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Abstract: Investigations into the spatial dynamics of soil aggregate stability (AS) are urgently needed
to better target areas that have undergone soil degradation. However, due to the lack of efficient
alternatives to the conventional labor-intensive methods to quantify AS, detailed information on its
spatial structure across scales are scarce. The objective of this study was to explore the possibility of
using hyperspectral remote sensing imagery to rapidly produce a high-resolution AS map at regional
scale. Airborne Prism Experiment (APEX) hyperspectral images covering an area of 230 km? in the
Belgian loam belt were used together with alocal topsoil dataset. Partial least squares regression (PLSR)
models were developed for three AS indexes (i.e., mean weight diameter (MWD), microaggregate
and macroaggregate fractions) and soil organic carbon (SOC), and evaluated against an independent
validation dataset. The prediction models were then applied to more than 700 bare soil fields for the
production of high resolution (2x2 m) MWD and SOC maps. The PLSR models had a satisfactory
level of accuracy for all four variables (R? >0.5, RPD > 1.4), and the predicted maps were capable of
capturing the fine-scale as well as the between-field variabilities of soil properties. Variogram analysis
on the spatial structure of MWD showed a clear spatial organization at the catchment scale (range:
1.3 km) that is possibly driven by erosion-induced soil redistribution processes. Further analysis in
restricted areas displayed contrasting spatial structures where spatial auto-correlation of AS was only
found at field scale, thus highlighting the potential of hyperspectral remote sensing as a promising
technique to investigate the spatial variability of AS across multiple scales.
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1. Introduction

Soil aggregate stability (AS) is controlled by an array of elementary soil properties such as soil
organic carbon (SOC), texture and extractable metal oxides [1,2]. Agricultural management practices
and topographic positions also influence its dynamics, thus making AS a dynamic property that
evolves with space and time [3,4]. Decrease of AS in croplands not only hinders agricultural production
through the control over surface crusting and seedling emergence [5], but also increases the risks of
soil degradation, thereby compromising the physical protection of SOC by intact soil structure [6] and
amplifying the erosion-induced nutrient and pollutant transfer from soils to surface water [7]. Among
all influencing factors, SOC is frequently reported to be an essential one that positively controls the
dynamics of AS [8-10]. Meersmans et al. [11] reported a decreasing trend in cropland SOC content
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during a 50-year period, which increased the risk for soil structural degradation, especially in areas
where SOC concentrations were close to 1% or lower. The Voluntary Guidelines for Sustainable Soil
Management published by the Food and Agriculture Organization of the United Nations [12] also
identified the increase of SOC stock as an important measure to combat soil degradation. In light
of the current sustainable soil management efforts aiming to mitigate climate change (e.g. “4 per
1000” initiative [13]), numerous studies have shown the positive impact of crop residue retention and
conservation tillage on AS in croplands [10,14,15]. To better understand the underlying mechanisms
leading to the dynamics of SOC and AS, and to target areas that are vulnerable to soil degradation and
nutrient losses, it is necessary to monitor SOC and AS over large spatial and long temporal scales.

The importance of accounting for the spatiotemporal variability of AS is also recognized in soil
erosion assessments. As an indicator of soil erodibility to reflect a soil’s inherent resistance to external
erosive forces [16], AS is often used as an input into spatially distributed soil erosion models to
investigate erosion-induced soil redistribution patterns [17]. Performance assessments of such models
pointed to the gap between satisfactory spatial predictions of soil erosion and insufficient representation
of the spatial variability of soil erodibility [18]. Due to the lack of large-scale, high-resolution AS data,
current modelling practices often assume soil erodibility (as indicated by AS) as a static parameter,
instead of treating it as a spatiotemporally dynamic input. Among limited number of studies that
assessed the spatial variability of AS, Mohanmmadi and Motaghian [19] showed the large spatial
variation of AS with a range value of ca. 3 km from variogram analysis; Annabi et al. [20] also
demonstrated the spatial structure of AS in a geologically diverse region and pointed out the need to
capture small-scale variability of AS by increasing the sampling density. However, with wet-sieving
remaining to be the conventional method to measure AS in those studies, it is unrealistic to analyze a
large number of samples required to assess the large-scale variability of AS at a fine spatial resolution.
This highlights the necessity to develop new methods that allow efficient quantification of AS at large
scales and fine resolution.

