
remote sensing  

Article

PCDRN: Progressive Cascade Deep Residual Network
for Pansharpening

Yong Yang 1, Wei Tu 1, Shuying Huang 2,* and Hangyuan Lu 1

1 School of Information Technology, Jiangxi University of Finance and Economics, Nanchang 330032, China;
greatyangy@jxufe.edu.cn (Y.Y.); weitu@stu.jxufe.edu.cn (W.T.); 2201810059@stu.jxufe.edu.cn (H.L.)

2 School of Software and Communication Engineering, Jiangxi University of Finance and Economics,
Nanchang 330032, China

* Correspondence: huangshuying@jxufe.edu.cn; Tel.: +86-791-8398-3830

Received: 14 January 2020; Accepted: 17 February 2020; Published: 19 February 2020
����������
�������

Abstract: Pansharpening is the process of fusing a low-resolution multispectral (LRMS) image with
a high-resolution panchromatic (PAN) image. In the process of pansharpening, the LRMS image
is often directly upsampled by a scale of 4, which may result in the loss of high-frequency details
in the fused high-resolution multispectral (HRMS) image. To solve this problem, we put forward
a novel progressive cascade deep residual network (PCDRN) with two residual subnetworks for
pansharpening. The network adjusts the size of an MS image to the size of a PAN image twice and
gradually fuses the LRMS image with the PAN image in a coarse-to-fine manner. To prevent an
overly-smooth phenomenon and achieve high-quality fusion results, a multitask loss function is
defined to train our network. Furthermore, to eliminate checkerboard artifacts in the fusion results,
we employ a resize-convolution approach instead of transposed convolution for upsampling LRMS
images. Experimental results on the Pléiades and WorldView-3 datasets prove that PCDRN exhibits
superior performance compared to other popular pansharpening methods in terms of quantitative
and visual assessments.
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1. Introduction

Remote sensing satellites such as Pléiades, WorldView, and GeoEye provide low spatial resolution
multispectral (LRMS) and high spatial resolution panchromatic (PAN) images. To obtain a fused
high-resolution multispectral (HRMS) image by fusing an LRMS image with a PAN image of the
same scene, pansharpening is considered a powerful image fusion technique. The HRMS image can
effectively integrate the spectral characteristics of the LRMS image with the spatial information of the
PAN image [1,2].

In recent decades, numerous approaches have been put forward for pansharpening.
The conventional methods for pansharpening can be classified into three major categories: component
substitution (CS)-based methods, multiresolution analysis (MRA)-based methods, and model-based
methods. The CS-based methods primarily include the intensity-hue-saturation (IHS) method [3,4],
the principal component analysis method (PCA) [5], and the Gram–Schmidt (GS) transform-based
method [6]. Although CS-based methods can usually be quickly and easily implemented [7],
obvious spectral distortions may be produced in the spectral domain of the fused image [1].
The MRA-based methods primarily include the Laplacian Pyramid method [8], à trous wavelet
transform (ATWT) method [9], discrete wavelet transform (DWT) [10], and non-subsampled Contourlet
transform (NSCT) [11]. MRA-based methods generally outperform CS-based methods in spectral
preservation. However, they often lead to the problem of spatial distortion [12]. There are several
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model-based methods that have been recently proposed [13–16]. Although model-based methods
generally exhibit better spectral information preservation, they are characterized by high computational
complexity and poor real-time performance.

Because deep learning can automatically learn additional features from various types of data, it has
gained considerable attention in recent years [17–21]. Different from the conventional pansharpening
methods, deep learning-based methods present more ideal solutions for improving the performance of
pansharpening. Masi et al. [17] developed a pansharpening approach that is based on a three-layer
convolutional neural network. PanNet was presented by Yang et al. [18], which achieved remote
sensing image fusion by spectra-mapping and network parameters training. To obtain the high
quality fused image, Wei et al. [19] presented a deep residual network (ResNet) for pansharpening.
Shao et al. [20] developed a two-branch network that can separately obtain salient features from MS and
PAN images. A multiscale and multidepth convolutional neural network (CNN) for pansharpening was
introduced by Yuan et al. [12]. He et al. [21] proposed two convolutional neural network frameworks for
pansharpening, i.e., DiCNN1 and DiCNN2, which can obtain a high quality fused image and converge
quickly. In the above-mentioned pansharpening methods that are based on deep learning, the LRMS
image is directly upsampled by a factor of 4 during the fusion process. However, this may result in loss
of high-frequency details owing to the difficulty in learning nonlinear feature mapping. In addition,
the mean squared error (MSE) loss function is often employed by many pansharpening methods
through deep learning. However, it is difficult for MSE to capture the differences in high-frequency
details between the fused image and the reference image. Consequently, this leads to the phenomenon
of excessive smoothing and loss of high-quality details.

To overcome the above-mentioned limitations, a new progressive cascade deep residual network
(PCDRN) for pansharpening was presented, which includes two residual subnetworks. Different from
direct upsampling by a factor of 4 during the fusion process in other pansharpening methods, we first
adopt two upsampling operations and then employ the two residual subnetworks to learn the nonlinear
feature mapping from the source images to the ground truth in two scales. We finally realize the fusion
of LRMS and PAN images in a step by step manner. To better train our network, a multitask loss function
is designed to enable PCDRN to extract more precise features. Furthermore, to eliminate checkerboard
artifacts in the fused image, the transposed convolution is replaced by the resize-convolution to
upsample the LRMS image. Compared with several existing pansharpening methods, the experimental
results demonstrate that PCDRN achieves better performance.

