficient training process and difficult improvement of classification performance.

To deal with the problem of unbalanced examples in the target detection task, Lin et al. [36]
propose focal loss function, adjust the weight of each example in the loss function of mini-batch
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adaptively according to the predicted value, restrain the easy examples appropriately, and increase the
influence of the hard examples, as shown in the Formula (10).

FL(pgt, ppred) = −α
n

∑
i
(1− pgt(i) ∗ ppred(i)))γ log ppred(i) (10)

In fact, the focal loss has two hyperparameters that require careful adjustments, moreover, it only
adjusts the weight according to the difference between the predicted value and the ground truth, but
does not reflect the proportion of the hard examples in the mini-batch and does not adapt to the change
of data distribution.

In Reference [40], a new gradient coordination mechanism (GHM) is proposed to hedge the
incongruity between examples. This method uses the distribution of the gradient norm to reflect the
imbalance between hard and easy examples, and the gradient norm is defined as

g = |pgt − ppred| (11)

which presents the difference between predict value and ground truth, with a value range between 0
and 1. Then, the gradient density function is used to represent the distribution of gradient norm:

GD(g) =
1

lε(g)

N

∑
k=1

δε(gk, g) (12)

where N is the total number of examples, gk is the gradient norm of the k-th example, ε presents a
neighborhood of g, and δε(gk, g) indicates whether gk is distributed in the neighborhood ε, and lε(g)
presents the length of the neighborhood.

With the continuous iteration of training, a large number of gradient norms(g) are concentrated
near the 0 value, leaving only a small number of gradient norms away from zero, which mean difficult
examples. Although the contribution of an easy example on the gradient is less than that of a hard
example, the total contribution of a large number of easy examples can exceed the contribution of a
small number of hard examples, and the training process will become inefficient. On the other hand,
when the network converges, there may be some too hard examples whose corresponding g value
is relatively large, and the density of these g values is slightly higher than that of the normal hard
example (because as the training iterates, the g value of the normal hard example is moved to the
neighborhood of the 0 value). These hard examples can be considered as outliers because they exist
stably even when the model converges. Because the gradient of outliers may be quite different from
other common examples, it may affect the stability of the model. If excessive attention is paid to these
abnormal examples like focal loss, parameter adjustment will be too large and these outliers will be
over-fitted, but at the same time, the fitting ability of other normal examples will be destroyed.

As mentioned above, the reciprocal of gradient density can be used as the loss weight factor of
the corresponding example, which can be formulated as follows:

βi =
N

GD(g(i))
(13)

LGHM−C =
1
N

N

∑
i=1

βiLCE(pi, p∗i ) =
N

∑
i=1

LCE(pi, p∗i )
GD(gi)

(14)

where N is the total number of examples, which plays a role of normalization.
The loss function LGHM−C cannot only enhance the influence of hard examples but also restrain

the influence of outliers on the loss function. Experimental results show that the loss function can
ensure the stability of the model and make it get a better classification result.
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3. Experiments and Results

3.1. Dataset

Currently, major public remote sensing image datasets [41,42] contain a few categories with large
interclass variance, such as ship, tank, harbor, plane, forest, building. It is easy to distinguish one from
another in these datasets, so it can only be used for common classification problems and cannot be
used for the study of the fine-grained classification of aircraft.

To study the fine-grained recognition of aircraft, we collected an aircraft dataset from GoogleEarth.
We classify the aircraft according to the specific type, rather than roughly divide them into passenger
aircraft, transport aircraft, training aircraft, for example. The dataset includes 47 types of aircraft,
which as far as we know, is the dataset with most categories of aircraft in remote sensing images.
Each type of aircraft has about 17 images, and each image is scaled to the size of 224× 224. Sixty
percent of them are used as the training set while forty percent as the test set, and the images in the
test set never appear in the training set. We use Labelme (a database and web-based tool for image
annotation described in Reference [43]) to mark the type information and key points of the image. Each
original image is marked with five key points, which are located in the nose, fuselage, tail, left-wing
and right-wing. Due to the small number of images, the original images need to be augmented to
enhance the generalization performance of the model. We mirror the images, also carried out random
translation operations in the upper, lower, left, and right directions, respectively. In the process of data
augmentation, coordinate transformation of key points is carried out to ensure the correctness of key
points after augmentation. The dataset will be public in the future. Please contact the corresponding
author to ask for the state of availability of the dataset.