Recent developments of hyperspectral remote sensing techniques have shown the potential to map
key soil properties, such as topsoil SOC and soil texture [21], both of which are important determinants
of AS. In particular, the Airborne Prism Experiment (APEX) [22] sensor offers high spectral and spatial
resolution images and has been proven to be capable of predicting SOC at field to catchment scales [23].
Other airborne hyperspectral imaging applications in digital soil mapping include developing a spectral
index to correction for soil moisture effects [24], and analysis of spatial organizations of mapped soil
properties (e.g. CaCOj3, iron and cation exchange capacity) [25]. Apart from using hyperspectral
images to predict and characterize soil properties, spatial patterns of erosion and deposition could
also be characterized by developing classification methods with spectrally-predicted elementary soil
properties as inputs [26], and by matching soil properties of different soil horizons emerging at the
surface with different soil erosion and deposition stages [27].

As of yet, few studies used hyperspectral remote sensing images to directly map secondary soil
physical properties across large scales, while laboratory-based hyperspectral data have already been
extensively explored to predict properties, such as AS, that are related to known soil chromophores [28].
For instance, soil mean weight diameter (MWD), a lumped index commonly used to express AS, and
different aggregate size fractions were successfully predicted using laboratory visible-infrared (Vis-NIR)
spectroscopy [29]. The authors attributed the good model performance to the close correlation between
AS and SOC, as the wavelengths that are known contributors to the prediction of SOC were also found
to be significant in the MWD prediction. This warrants further investigations on whether the successful
application of hyperspectral imagery to SOC mapping could be transferred to the mapping of AS.

The objective of this study was to develop a method for large-scale, high-resolution AS mapping
for the investigation into the spatial dynamics of AS. To this end, we aim to test the capability of
APEX hyperspectral imagery to predict AS across an agricultural region in Belgium at a 2x2 m spatial
resolution. The approach used in this study began with extracting bare soil fields based on pre-defined
spectral indexes that are representative of bare soils. Then, partial least squares regression (PLSR)
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models were established using the hyperspectral data extracted from APEX images. Finally, the AS
prediction model was evaluated against an independent validation dataset and an AS map of the
study area was produced. Such a map will not only provide detailed information on field-level soil
degradation status for the sake of precision agriculture, but at the same time allow assessments of
spatial variation of AS at multiple scales.

2. Materials and Methods

2.1. Study Region

The study region, over which APEX hyperspectral images were acquired in 2013, 2015 and 2018,
is located in the center of the Belgian loam belt (Figure 1). The area is a ca. 230 km? strip (SW corner:
50.59N, 4.69E; NE corner: 50.70N, 5.11E) from Gembloux to Lincent. It is characterized by geological
formations of the Quaternary and Tertiary Eras, with loess-derived haplic Luvisols (IUSS Working
Group WRB, 2015) as the major soil type. The climate in this region is temperate oceanic with mean
temperatures between 2.3 °C (January) and 17.8 °C (July), and the mean annual precipitation is 790 mm,
which is evenly distributed throughout the year [30]. Cropland is the dominant land use type with
productive silt loam soils on a rolling topography. Main crops are winter wheat, winter barley, sugar
beet, maize and potatoes. SOC content in this region is decreasing due to the intensive agriculture,
making it increasingly vulnerable to soil degradation [11].
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Figure 1. Location of the study region over which the APEX hyperspectral images (dashed rectangle)
were acquired, and calibration and validation samples were collected. The red rectangles are the two
representative areas selected for the spatial analysis of aggregate stability.

2.2. APEX Hyperspectral Images

The Airborne Prism Experiment, referred to as APEX, is a Belgian-Swiss consortium development
on behalf of the European Space Agency. It is a dispersive push broom imaging spectrometer, that is
mounted on a Leica PAV-30 stabilizing platform in the Dornier DO-228 aircraft (German Aerospace
Center) with N2 pressure system, covering the wavelength range from 400 to 2500 nm [22]. Several
flight campaigns have been completed since its onset in 2010, covering more than 160 areas across
Europe [31]. In this study, the APEX flight organized on September 2, 2018, covering a large percentage
of bare fields, was used for the prediction of AS. To enable the examination on the quality of the APEX
hyperspectral data, ground truth Vis-NIR reflectance spectra were collected at designated locations on
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the same day of the APEX flight, using an ASD Fieldspec 3 FR spectroradiometer (Analytical Spectral
Devices Inc., Boulder, CO, USA).