2. Related Work

2.1. Residual Network

He et al. [22] proposed a residual learning network architecture, which is substantially deeper
than the plain network. Figure 1 illustrates the structure of a residual block. It not only makes the
network deeper but also overcomes the vanishing gradient problem of the plain network.

Formally, the residual block is represented as:

y = F(x, {Wi}) + x (1)

where x and y are the input and output vectors of the layers considered, respectively. The function
F(x, {Wi}) denotes the residual mapping to be learned. As shown in Figure 1, F(x) is defined as:

F(x) = W2 ⊗R(W1 ⊗ x) (2)

where W1 denotes the weight of the first layer, W2 denotes the weight of the second layer, ⊗ denotes
convolution, R denotes the activation function Relu, and R(x) = max(0, x).
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2.2. Universal Image Quality Index

Wang et al. [23] presented a universal image quality index (UIQI), which is used to measure the
structure distortion degree. It is composed of three factors: loss of correlation, luminance distortion,
and contrast distortion.

The quality metrics is defined as:

UIQI(F, R) =
σFR

σFσR
·

2µFµR

µ2
F + µ2

R

·
2σFσR

σ2
F + σ2

R

(3)

where σF and σR denote the standard deviation of the fused image F and referenced image R, respectively.
σFR denotes the covariance of the fused image F and referenced image R.µF and µR denote the mean of
the fused image F and referenced image R, respectively. The optimum value of UIQI is 1.

3. Proposed Method

In this section, we put forward a new PCDRN for pansharpening, which exploits the two residual
subnetworks called ResNet to extract accurate features and progressively inject the details of a PAN
image into an MS image in a coarse-to-fine manner. A multitask loss function is proposed to prevent the
over-smooth phenomenon from preserving spatial information. Furthermore, to address the problem
of checkerboard artifacts in the fusion results, resize-convolution is adopted rather than transposed
convolution in the upsampling process of LRMS images.

3.1. Flowchart of PCDRN

To inject additional spatial information of the PAN image into the LRMS image, we design the
PCDRN for pansharpening. As shown in Figure 2, PCDRN consists of two residual subnetworks
ResNet1 and ResNet2, which are progressively cascaded to learn nonlinear feature mapping from
LRMS and PAN images to HRMS images.

In our experiments, the PCDRN was implemented through three stages.
Stage 1: The LRMS images are upsampled by a scale of 2 with nearest-neighbor interpolation,

and the PAN images are downsampled by a scale of 2. The upsampled MS images are then concatenated
with the downsampled PAN images to form the 5-band inputs.

Stage 2: The 5-band inputs are fed into ResNet1 to extract the coarse features. The ResNet includes
2 convolutional layers and 5 residual blocks. An element-wise sum is then performed on the feature
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maps of ResNet1 and the upsampled LRMS image in a channel by channel manner. Subsequently,
1 × 1 convolutional layers are utilized to reduce spectral dimensionality from 64 bands to 4 bands.
The 4-band results are upsampled by a scale of 2 using nearest-neighbor interpolation and then
concatenated with the PAN images to obtain new 5-band inputs.
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Stage 3: The new 5-band inputs are entered into the ResNet2, which exhibits the same structure as
that of the previous ResNet1, to extract finer features. After the LRMS image has been upsampled
twice, an element-wise sum is performed on the results of ResNet2 and the upsampled LRMS image,
channel by channel. The fused HRMS image is finally obtained by a 1 × 1 convolutional layer and an
activation function tanh. In addition, 1 × 1 convolution was employed several times in the network to
achieve the reduction of network parameters and boost the performance of PCDRN.

To validate the advantages of PCDRN, a performance comparison between the single ResNet and
PCDRN is presented in Figure 3. We observe that the two indices obtained by PCDRN are significantly
better than those obtained by the single ResNet.

Remote Sens. 2019, 11, x FOR PEER REVIEW 5 of 21 

 

Stage 3: The new 5-band inputs are entered into the ResNet2, which exhibits the same structure 
as that of the previous ResNet1, to extract finer features. After the LRMS image has been upsampled 
twice, an element-wise sum is performed on the results of ResNet2 and the upsampled LRMS image, 
channel by channel. The fused HRMS image is finally obtained by a 1 × 1 convolutional layer and an 
activation function tanh. In addition, 1 × 1 convolution was employed several times in the network 
to achieve the reduction of network parameters and boost the performance of PCDRN. 

To validate the advantages of PCDRN, a performance comparison between the single ResNet 
and PCDRN is presented in Figure 3. We observe that the two indices obtained by PCDRN are 
significantly better than those obtained by the single ResNet. 

 

 

Figure 3. Average peak signal-to-noise ratio (PSNR) [24] and universal image quality index (UIQI) 
[23] of the single ResNet and PCDRN on 180 groups of the simulated dataset from Pléiades. 

3.2. Multitask Loss Function 

A mean squared error (MSE) loss function is usually applied in deep learning-based 
pansharpening methods. However, the MSE loss function often loses high-frequency details, such as 
texture during the fusion process, which may result in poor perceptual quality and the over-smooth 
phenomenon. To address this problem, we design a novel multitask loss function comprising MSE 
loss and universal image quality index (UIQI) loss. 