3.2. Implementation Details

The NLFFNet network is built on TensorFlow 1.10, trained and tested on the operating system
Ubuntu 16.4, with an NVIDIA 1080Ti GPU which has 12 GB of memory.

We utilized the conv1_1 to conv5_4 of VGG19 network as a feature extractor. Due to the small
amount of data, if we directly start training scratch from random initialization parameters, it is likely
that over-fitting will occur. Therefore, we use the pre-trained parameters on imagenet as the initial
values of feature extractor, and other network parameters adopted the Xavier initialization. We train
the network using SGD optimizer with a mini-batch size of 32, and evaluate the performance of the
model with top-1 accuracy as a metric. Cross-entropy is adopted as the loss function and we compare
the effects of cross-entropy with focal loss and GHM-C loss function.

Learning rate is a very important parameter in the training process. If too large, the network
is prone to gradient explosion, or may not reach the optimal classification results. If too small, the
optimization speed of the network is too slow. In the setting of the learning rate, we adopt two
basic strategies: (1) Different learning rates are adopted for different parameters. Parameters without
pre-training have higher learning rates, while the parameters of the feature extractor, which are loaded
from the imagenet pre-training model, have a lower learning rate. (2) The cycle learning rate strategy
proposed in Reference [44] is adopted to improve the convergence speed without decreasing the
classification accuracy.

3.3. The Results of the Proposed Method

To check the effect of our proposed method, we conduct a series of comparative experiments with
other methods. Meanwhile, in order to observe the impact of non-locally enhanced module and part
feature fusion (PFF) method on classification results separately, we conduct an ablation experiment.

First, we train some classic CNN networks, including AlexNet, VGG, and Resnet. Due to the
small amount of data, we fine-tune based on the pre-training model to ensure the rapid convergence
of the model. It can be seen from the results in Table 1 that these classic fine-tuned networks have
been able to extract a lot of useful information from remote sensing images of aircraft, and effective
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classification results can be obtained as long as simple training is conducted. In addition, we also
compare with the image segmentation method in Reference [20]. We first train an aircraft segmentation
model, then align the direction, and recognize the type of the aircraft. The benefits of this approach
in Reference [20] are obvious: it separates the aircraft from the background, reducing the impact of
sundries on the ground, and it can be seen from Table 1 that this method has better performance than
ordinary CNN networks.

Our proposed method has two main improvements: firstly, we conduct the part-localization
and part-level feature fusion according to the geometric feature of the aircraft; secondly, we insert a
non-locally enhanced module into the feature extractor to enhance the feature beneficial to classification.
To check how much of performance boost these two improvements bring to the network, we make an
ablation experiment. First, we add a non-locally enhanced module to the feature extractor, according
to our experiment, it is better to put this module in the shallow layer of the network(between conv2_2
and conv3_1). Therefore, in Table 1, we record the classification accuracy when non-locally enhanced
module inserting between conv2_2 and conv3_1 of the feature extractor. In addition, we build a
part-level feature fusion network based on key points without a non-locally enhanced module, to
observe the classification performance improvement brought by the feature fusion method alone.
Finally, the non-locally enhanced operation and feature fusion method are assembled together to build
a complete fine-grained classification network of aircraft called NLFFNet.

As the proposed method utilizes an additional subnet for key point detection and feature fusion
of different selected parts except the baseline extractor module, it must need more computational
resources. We use inference time as the criterion of computational cost and evaluate the inference time
of the networks with a NVIDIA 1080Ti GPU. The inference time of the baseline feature extractor is 0.11
s, while our proposed method is 0.48 s, our method has a higher computing cost.

The comparison of the accuracy of each method is shown in Table 1, where "Extractor" refers to
the feature extractor, "non-local" refers to the non-locally enhanced module, and "PFF" refers to the
part-level feature fusion mechanism.

Table 1. Comparison results of the proposed method.

Method Accuracy

AlexNet [14] 70.89%
VGG19 [15] 80.39%
ResNet18 [16] 79.41%

Segmentation [20] 83.25%
Extractor + Non-local 86.55%
Extractor + PFF 87.38%

Extractor + Non-local + PFF (Proposed Method) 88.56%

3.4. The Influence of PFF

To observe the influence of part feature fusion on the network, we make a heatmap experiment
refer to Reference [45], the steps are as follows:

(1) Firstly, we select the feature maps we are interested in, such as the feature maps obtained
after the last convolution (with size of 14× 14× 512, and the following steps are assumed to deal with
this size).