The APEX hyperspectral data were pre-processed by the Central Data Processing Center (CDPC) at
the VITO Remote Sensing Department, Mol, Belgium. Radiometric, spectral, and geometric calibrations
were carried out with the calibration cubes generated from data collected on the APEX Calibration
Home Base (CHB) at DLR, Oberpfaffenhofen, Germany [32]. Atmospheric correction was conducted
with the MODTRAN4 radiative transfer model following the algorithms given in [33]. Geometric
correction was performed by means of direct georeferencing using a C++ module developed by
VITO [34]. Input data from the sensor’s GPS/IMU, together with the boresight correction data and
the ASTER DEM were used during the ortho-rectification process. Then, the post-processed images
were resampled to a spatial resolution of 2 X 2 m and projected to WGS 84/UTM zone 31N. Each data
cube contains 285 spectral bands. Water absorption bands at 1339.5-1417.6 nm and 1795.4-1949.3 nm
regions and bands on the edge of spectra influenced by noise were removed, resulting in 255 bands for
the subsequent analysis.

2.3. Local Soil Dataset

A soil sampling campaign was completed in October 2018, approximately one month after the
acquisition of APEX images. 83 topsoil (0-10 cm) samples were collected, and at each sampling
location, a composite sample comprising five subsamples taken within a 3 m radius was prepared.
Then, the fresh samples were air-dried and divided into two subsets for soil analyses. The first subset
was sieved through a 2 mm mesh and analyzed for laboratory Vis-NIR spectra, SOC, texture, and pH,
while the second subset was passed through 3 mm and 5 mm sieves and soil aggregates between 3 and
5 mm were stored at room temperature for AS analysis. In particular, laboratory Vis-NIR spectra were
obtained with an ASD Fieldspec 3 FR spectroradiometer (Analytical Spectral Devices Inc.), as detailed
in [29]. Total carbon concentration was measured by dry combustion with a VarioMax CN analyzer
(Elementar GmbH, Langenselbold, Germany), and for the samples showing clear reactions under
10% HCl treatment, inorganic carbon content was measured using a modified pressure-calcimeter
method [35]. Then, SOC was obtained by subtracting the inorganic carbon content from total carbon.
Soil texture was measured by laser diffraction (LS 13320, Beckman Coulter, Brea, California, USA) after
removing organic matter with 35% H;O,, and pH was measured at 1:2.5 soil/water ratio by a pH meter
(PHS-3E, Leici, Shanghai, China). On average, the collected soils had a SOC concentration of 1.3%, pH
of 6.8, and clay, sand and silt fractions of 10.6%, 68.6% and 20.8% respectively.

AS was measured following the fast wetting treatment proposed in [8]. Briefly, 7-8 g of 3-5 mm
soil aggregates were subjected to fast wetting in deionized water for 10 minutes, in order to disintegrate
the aggregates through slaking. Next, the fragments were sieved through a 63 um sieve in ethanol.
The fragments larger than 63 um were dried in the oven at 40 °C for 48 h, and sieved through a column
of sieves to get the mass percentages for 63-125, 125-250, 250-500, 500-1000, and 1000-2000pum size
classes. Finally, aggregate mean weight diameter (MWD) was calculated by multiplying the mean
diameter of each size class with the mass percentage of the respective size class and dividing the sum
of these products from all size classes by their total mass percentages. Besides MWD, mass percentages
for microaggregates (63—250 um) and macroaggregates (250-2000 um) were aggregated and used as
response variables in the prediction of AS.

2.4. Development of Prediction Models for AS

Figure 2 depicts the work flow of the development and evaluation of prediction models for AS.
Detailed descriptions of each procedure are described below.
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Figure 2. Flow chart of the APEX image processing, model development and evaluation procedure.