26

27

28

29

30

31

32

1 41 81 121 161

PS
N

R

Epochs

single ResNet PCDRN

0.94

0.945

0.95

0.955

0.96

0.965

0.97

0.975

0.98

1 41 81 121 161

U
IQ

I

Epochs

single ResNet PCDRN

Figure 3. Average peak signal-to-noise ratio (PSNR) [24] and universal image quality index (UIQI) [23]
of the single ResNet and PCDRN on 180 groups of the simulated dataset from Pléiades.

3.2. Multitask Loss Function

A mean squared error (MSE) loss function is usually applied in deep learning-based pansharpening
methods. However, the MSE loss function often loses high-frequency details, such as texture during
the fusion process, which may result in poor perceptual quality and the over-smooth phenomenon.
To address this problem, we design a novel multitask loss function comprising MSE loss and universal
image quality index (UIQI) loss.
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The UIQI is often used to measure the structure distortion degree in image quality evaluation.
Based on the characteristics of UIQI, the UIQI loss in our network has been designed to preserve
structure information. Therefore, our multitask loss function LFusion can improve the performance of
the fusion network in preserving spatial details.

The LFusion is represented as:

LFusion = α·LFusion
NMSE + (1− α)·LFusion

NUIQI (4)

where LFusion
NMSE is the normalized MSE loss, LFusion

NUIQI is the normalized UIQI loss, and α denotes the
weight coefficient.

The LFusion
NMSE and LFusion

NUIQI are defined as:

LFusion
NMSE = β·(

1
n

n∑
i=1

‖F(x(i)) −R(i)
‖

2

) (5)

and

LFusion
NUIQI = γ·(1−

1
n

n∑
i=1

UIQI(F(x(i)), R(i))) (6)

where β and γ denote the normalized coefficients, n denotes the number of train image groups,
x(i) denotes a low-resolution MS image, F(x(i)) denotes a fused MS image, and R(i) denotes a reference
MS image.

In order to roughly balance the contribution of the MSE and UIQI losses, a normalized algorithm
is introduced as following Algorithm 1.

Algorithm 1. The Algorithm for Normalization method

Input: LRMS image (lrms), PAN image(pan),
the number of training epochs (max_train_epoch)

Output: the normalized coefficients β and γ
Initialize:
1) c← 0.00001

For i = 0 to max_train_epoch do

2) Input lrms(i) and pan(i) to compute LMSE(i) by LFusion
MSE = 1

n

n∑
i=1
‖F(x(i)) −R(i)

‖

2
and LUIQI(i) by

LFusion
UIQI = 1− 1

n

n∑
i=1

UIQI(F(x(i)), R(i)), respectively

If (converge)
3) Compute ∇LMSE(i) by ∇LMSE(i) =

∣∣∣LMSE(i) − LMSE(i− 1)
∣∣∣

4) Compute ∇LUIQI(i) by ∇LUIQI(i) =
∣∣∣LUIQI(i) − LUIQI(i− 1)

∣∣∣
5) Compute ∇LMSE by averaging the ∇LMSE(i)
6) Compute ∇LUIQI by averaging the ∇LUIQI(i)

Endif
Endfor
7) Compute the coefficient β by c

∇LMSE
and the coefficient γ by c

∇LUIQI

Finally, the LFusion
NMSE and LFusion

NUIQI are obtained by formula (5) and formula (6), respectively.
To illustrate the validity of the proposed loss function, we compare the performances of the MSE

loss function and the MSE + UIQI loss function, as shown in Table 1. The results demonstrate that the
PSNR value obtained by using the proposed MSE + UIQI loss function is higher than that obtained by
only using the MSE loss function. Similarly, our network comprising the MSE + UIQI loss function
also obtains UIQI value, which is higher than that obtained by using the MSE loss function.
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Table 1. Average PSNR and UIQI of PCDRN using MSE and MSE+UIQI loss on 180 groups of the
simulated dataset from Pléiades.

Methods PSNR
(↑)

UIQI
(↑)

PCDRN using MSE loss 31.3716 0.9754
PCDRN using MSE+UIQI loss 31.5914 0.9767

3.3. Resize-Convolution

Unlike the traditional convolution, the transposed convolution forms the connectivity in the
backward direction [25]. The transposed convolution is usually employed for upsampling images.
In addition, different from the weights in a traditional filter, the weights in the transposed convolution
are learnable without being predefined. However, transposed convolution can easily produce uneven
overlap, which may result in checkerboard artifacts in the image. Therefore, the resize-convolution
approach is employed to avoid the problem of uneven overlap, which has been known to be robust
against checkerboard artifacts [26]. The approach involves resizing an image using nearest-neighbor
interpolation and then executing a convolutional operation. To better illustrate this phenomenon,
we carried out a group of experiments to compare the performance of the fused image that employs
transposed convolution versus resize-convolution, which can be seen in Figure 4. As shown in Figure 4,
a small region is enlarged and shown on the left bottom for better visualization. From the enlarged box
in Figure 4a, we can observe the obvious checkerboard artifacts. From the enlarged box in Figure 4b,
we can observe that the region is smoother than that in Figure 4a.
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Figure 4. The comparison between transposed convolution and resize-convolution from the
WorldView-3 dataset. (a) Fused image using transposed convolution; and (b) fused image
using resize-convolution.