(2) The influence of 512 feature maps in the softmax layer must be different, and the weight of
each feature map can be calculated by backpropagation. We select the node with the largest softmax
value (corresponding to the category with the highest confidence), calculate the gradient of the feature
map we were interested in base on backpropagation, and the mean value of the gradient of the feature
map is taken as the weight of the feature map.
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(3) Multiply each feature map by the weight to get a weighted feature map with a shape of
14× 14× 512, calculate the mean value in the third dimension to get a map with a shape of 14× 14 ,
then perform relu activation and normalization.

(4) The heatmap is resized to the shape of the original image, and calculate a weighted sum of the
heatmap and the original image, which is available to observation and analysis.

Heatmap can reflect the importance of each region of the image to the classification result, in other
words, it can be seen from the heatmap that the network gets a certain classification result because it
pays attention to which region of the image mostly.

As shown in Figure 8e–i, they represent the heatmap of the nose, fuselage, empennage, left-wing,
and right-wing, respectively. Then, the heatmaps of each part were assembled according to their
positions in the original image to obtain the concatenated heatmap as shown in Figure 8c. Based on
the concatenated heatmap, a threshold is set, and when the heat value is higher than the threshold,
it is truncated. Then, all heat values are normalized, and the area beyond the threshold is displayed
in a unique brown color to prevent confusion between the background color of the original image
and the color of the heatmap, so as to facilitate observation, shown in Figure 8d. It should be noted
that in order to facilitate observation, the heatmap is superimposed with the original image. During
the superimposition, the pixel value of the original image is multiplied by a weighting factor of 0.4,
while the heatmap is multiplied by a weighting factor of 0.6. In addition, the heatmaps of five parts
overlapped with a few area when stitching, so the value of the overlaped area get bigger than the real
value, and the visualization of the heatmap is automatically generated by calling the applyColorMap
function in opencv, which generates a smooth color scheme based on the maximum and minimum
values, as a result, the color of each part (as shown in (e)–(i)) is not completely consistent with the color
of corresponding parts of sub-diagram (c).

(a) (b) (c) (d)

(e) (f) (g) (h) (i)

b1

b2 b3

Figure 8. Heatmaps of aircraft Type0 before and after adding part feature fusion method. (a) original
image, (b) heatmap corresponding to conv5_4 without part feature fusion, (c) the result after
concatenation of the heatmap of each part, (d) the result after cutting off the heat value at the threshold,
and (e–i) are the heatmaps of five parts, respectively.

The aircraft in Figure 8 is misidentified before adopting a part-feature fusion method, and it could
be correctly recognized after using this method. By comparing (b) and (c) in Figure 8, it can be seen
that the part box excludes the interference in the upper right corner. In addition, compared with (h)
and box b2 in (b), it can be seen that the network pay more attention to the surface of the wing when
without the part-box, while the focused area is obviously shifted to the payload in front of the wing
when adding the part box, and the network could extract more detailed information conducive to
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classification. Similarly, by comparing (i) and box b3 in (b), it can be seen that the payload of the
right-wing is paid little attention when without the part-box, and the attention of the right-wing and
its payload increase obviously after adding the part-box.

The aircraft in Figure 9 is misidentified before adopting the part-feature fusion method, and it
could be correctly recognized after using this method. By comparing (b) and (c) in Figure 9, it can
be seen that the part-box excludes the interference on the left side from the attention of the network.
In addition, it can be seen from (a) that the left engine and the payload under the left-wing are not
obvious due to poor contrasts and sharpness. As shown in box b2 of the sub-diagram (b), the network
does not pay attention to the left engine and the payload under the left-wing when there is no part-box,
but in the sub-diagram (h), the network obviously pays attention to these details.

(a) (b) (c) (d)

(e) (f) (g) (h) (i)

b1

b2

Figure 9. Heatmaps of aircraft Type43 before and after adding part feature fusion method. (a) original
image, (b) heatmap corresponding to conv5_4 without part feature fusion, (c) the result after
concatenation of the heatmap of each part, (d) the result after cutting off the heat value at the threshold,
and (e–i) are the heatmaps of five parts, respectively.

A comprehensive comparison of Figures 8 and 9 shows that:

(1) All part-boxes stitching together actually form a mask of the target, which segments the target
from the whole image, and makes the network focus on the target itself, without interference
from irrelevant objects and backgrounds outside the target.