2.4.1. Bare Field Selection

In order to map soil properties, the first and foremost task is to extract bare soil fields that are free
of vegetation and build-up areas from the images. It is well established that the normalized different
vegetation index (NDVI) can be used to eliminate the green vegetation. Also, soil moisture index
(SMI) was proven to be useful in minimizing the effect of soil moisture on soil spectra [24] and can be

calculated as follows:
_ 2049 — P2193

02049 + P2193

SMI @
where the normalized difference between the reflectance at wavelength 2049 and 2193 nm was used to
indicate the soil moisture level. A higher SMI value indicates a drier soil surface. A SMI threshold of
0.015 was adopted from Diek et al. [24] to indicate dry conditions. SMI values above this threshold were
assumed not to be disturbed by the noise caused by variation in topsoil moisture. Next, to determine the
meaningful threshold for NDVI that is most representative of the bare soils, 100 optimally-conditioned
bare fields were visually assessed and selected from the APEX images using the RGB bands, and
the NDVI range of these fields were used as thresholds. Consequently, the NDVI threshold was set
between 0.10 and 0.22. Lastly, the two pre-defined spectral indexes were used as bare soil selection
criteria and applied to the entire study area. A bare soil field was delineated if the entire field fulfilled
the criteria while at the same time excluding road networks and built-up areas. Thus, 788 fields
(41.2 km?) were extracted from the raw APEX images, covering approximately 18% of the study area.

2.4.2. Development of Prediction Models for AS and SOC

To construct a calibration dataset for the development of prediction models, the same criteria used
during the bare field selection were applied to the data points in the local soil dataset (see above). For
the geolocations that were detected as bare, the corresponding APEX spectra were extracted using the
“bilinear” method from the “extract” function provided by the R package “raster”. Then, the calibration
dataset was formed by combining the extracted APEX spectra and the analytical measurements of
soil properties (i.e., SOC, MWD, microaggregate and macroaggregate fractions), where the bands
of the spectra are the independent predictors, while the soil properties are the response variables.
A principal component analysis was performed on the APEX spectra to calculate the standardized
Mahalanobis distance (H) between each spectrum and the average spectrum [36]. Spectra with H > 3
were treated as outliers and were excluded from subsequent analysis. The reflectance spectra were
then transformed to absorbance (i.e., log(1/Reflectance)) prior to the partial least squares regression
(PLSR) to build prediction models for the AS indexes (i.e., MWD, microaggregate and macroaggregate
fractions). It should be noted that a PLSR model was also built for SOC following the same approach,
in order to compare its performance and influencing factors to those of MWD (see below). Lastly, the
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calibrated models for SOC and MWD were applied to all bare soil pixels of the entire study region, and
high-resolution SOC and MWD maps, covering 788 fields, were produced.

Tenfold cross-validation (CV) was performed to assess the predictive capability of the models.
Coefficient of determination (R?), root mean square error (RMSE), Ratio of Performance to Deviation
(RPD) values were used to evaluate the performance of (cross) calibration. The Variance Importance
Projection (VIP) index, a weighted sum of squares of the PLS weights, was calculated for both MWD
and SOC estimations. Spectral bands with VIP values greater than one are considered significant
variables for the PLSR model. Furthermore, the laboratory Vis-NIR spectra were resampled to the
APEX spectral resolution and subjected to the same modelling procedure as that of the extracted APEX
spectra. VIP indexes for both MWD and SOC estimations using the resampled laboratory ASD spectra
were then compared to the VIP indexes resulting from APEX-based models.

2.4.3. Independent Validation Dataset

To further assess the robustness of the calibrated model, an independent validation dataset was
created in October 2019. To avoid the time-consuming laboratory AS measurements, the independent
validation was carried out against the SOC model. As previously reported [29], SOC and MWD had
a close correlation in the study area and the spectral regions that contributed to the prediction of
MWD were known SOC predictors, we thus assumed that the model validation result against SOC
would largely translate into that against MWD prediction. A total of 43 topsoil samples were collected
following a stratified random sampling strategy. The predicted SOC map was divided into three SOC
concentration classes (i.e., <1%, 1-1.5%, and >1.5%), corresponding to increasing AS levels because
of the positive correlation between the two variables. In each class, 13-15 samples were randomly
selected at a one point per field density, in order to cover as many fields as possible. The same sampling
procedure used for the calibration dataset was adopted for the validation dataset. All samples were
prepared in the laboratory and measured for SOC content using the same protocol.