Table 2 shows the quantitative assessment of the results in Figure 4, in which the bold represents the
best value. As we can observe from the table, the experimental results by using resize-convolution are
better than those by using transposed convolution in most image quality indexes, including PSNR [24],
the correlation coefficient (CC) [27], UIQI [23], the spectral angle mapper (SAM) [28], and the erreur
relative global adimensionnelle de synthese (ERGAS) [29] except the Q2n [30] index.

Table 2. Quantitative assessment of the results in Figure 4.

Methods PSNR
(↑)

CC
(↑)

UIQI
(↑)

Q2n

(↑)
SAM

(↓)
ERGAS

(↓)

Transposed convolution 26.3580 0.9705 0.9576 0.8460 5.0280 5.3059
Resize-convolution 26.6129 0.9760 0.9621 0.8412 4.4173 5.1850
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To further demonstrate the superiority of the resize-convolution method, the polynomial (EXP) [31],
transposed convolution, and resize-convolution methods were evaluated by performing experiments
on 180 groups of the simulated dataset from Pléiades through a single ResNet. Figure 5 shows the
average PSNR and UIQI of these three methods. From Figure 5, we can find that single ResNet with
resize-convolution outperforms the other two methods on PSNR. In addition, it not only achieves
higher UIQI values than the method with transposed convolution but also achieves similar UIQI values
to the method with EXP. Thus, on the whole, the single ResNet with resize-convolution is superior to
the methods with transposed convolution and EXP.
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4. Experimental Results

4.1. Experimental Settings

4.1.1. Datasets

In the experiments, the MS images and PAN images were captured by the Pléiades and WorldView-3
satellites, respectively. The MS images of the Pléiades satellite contain four bands: red, green, blue,
and near-infrared. We selected red, green, blue, and near-infrared1 bands from the MS image of the
WorldView-3 satellite to comprise the new 4-band MS image. The spatial resolutions of Pleiades and
WorldView-3 datasets are described in Table 3.
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Table 3. The spatial resolutions of Pleiades and WorldView-3 datasets.

PAN MS

Pleiades 0.5 m GSD (0.7 m GSD at nadir) 2 m GSD (2.8 m GSD at nadir)
WorldView-3 0.31 m GSD at nadir 1.24 m GSD at nadir

The source images were degraded to lower resolution by a factor of 4 using Wald’s protocol [32,33].
In the approach, the original MS images were degraded by using a low-pass filter matched with
modulation transfer function (MTF) of the MS sensor, and the original PAN images were degraded by
using the ‘bicubic’ method. The sizes of the original MS and PAN images are 256 × 256 and 1024 ×
1024 pixels, respectively. In training, the sizes of the degraded MS and PAN images are 64 × 64 and
256 × 256 pixels, respectively. The original MS images are considered referenced images. To enhance
the generalization of our network, data augmentation approaches in [34] were used in the training
process. The 180 groups of simulated data from the Pléiades satellite and the 108 groups of simulated
data from WorldView-3 satellite were used as test datasets, respectively. Each group of simulated
data is composed of a 64 × 64 degraded MS image, a 256 × 256 degraded PAN image, and a 256 × 256
reference MS image. In addition, the 165 groups of real data from Pléiades satellite and 100 groups
of real data from WorldView-3 satellite were used to assess the performance of PCDRN. It should be
noted that the test datasets are not used to train PCDRN.

4.1.2. Training Details

The training of PCDRN is achieved in 200 epochs with a batch size of 9 for using adaptive moment
estimation (Adam). The learning rate ε is initialized to 8 × 10−5, which is divided by a factor of 2 for
every 50 epochs. The biases in the network are initialized to zero.

To further demonstrate the effectiveness of the multitask loss function, numerous experiments
were performed using different α values on 180 sets of the simulated dataset from Pléiades. The average
PSNR and UIQI of PCDRN using different α values on 180 groups of the simulated dataset from
Pléiades are shown in Figure 6. As shown in Figure 6, we can observe that the best performances are
obtained when α is set to 0.1 in formula (4). The PCDRN is implemented under TensorFlow 1.8 and
TensorLayer 1.8. The experiments were performed on an NVIDIA GeForce GT 1080Ti GPU.

4.1.3. Compared Methods

In this paper, PCDRN is compared with one interpolated method and eleven popular
pansharpening methods.

1. EXP: an interpolation method based on polynomial kernel [31];
2. AIHS: adaptive IHS [35];
3. ATWT: a Trous wavelet transform [9];
4. GSA: Gram Schmidt adaptive [36];
5. BT: Brovey transform [37];
6. MTF-GLP-CBD: generalized Laplacian Pyramid (GLP) [31] with MTF-matched filter [38] and

regression based injection model [28];
7. MMMT: a matting model and multiscale transform [16];
8. GS: Gram Schmidt [6];
9. MTF-GLP-HPM: GLP [31] with MTF-matched filter [38] and multiplicative injection model [39];
10. ASIM: adaptive spectral-intensity modulation [40];
11. DRPNN: a deep ResNet for pansharpening [41];
12. MSDCNN: a multiscale and multidepth CNN for pansharpening [12].
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The AIHS, GS, GSA, and BT are four typical CS-based methods. The ATWT, MTF-GLP-CBD,
and MTF-GLP-HPM are three MRA-based methods. MMMT and ASIM are two model-based methods.
Both DRPNN and MSDCNN are deep learning-based methods.
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Figure 6. Average PSNR and UIQI of PCDRN using different α values on 180 groups of the simulated
dataset from Pléiades.