(2) The part full connection layer(PFC) allows the network to learn the details inside each part and to
better distinguish the nuances between the subclasses.

3.5. The Influence of Non-locally Enhanced Operation

We try to insert the non-locally enhanced module into different positions of the feature extractor,
conduct training respectively, and found that placing it after conv2_2 gets the best effect, as shown in
Table 2.
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Table 2. Performance comparison of inserting non-locally enhanced modules at different locations of
feature extractor.

Location Accuracy

non-local module after conv1_2 88.17%
non-local module after conv2_2 88.56%
non-local module after conv3_4 88.36%
non-local module after conv4_4 87.34%
non-local module after conv5_4 86.78%

To observe the influence of non-locally enhanced operation, we also draw the heatmaps based
on the principle of Grad-Cam [45]. Our non-locally enhanced module is inserted between conv2_2
and conv3_1, so we draw the heatmaps corresponding to conv2_2 and conv3_1. We also draw the
heatmap corresponding to conv5_4 to observe the influence of non-locally enhanced operation on the
final output of the feature extractor.

The aircraft Type41 in Figure 10 is misidentified without non-locally enhanced module and
can be correctly recognized after the addition of the module. In Figure 10, from the comparison of
(b) and (f), as well as a comparison of (c) and (g), it is found that a non-locally enhanced module
inhibits the interference of irrelevant objects on the ground. According to the comparison of the green
box in (d) and (h), the non-locally enhanced module makes the network pay more attention to the
canards(Canards are small delta wings on either side of the cockpit) of Type41, which is a significant
feature of Type41 that distinguishes it from Type40(This image happened to be misidentified as Type40
without non-locally enhanced module).

(a) (b) (c) (d)

(e) (f) (g) (h) (i)

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 10. Heatmaps of aircraft Type41 before and after adding a non-locally enhanced module.
The first row is the phenomenon without inserting the non-locally enhanced module, and the second
row is the phenomenon after inserting this module, and from left to right are the original image,
heatmap of conv2_2, heatmap of conv3_1 and heatmap of conv5_4, respectively.

The aircraft Type40 in Figure 11 is misidentified without non-locally enhanced modules, and can
be correctly recognized after the addition of non-locally enhanced modules. It is found from (b)(f) in
Figure 11 that this module suppress the interference caused by ground plaques. It can also be found
from (c),(g) in Figure 11 that the module suppress the interference brought by the ground line.
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(a) (b) (c) (d)

(e) (f) (g) (h) (i)

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 11. Heatmaps of aircraft Type40 before and after adding non-locally enhanced module. The first
row is the phenomenon without inserting the non-locally enhanced module, and the second row is
the phenomenon after inserting this module, and from left to right are the original image, heatmap of
conv2_2, heatmap of conv3_1 and heatmap of conv5_4, respectively.

A comprehensive comparison of Figures 11 and 10 shows that:

(1) With the addition of a non-locally enhanced module, the focused area on the conv3_1
heatmap is more accurate and concentrated than that without the module, indicating that
non-locally enhanced operations could guide the network to focus on effective details and ignore
useless features.

(2) With the addition of a non-locally enhanced module, heatmap of conv2_2 changes significantly
compared with that without the module, indicating that all parameters in the neural network are
interrelated, and non-locally enhanced modules could not only influence the subsequent feature
maps, but also influence the feature maps before the module.

(3) In the high-level semantic feature maps of conv5_4, the heatmap with non-locally enhanced
module is significantly more focused on the aircraft itself and rarely diffuses to irrelevant areas
such as the ground, indicating that the effect of the non-locally enhanced module in shallow
layers could be effectively transferred to high-level semantics to improve the final presentation
and classification ability of the feature extractor.

3.6. The Comparative Experiment of Loss Functions

In the training process of NLFENet, we take cross-entropy as the baseline and compare three
different loss functions, aiming at online mining of hard examples by the loss function. The comparison
results are shown in table 3.

According to the formula of focal loss, there are two hyperparameters that can be adjusted. γ is a
scalar, which is easy to be adjusted, while α is a vector with a length of 47, which corresponds to the
difficult degree of 47 types of aircraft respectively, it is highly dependent on manual experience for
careful setting, so it is very difficult to determine the appropriate value. Therefore, only γ has been
adjusted in this experiment, whereas α is a vector of all one.