2.5. Analysis of the Spatial Variability of AS

Empirical variograms were estimated for MWD to allow for the examination of spatial structure
of AS in the study region. Firstly, 300,000 pixels were selected across the entire region by random
sampling and the empirical variogram was computed by the method-of-moments [37]. Secondly, in
order to investigate the small-scale variation in AS and potential distinct spatial structures for different
areas, two restricted areas (ca. 2 km?) that represent typical topographic and soil conditions of the
study region were selected. Then, empirical variograms, each with 100,000 randomly selected pixels,
were generated for these two areas. Theoretical variogram models (exponential, spherical or wave
model) were fitted to empirical models using weighted least squares method. The range of these three
variogram models were used to characterize the spatial variation of AS at multiple scales. All statistical
analyses were carried out with R (version 3.5.1).

3. Results and Discussion

3.1. Summary of Soil Properties for the Calibration and Validation Datasets

Out of the 83 samples in the local soil dataset, 49 samples met the selection criteria for bare soil
points and were thus included in the calibration dataset. The study region is characterized by a low
SOC content, which led to generally low levels of AS (Table 1). According to the AS classes proposed by
Le Bissonnais [8], a mean MWD of 0.35 mm represents highly unstable soils. This is reflected in a higher
average percentage of microaggregates in comparison to that of macroaggregates, meaning that the soil
aggregates were generally prone to breakdown forces and more fine fragments would be generated
in the event of heavy rainfall impact. The mean SOC concentration and its standard deviation were
similar for both the calibration and validation dataset, while the maximum SOC concentration in the
calibration dataset was higher.
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Table 1. Descriptive statistics of the SOC and aggregate stability indexes for the calibration and
validation datasets.

Variable ! Minimum Maximum Mean Std
Calibration (n = 49)
SOC (g 100 g™1) 0.75 2.02 1.20 0.28
MWD (mm) 0.20 0.77 0.35 0.14
Microaggregates (%) 26.27 72.58 45.20 9.04
Macroaggregates (%) 18.34 60.63 35.93 10.94
Validation (n = 43)
SOC 0.76 1.64 1.18 0.25

1 SOC, soil organic carbon; MWD, mean weight diameter; microaggregates and macroaggregates denote the mass
percentages of in the 63-250 and 2502000 um size fractions.

Similar to what was reported in a previous study that used the entire local soil dataset to explore
the relationship between SOC and MWD [29], a positive correlation (r = 0.79, P < 0.01) between the
two variables was found in the calibration dataset. Moreover, there appeared to be a two-stage pattern
in the relationship, with a SOC concentration at 1.5% likely being the critical threshold (Figure 3). For
soils that have SOC concentrations higher than 1.5%, there was a clear linear relationship that shows
the substantial increase in MWD with SOC, whereas the soils with lower SOC concentrations (<1.5%)
mostly formed a cluster characterized by a flattened slope of the fitted line. Also, the MWD for samples
with low SOC concentrations was mostly in the 0.2-0.4 mm range, and the correlation coefficient
between the two variables decreased by more than two times. This implies that the continuing decrease
in SOC content in the study region could cause a concurrent degradation of AS, until reaching a
critical point (i.e., 1.5%) below which the soils become highly unstable (MWD < 0.4). This stresses the
importance of conservation agriculture as a means to increase SOC concentration in the topsoil and
thus in turn restore soil structural stability. It also highlights the necessity to develop remote sensing
techniques as a tool to monitor the change in SOC and AS. Remote sensing techniques are a promising
tool to monitor the change in SOC and AS, because soil degradation is a threat to soil surface properties
in particular in croplands.
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Figure 3. Scatterplot of soil mean weight diameter (MWD) versus soil organic carbon (SOC). We
divided the data into two parts using a SOC threshold of 1.5 g 100 g~!. Solid lines for both parts were
fitted by linear regression.
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3.2. SOC and AS Model Development and Evaluation