4.2. Experiments on Simulated Data

In this subsection, to demonstrate the validity of PCDRN, we compared the visual effects and
quantitative assessments of simulated experimental results obtained from different methods. Six metrics
were used to evaluate the performance of PCDRN on simulated data from the Pléiades and WorldView-3
datasets, which include PSNR [24], CC [27], UIQI [23], Q2n [30], SAM [28], and ERGAS [29].

To better observe the texture details in the fused images, there are two rectangle boxes marked in
yellow, and the bigger box is the enlarged image of the smaller one. Note that the bold represents the
best performance of quantitative assessment in experiments.

4.2.1. Experiments on Pléiades Dataset

A group of fusion results on simulated data from Pléiades are shown in Figure 7. Figure 7a is
the reference image that was applied to assess the fused images. Figure 7b displays the degraded
PAN. In Figure 7c, the upsampled image by the EXP has good spectral quality but exhibits serious
spatial distortions. The corresponding fusion images obtained by twelve pansharpening methods
are presented in Figure 7d–o, respectively. As shown in Figure 7, the fusion results of the BT and
MTF_GLP_HPM methods suffer from serious spectral distortions. The fusion results of other compared
methods have obvious spectral distortions, such as the roof of the building in the enlarged box.
However, compared to all the comparison pansharpening methods, the fused result of PCDRN is closer
to the reference image by observation. Furthermore, from the corresponding quantitative assessment
of Figure 7 as shown in Table 4, PCDRN outperforms the other eleven pansharpening methods in
six metrics.
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Figure 7. Fusion results on simulated data from Pléiades. (a) Reference image; (b) PAN; (c) EXP;
(d) AIHS; (e) ATWT; (f) GSA; (g) BT; (h) MTF_GLP_CBD; (i) MMMT; (j) GS; (k) MTF_GLP_HPM;
(l) ASIM; (m) DRPNN; (n) MSDCNN; and (o) PCDRN.

Table 4. Quantitative assessment of results in Figure 7.

Methods PSNR
(↑)

CC
(↑)

UIQI
(↑)

Q2n

(↑)
SAM

(↓)
ERGAS

(↓)

EXP * 26.5538 0.9008 0.8900 0.8129 4.1067 5.0701

AIHS 27.4025 0.9231 0.9074 0.8491 4.5483 4.6003
ATWT 28.0016 0.9235 0.9279 0.8745 4.5283 4.2789
GSA 27.0666 0.9130 0.9265 0.8702 4.5274 4.7951
BT 20.6228 0.8936 0.8179 0.4855 4.3264 15.1748

MTF_GLP_CBD 27.2334 0.9129 0.9276 0.8712 4.4921 4.6934
MMMT 27.7634 0.9212 0.9225 0.8698 4.7816 4.3933

GS 26.7568 0.9046 0.8889 0.8366 4.5298 4.9587
MTF_GLP_HPM 22.3144 0.7899 0.8482 0.7274 4.7561 7.6598

ASIM 28.8910 0.9383 0.9448 0.9059 4.1985 3.8388
DRPNN 29.2947 0.9712 0.9500 0.9070 3.4037 3.9624

MSDCNN 28.0166 0.9608 0.9394 0.8660 3.4079 4.6946
PCDRN 30.2689 0.9846 0.9681 0.9171 2.9567 3.5617

* The EXP method is an interpolation method for MS Image, which is not a pansharpening method.

Furthermore, we perform experiments on 180 sets of the simulated dataset from Pléiades.
Table 5 tabulates the mean values of experimental results. As shown in Table 5, we can clearly
observe that PCDRN produces the best quantitative assessment results of the most metrics among all
pansharpening methods.
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Table 5. Average quantitative results on 180 groups of the simulated dataset from Pléiades.

Methods PSNR
(↑)

CC
(↑)

UIQI
(↑)

Q2n

(↑)
SAM

(↓)
ERGAS

(↓)

EXP * 26.9511 0.9279 0.9257 0.8161 3.1093 3.9761

AIHS 28.2598 0.9502 0.9431 0.8659 3.4181 3.4507
ATWT 28.7868 0.9504 0.9550 0.8832 3.3870 3.2380
GSA 27.9760 0.9454 0.9530 0.8757 3.5046 3.5725
BT 19.8484 0.9355 0.8576 0.5249 3.2301 12.8501

MTF_GLP_CBD 27.9234 0.9437 0.9519 0.8717 3.5005 3.5770
MMMT 28.6014 0.9496 0.9528 0.8839 3.5549 3.2942

GS 27.5243 0.9400 0.9331 0.8536 3.5229 3.7475
MTF_GLP_HPM 23.8909 0.8678 0.8995 0.7632 3.9791 5.5050

ASIM 29.4570 0.9594 0.9643 0.9067 3.2244 2.9717
DRPNN 30.1216 0.9805 0.9680 0.8846 2.6809 2.9884

MSDCNN 29.2428 0.9739 0.9629 0.8638 2.7117 3.2713
PCDRN 31.5914 0.9884 0.9767 0.9004 2.3488 2.6322

* The EXP method is an interpolation method for MS Image, which is not a pansharpening method.