According to the formula of loss function GHM-C, we must calculate the density of the gradient
norm, and because the gradient norm g is a continuous distribution between 0 and 1, we should first
to discretize it. When programming, we set ε = 0.05 and divide 20 intervals between 0-1 and count the
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number of g values in each interval, thus generating 20 density values (GD1, GD2...GDj...GD20), if the
value of gi falls in the k-th interval, we set GD(gi) = GDk approximately.

Table 3. Performance comparison of different loss functions.

Loss Function Accuracy

Cross-Entropy 88.56%
Focal Loss, γ=1 88.64%
Focal Loss, γ=2 88.78%
GHM-C Loss 89.12%

By observing the dataset carefully, it was found that there was a suspicious image of Type1 in
the training and test sets, which may be labeled incorrectly, as shown in Figures 12–14. In Figure 13a,
the image is recognized as type Type1 when cross-entropy is applied, and recognized as type Type27
when GHM-C loss is applied, which indicates that GHM-C loss regards it as an outlier, and the
contribution of this outlier is inhibited in the loss function.

(a) (b) (c) (d) (e)

(a) (b) (c) (d) (e)

(a) (b) (c) (d) (e)

Figure 12. Examples of Type1 in the training set, where (a) is obviously different from other images in
that the rear side of the wing has a certain curvature, while the rear side of the wing of other images is
a straight line.(a) (b) (c) (d) (e)

(a) (b) (c) (d) (e)

(a) (b) (c) (d) (e)

Figure 13. Examples of Type1 in the test set, where (a) is also different from other images in that
the rear side of the wing has a certain curvature, while the rear side of the wing of other images is a
straight line.

(a) (b) (c) (d) (e)

(a) (b) (c) (d) (e)

(a) (b) (c) (d) (e)

Figure 14. Examples of Type27 in the training set, it can be seen that (a) in Figures 12 and 13 is most
likely Type27.
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4. Discussion

The general image classification methods based on deep learning usually first obtain the feature
maps of the original image as a whole through the CNN network, and then classifies them according
to the feature maps. However, for the aircraft classification task studied in this paper, due to the
high similarity between sub-categories, the difference in the corresponding feature maps is very
subtle, so the general methods cannot be competent. We try to solve this problem from two aspects:
one is to enhance the structures and details beneficial to classification of the non-locally enhanced
operation; the other is to locate and discover the details by feature extraction and feature fusion of
parts. In fact, we can also try to convert the original image to a particular feature space, in this kind of
space, the similarity between examples of the same category increases (or the distance between them
decreases), while the similarity between examples of different categories decrease (or the distance
between them increases), so as to improve the clustering performance and improve the discriminant
ability of the classifier, which is exactly the method of metric learning.

Deep metric learning combines the feature representation ability of deep learning with the
similarity characterization ability of metric learning and realizes the perception from original input
to semantic output in an end-to-end manner, which has made important progress in several visual
tasks. General deep metric learning includes two aspects: the first is encoding original data to feature
vector by the neural network; the second is using loss function to carry out a similarity comparison
of a group of feature vectors. The classical metric learning loss function includes Triplet loss, N-pair
loss, and Angular loss, which are used to distinguish examples with small differences, such as the
face dataset. In the future, we will use deep metric learning methods to study the classification task of
aircraft in remote sensing images and further improve the discrimination ability of the network.

5. Conclusions

In this paper, a non-locally enhanced feature fusion network is designed for the remote sensing
image dataset with 47 categories of aircraft. Firstly, we insert a non-locally enhanced module into the
feature extractor to utilize global information and overcome the limitation of CNN’s receptive field,
guide the network to focus on discriminating regions, and enhance features beneficial to classification.
Secondly, we crop 5 aircraft parts on the shared feature extractor based on key points, then extract
and fuse features of these parts through the part full connection layer (PFC) and the combined full
connection layer (CFC), which can extract the subtle features inside the parts, as well as act like a
mask of aircraft, excluding background interference from the network attention. In the experiments,
we analyze the influence of non-locally enhanced operation and part-feature fusion method by the
heatmap in detail and verify the improvement brought by our method through contrast experiments.
Based on the combination of a non-locally enhanced operation and part-feature fusion, a new loss
function is introduced to mine hard examples online. In the challenging dataset, our method finally
achieved an accuracy rate of 89.12%.
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