Comparison between the extracted APEX spectra and the ground truth ASD spectra showed
similarities both in terms of the general pattern of the spectrum and the absolute reflectance (Figure 4a).
There are some noisy wavelengths close to the two water absorption bands around 1400 nm and then
around 1700-1800 nm, but the generated APEX spectra in general appeared to be well in line with
the ground truth. Then, the APEX spectra were used to develop PLSR-based prediction models for
SOC and three AS indexes (i.e., MWD, microaggregates and macroaggregates fraction). Two spectral
outliers were identified, and the elimination of the outliers did not affect the statistical distribution of
SOC and MWD. According to the cross-validation results (Table 2), all four prediction models had
RPD,y values higher than 1.4 and R2., values higher than 0.5, while the highest RPD, and R2., were
achieved for the microaggregate fraction. The fact that satisfactory models were achieved for all four
response variables, in particular the three AS indexes, proved the capability of APEX hyperspectral
images to predict AS. An acceptable model for SOC was also achieved, with RMSE., at 0.19 g C per
100 g soil. This is consistent with a previous study that used APEX data to map SOC in the same region,
which had a similar level of RMSE (0.15 g 100 g~!) and RPD (1.4) [23].

Table 2. Estimation accuracy of PLSR model calibration (cal) and cross-validation (cv) for SOC, MWD,
microaggregates and macroaggregate fractions.

RMSE,,, RMSE,,

Variable ¢ 100g 1 R2 ., RPD, ¢ 100g-1 R?y RPDy
SOC 0.15 0.70 1.84 0.19 0.52 1.42
MWD 0.06 0.79 2.23 0.09 0.58 1.52
Microaggregates 4.10 0.79 222 5.68 0.61 1.60
Macroaggregates 4.97 0.78 2.17 6.85 0.60 1.58
0.4 -
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Figure 4. (a) Comparison between extracted APEX spectra and field ASD spectra at two locations
with distinct SOC contents. (b) Variable importance projection (VIP) in partial least squares regression
(PLSR) model for MWD and SOC using the extracted APEX spectra. The APEX curves MWD_APEX
and SOC_APEX) were compared to two other independent VIP curves generated using the laboratory
ASD spectra (adapted from Shi et al. [29]), which are resampled to the same spectral resolution as the
APEX spectra. Spectral wavelength with VIP value greater than one was considered significant for the
PLSR model.

Examination into the importance of different spectral regions in the prediction models shows that
similar spectral regions were involved in the prediction of both MWD and SOC (Figure 4b). Specifically,
the most important wavelength for both variables was in the visible region between 400 nm and
600 nm, followed by the region around 750 nm and 1000 nm for SOC, and around 1450 for MWD. The
two APEX-based VIP curves (i.e., MWD_APEX and SOC_APEX) were later compared to ASD-based
(resampled to APEX spectral resolution) VIP curves (i.e., MWD_ASD Resampled and SOC_ASD
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Resampled), which were generated using the laboratory spectra based on the same set of soil samples.
The ASD-based PLSR model for MWD and SOC generated similar VIP curves that both displayed
peaks in the visible region, with the exception that the SWIR (short-wave infrared) region around
2200—-2400 nm was also important for the laboratory-based predictions. It is well-established that the
visible region at 400—600 nm reflects the influence of SOC content [38]. This is in agreement with
what was observed in the SOC prediction by the APEX spectra. Moreover, due to the close correlation
between MWD and SOC, the visible region was also found to be important in the MWD prediction for
both the laboratory and APEX models. A slight difference between the two models using different
data sources was that the SWIR region was not significant in the APEX- prediction. This could be
attributed to the low signal-to-noise ratio of this region in the APEX data, so that the spectral features
in the SWIR region, which typically corresponds to the quantity of organic compounds like lignin and
cellulose, are not well represented in the hyperspectral remote sensing images [23].