4.2.2. Experiments on WorldView-3 Dataset

Figure 8 shows an example of the simulated experiment performed on the WorldView-3 dataset.
The reference and Pan images are shown in Figure 8a,b, respectively. The upsampled LRMS using
EXP method is shown in Figure 8c, which is also blurred as can be seen from the enlarged box. The 12
fused results are given in Figure 8d–o. From Figure 8d–o, we can observe that the results of the BT,
MMMT, and DRPNN methods have serious spectral distortions. The fused results of the ATWT, GSA,
MTF_GLP_CBD, GS, MTF_GLP_HPM, and ASIM methods exhibit some spectral distortions on the
roof of buildings in the enlarged box. The AIHS method yields obvious spectral distortion and some
artifacts that do not exist in the original image. Although the results of MSDCNN method have good
spatial quality, they show some spectral distortions in the enlarged box. In Figure 8, we can observe
a red line between the white and red areas, which can be clearly observed in the results of PCDRN.
However, in the results of other methods, the red line is very blurred or even nonexistent. We can also
observe that PCDRN is superior to other methods in preserving the spectral fidelity in the enlarged
box. For the corresponding quantitative evaluation of Figure 8 (see Table 6), PCDRN gains the best
fusion values in most metrics.

Table 6. Quantitative assessment of results in Figure 8.

Methods PSNR
(↑)

CC
(↑)

UIQI
(↑)

Q2n

(↑)
SAM

(↓)
ERGAS

(↓)

EXP * 21.7015 0.8676 0.8758 0.6946 4.9591 7.5501

AIHS 23.4222 0.9412 0.9097 0.8054 5.9824 5.6479
ATWT 25.3147 0.9466 0.9433 0.8957 5.7960 4.9356
GSA 25.6204 0.9480 0.9502 0.9045 7.0358 4.7366
BT 20.9394 0.9353 0.8793 0.6533 5.0673 10.7228

MTF_GLP_CBD 25.6786 0.9485 0.9490 0.9053 6.7749 4.6830
MMMT 24.9489 0.9422 0.9367 0.8862 6.0845 5.1410

GS 23.5740 0.9267 0.9081 0.8455 6.6026 6.1103
MTF_GLP_HPM 23.1149 0.9185 0.9277 0.8365 5.2112 5.9757

ASIM 25.6169 0.9473 0.9488 0.9083 5.9963 4.7283
DRPNN 24.5411 0.9604 0.9258 0.8676 5.8623 5.6337

MSDCNN 23.9079 0.9508 0.9175 0.8470 5.8183 6.1578
PCDRN 26.0631 0.9817 0.9566 0.9206 4.7731 4.9920

* The EXP method is an interpolation method for MS Image, which is not a pansharpening method.
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Figure 8. Fusion results on simulated data from WorldView-3. (a) Reference image; (b) PAN; (c) EXP;
(d) AIHS; (e) ATWT; (f) GSA; (g) BT; (h) MTF_GLP_CBD; (i) MMMT; (j) GS; (k) MTF_GLP_HPM;
(l) ASIM; (m) DRPNN; (n) MSDCNN; and (o) PCDRN.

Table 7 tabulates the average quantitative results on 108 groups of the simulated dataset from
WorldView-3. As can be observed, PCDRN achieves the best fusion results in most metrics.

Table 7. Average quantitative results on 108 groups of the simulated dataset from WorldView-3.

Methods PSNR
(↑)

CC
(↑)

UIQI
(↑)

Q2n

(↑)
SAM

(↓)
ERGAS

(↓)

EXP * 24.4725 0.8696 0.8754 0.6853 4.5627 6.2634

AIHS 26.0239 0.9431 0.9087 0.7960 5.1772 4.9621
ATWT 27.7866 0.9460 0.9419 0.8771 4.9188 4.1494
GSA 28.3915 0.9501 0.9534 0.8962 5.3194 3.8844
BT 21.8128 0.9367 0.8728 0.5729 4.6377 10.9669

MTF_GLP_CBD 28.2251 0.9483 0.9510 0.8906 5.2584 3.9354
MMMT 27.5249 0.9433 0.9355 0.8650 5.0332 4.2669

GS 26.8001 0.9399 0.9183 0.8504 5.2075 4.7135
MTF_GLP_HPM 23.6310 0.8831 0.8986 0.7906 5.7262 6.3586

ASIM 28.1808 0.9475 0.9484 0.8869 4.8056 3.9356
DRPNN 27.0167 0.9566 0.9337 0.8449 4.9077 4.5371

MSDCNN 26.5101 0.9506 0.9263 0.8300 5.0109 4.8904
PCDRN 28.8141 0.9781 0.9571 0.8872 4.2326 3.7930

* The EXP method is an interpolation method for MS Image, which is not a pansharpening method.

Therefore, according to the above experimental results on the simulated data from Pléiades and
WorldView-3 satellites, we find that PCDRN is better than the other 11 pansharpening methods.
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4.3. Experiments on Real Data

To demonstrate the effectiveness of our proposed method, we also compare the visual effects and
quantitative evaluations of real data experimental results obtained from 12 pansharpening methods.
The twelve pansharpening methods are evaluated on the real dataset from Pléiades and WorldView-3
in terms of quality with no reference (QNR) index [42]. The QNR metric is composed of the spectral
distortion index Dλ and the spatial distortion index DS. The optimum values of QNR, Dλ, and DS are
1, 0, and 0 respectively.

Similar to what was demonstrated on simulated data, two yellow rectangle boxes are marked in
each fused image to better observe the texture details. The bigger box is the enlarged image of the
smaller one.

4.3.1. Experiments on Pléiades Dataset

A set of fusion results on real data from Pleiades are shown in Figure 9. Figure 9a is the upsampled
LRMS using bicubic interpolation. Figure 9b displays the PAN image. Figure 9c is the upsampled
LRMS using the EXP method. As shown in Figure 9c, the upsampled image by the EXP method has
good spectral quality but exhibits serious spatial distortions. As we can see in Figure 9d–o, the result
of AIHS method has some artifacts in the enlarged box. BT and MTF_GLP_HPM methods yield
serious spectral distortions. The results obtained by ATWT, GSA, MTF_GLP_CBD, MMMT, GS, ASIM,
and DRPNN methods have some spectral distortions because they are oversharpened in the process of
pansharpening. The MSDCNN method produces slight spectral distortions as seen in the enlarged box.
Table 8 also shows the quantitative assessment of the experimental results with real data in Figure 9.
As it can be observed, PCDRN obtains the best values in QNR and Dλ metrics.
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Figure 9. Fusion results on real data from Pleiades. (a) MS image; (b) PAN; (c) EXP; (d) AIHS; (e) ATWT;
(f) GSA; (g) BT; (h) MTF_GLP_CBD; (i) MMMT; (j) GS; (k) MTF_GLP_HPM; (l) ASIM; (m) DRPNN;
(n) MSDCNN; and (o) PCDRN.
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Table 8. Quantitative assessment of results in Figure 9.

Methods Dλ

(↓)
DS
(↓)

QNR
(↑)

EXP * 0.0012 0.1961 0.8029

AIHS 0.0954 0.1035 0.8110
ATWT 0.1055 0.1080 0.7978
GSA 0.1447 0.1621 0.7167
BT 0.1509 0.1192 0.7479

MTF_GLP_CBD 0.1145 0.1042 0.7932
MMMT 0.0997 0.0908 0.8185

GS 0.1110 0.1452 0.7599
MTF_GLP_HPM 0.1284 0.1497 0.7410

ASIM 0.1008 0.0996 0.8096
DRPNN 0.0581 0.0162 0.9266

MSDCNN 0.0495 0.0243 0.9274
PCDRN 0.0376 0.0276 0.9358

* The EXP method is an interpolation method for MS Image, which is not a pansharpening method.

The average quantitative results on 165 groups of the real dataset from Pleiades are listed in
Table 9. From Table 9, we can testify that PCDRN not only obtains the best results of QNR and Dλ but
also obtains the second best results of DS in all the comparison methods.

Table 9. Average quantitative results on 165 Groups of the real dataset from Pléiades.

Methods Dλ

(↓)
DS
(↓)

QNR
(↑)

EXP * 0.0026 0.2055 0.7924

AIHS 0.1021 0.1142 0.7961
ATWT 0.1121 0.1172 0.7848
GSA 0.1347 0.1619 0.7259
BT 0.1660 0.1433 0.7153

MTF_GLP_CBD 0.1098 0.1011 0.8009
MMMT 0.1013 0.0982 0.8107

GS 0.1076 0.1465 0.7625
MTF_GLP_HPM 0.1424 0.1427 0.7368

ASIM 0.1105 0.1142 0.7887
DRPNN 0.0533 0.0363 0.9123

MSDCNN 0.0434 0.0462 0.9123
PCDRN 0.0375 0.0382 0.9256

* The EXP method is an interpolation method for MS Image, which is not a pansharpening method.

4.3.2. Experiments on WorldView-3 Dataset

Figure 10 displays a group of fusion results on real data from WorldView-3. The upsampled LRMS
using bicubic interpolation is presented in Figure 10a, and Figure 10b is the PAN image. The upsampled
LRMS using EXP method is given in Figure 10c, from which we can observe that the EXP method yields
obvious spatial distortions. From Figure 10d–o, we can observe that the AIHS method yields some
artifacts in the enlarged box. MTF_GLP_HPM, DRPNN and MSDCNN methods produce obvious
spectral distortions. ATWT, GSA, BT, MTF_GLP_CBD, MMMT, GS, and ASIM methods yield some
spectral distortions in the enlarged box. For the corresponding quantitative evaluation of Figure 10
(see Table 10), PCDRN gains the best fusion values in QNR and Dλ metrics.
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Figure 10. Fusion results on real data from WorldView-3. (a) MS; (b) PAN; (c) EXP; (d) AIHS; (e) 
ATWT; (f) GSA; (g) BT; (h) MTF_GLP_CBD; (i) MMMT; (j) GS; (k) MTF_GLP_HPM; (l) ASIM; (m) 
DRPNN; (n) MSDCNN; and (o) PCDRN. 
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Figure 10. Fusion results on real data from WorldView-3. (a) MS; (b) PAN; (c) EXP; (d) AIHS; (e) ATWT;
(f) GSA; (g) BT; (h) MTF_GLP_CBD; (i) MMMT; (j) GS; (k) MTF_GLP_HPM; (l) ASIM; (m) DRPNN;
(n) MSDCNN; and (o) PCDRN.

Table 10. Quantitative assessment of results in Figure 10.

Methods Dλ

(↓)
DS
(↓)

QNR
(↑)

EXP * 0.0005 0.1082 0.8913

AIHS 0.0391 0.0457 0.9169
ATWT 0.0676 0.0730 0.8643
GSA 0.0881 0.1130 0.8089
BT 0.1255 0.1113 0.7772

MTF_GLP_CBD 0.0749 0.0738 0.8568
MMMT 0.0493 0.0602 0.8935

GS 0.0534 0.0633 0.8866
MTF_GLP_HPM 0.1167 0.1460 0.7544

ASIM 0.0857 0.0907 0.8314
DRPNN 0.0589 0.0586 0.8859

MSDCNN 0.0554 0.0683 0.8801
PCDRN 0.0281 0.0480 0.9253

* The EXP method is an interpolation method for MS Image, which is not a pansharpening method.

Table 11 tabulates the average quantitative results on 100 groups of the real dataset from
WorldView-3. As we can see in Table 11, PCDRN obtains the optimal fusion results in all metrics.

Thus, from the above-mentioned experimental results on real data from Pléiades and WorldView-3
satellites, we can conclude that PCDRN outperforms other fusion methods in balancing the spectral
preservation and spatial enhancement.
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Table 11. Average quantitative results on 100 Groups of the real dataset from WorldView-3.

Methods Dλ

(↓)
DS
(↓)

QNR
(↑)

EXP * 0.0028 0.1163 0.8813

AIHS 0.0585 0.1032 0.8451
ATWT 0.0679 0.1113 0.8292
GSA 0.0778 0.1324 0.8011
BT 0.0994 0.1066 0.8058

MTF_GLP_CBD 0.0778 0.1041 0.8272
MMMT 0.0689 0.1024 0.8366

GS 0.0507 0.1106 0.8452
MTF_GLP_HPM 0.1011 0.1363 0.7782

ASIM 0.0803 0.1046 0.8241
DRPNN 0.0644 0.0836 0.8583

MSDCNN 0.0554 0.0849 0.8649
PCDRN 0.0279 0.0450 0.9285

* The EXP method is an interpolation method for MS Image, which is not a pansharpening method.

5. Further Discussion

To further verify the performance of PCDRN, experiments were performed on 90 groups of
the simulated images, which were selected from another scene of the Pléiades dataset. It should be
noted that these images were not used to train the PCDRN. An example of the simulated experiment
performed on the Pléiades dataset is shown in Figure 11. Figure 11a,b are the reference image and the
degraded PAN image, respectively. The upsampled LRMS using EXP method is shown in Figure 11c,
which is blurred because of not using the PAN image. Figure 11d–o displays the corresponding
fused results. In Figure 11d–o, the results of AIHS, ATWT, GSA, BT, MTF_GLP_CBD, MMMT, GS,
MTF_GLP_HPM, and ASIM methods not only suffer from serious spectral distortion but also exhibit
some artifacts. DRPNN and MSDCNN methods produce some spectral distortion. As we can
observe, the result of PCDRN is still closest to the reference image in 12 pansharpening methods by
visual inspection.

Table 12 tabulates the average quantitative results on 90 groups of the simulated dataset from
Pléiades. In Table 12, we can also find that PCDRN achieves the best values in 6 image quality indexes,
which can again prove the proposed PCDRN is effective.

Table 12. Average quantitative results on 90 groups of the simulated dataset from Pléiades.

Methods PSNR
(↑)

CC
(↑)

UIQI
(↑)

Q2n

(↑)
SAM

(↓)
ERGAS

(↓)

EXP * 27.1185 0.9287 0.9286 0.7936 3.3655 4.9278

AIHS 27.2114 0.9276 0.9273 0.7744 4.2540 5.0893
ATWT 27.3592 0.9231 0.9343 0.7742 4.5509 5.0941
GSA 26.2029 0.9143 0.9286 0.7534 5.3822 5.8476
BT 23.2679 0.9145 0.8656 0.6511 5.0901 9.0333

MTF_GLP_CBD 26.4855 0.9177 0.9313 0.7586 5.2536 5.6210
MMMT 27.2816 0.9275 0.9353 0.8046 4.5076 4.9474

GS 26.4368 0.9136 0.9164 0.7423 4.8918 5.6067
MTF_GLP_HPM 21.9264 0.8428 0.8587 0.6403 6.1466 7.9485

ASIM 27.6697 0.9336 0.9400 0.8234 4.2760 4.8197
DRPNN 28.7108 0.9692 0.9525 0.8474 3.5782 4.3122

MSDCNN 27.4453 0.9538 0.9405 0.8234 3.7876 4.9131
PCDRN 29.5375 0.9853 0.9603 0.8691 3.2530 4.0998

* The EXP method is an interpolation method for MS Image, which is not a pansharpening method.
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6. Conclusions 
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6. Conclusions

In this paper, we presented a new deep learning-based approach for pansharpening, i.e.,
PCDRN. Different from other pansharpening approaches, we interpolated LRMS images twice
and extracted features from source images using two residual subnetworks to inject details in two
sizes. To avoid the over-smooth phenomenon, we design a multitask loss function to train our
network to achieve high-quality remote sensing image fusion. To eliminate checkerboard artifacts,
a resize-convolution consisting of a nearest-neighbor interpolation and a convolution layer was
employed instead of transposed convolution for upsampling. Compared with other pansharpening
methods, the experimental results demonstrated that PCDRN exhibits the best performance. In the
future, we intend to develop an adaptive method of the multitask loss function to preserve additional
spatial information.
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