The calibrated and cross-validated PLSR model for SOC was further evaluated against an
independent validation dataset using the predicted map as a reference for stratified random sampling
(see Section 2.4.3 for details). Overall, good prediction accuracy in terms of RMSE and R? was achieved
for the SOC model (Figure 5), although it was found that the model generally over-estimated the SOC
values larger than 1.5%. Nonetheless, the model was capable of reproducing the general trend of SOC
variation and had a similar level of RMSE and a better R? than the cross-validation results (Table 2).
To avoid the time-consuming measurements of AS, the independent validation was only carried out
against the SOC prediction. However, it is reasonable to assume a similar, if not better, performance
for the AS prediction models, considering the cross-validation results of the AS models, the positive
correlation between MWD and SOC, and the similar spectral regions that contributed to the predictions
of both MWD and SOC. Hence, predicting AS by means of airborne hyperspectral remote sensing was
proven to be effective, and it offers great potential to further investigate AS in a spatial context.
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Figure 5. Scatterplot of measured versus predicted SOC using the independent validation dataset.

3.3. SOC and AS Mapping

The calibrated PLSR models for SOC and MWD were applied to the entire region covering
788 fields with more than 10 million pixels. Analysis on the statistical distribution of predicted
SOC shows that the region is characterized by a low SOC content, with mean SOC concentration of
1.16 g C per 100 soil. Histogram analysis of MWD over the entire study region resulted in a normal
distribution with a mean MWD of 0.36 mm (Figure 6), which is similar to the mean MWD of the
calibration dataset (Table 1).
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Figure 6. Histogram of the predicted soil mean weight diameter (MWD) across the entire study region.
The vertical dashed line in red represents the mean MWD.

Adopting the classification criteria proposed by [8], who used 0.4 and 0.8 mm to separate the
MWD into “highly unstable”, “unstable” and “stable” classes, it can be seen that most of the soils in the
study region are in “unstable” and “highly unstable” condition, posing great risks to soil degradation.

For the SOC map of a representative area, apart from the clear between-field variability of SOC
concentration especially in the southwest corner of the selected area, the most striking feature was its
in-field variability as highlighted by the dark “hotspots” of SOC concentration (as shown by the >2%
SOC values in Figure 5) within the confined red rectangle in Figure 7a. Also visible on the APEX RGB
image (Figure 7b), the dark spots were caused by the pre-industrial charcoal kilns abandoned more than
150 years ago [39]. The charcoal accumulation on the specific spots leads to higher SOC concentrations
despite of the recent land use conversion to cropland, and the fact that the developed SOC prediction
model was able to capture this spatial pattern demonstrates the potential of using high-resolution
hyperspectral remote sensing techniques to investigate the small-scale variability of SOC across large
areas. The MWD map displayed a similar pattern to that of the SOC map (Figure 7c). Between-field as
well as in-field variability were observed and higher MWD values generally correspond to higher SOC
values, confirming what was reported above on the positive correlation between MWD and SOC.
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Figure 7. Zoom on a selected area of the (a) SOC map, (b) RGB image of a confined area shown by the
red rectangle in (a), and (c) MWD map. SOC and MWD maps were produced by applying the PLSR
models to the bare soil fields. The red square in the south-west corner of the map in Figure 1 gives the
position of the selected area.

3.4. Spatial Variability of AS

Empirical variograms of MWD were computed at two different spatial scales, i.e., one covering
all the bare fields of the study region to represent the macro-structure of spatial variation in AS,
and two selected areas less than 5 km? to reveal any potential micro-structure. First of all, a clear
macro-structure of MWD across the study region was observed, with the practical range of the fitted
model at 1337 m (Figure 8). At a smaller scale however, contrasting spatial organizations were found
in two selected areas (locations are shown in Figure 1). In SelectedAreal, the range of the fitted
model was only 458.7 m, beyond which the spatial autocorrelation between points was estimated to
be minimal. This distance (range) agrees well with the typical length (300-500 m) of an individual
field in the region, indicating that field-specific agricultural practices and legacy effect of former land
use or management may have caused large between-field variations [40]. Other possible mechanisms
that could lead to discontinuous distribution of soil properties across fields include the presence of
field boundaries (e.g. grass buffer strips, ditches, hedge rows) that intersect the lateral matter transfer
driven by geomorphic processes [41]. It is also reasonable to speculate that topography did not play
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a substantial role in determining the spatial pattern of AS, as SelectedAreal is situated on a rather
flat plateau where the elevation is not highly variable (Figure 1). In the second area, the range of the
variogram model (1600 m) was at a similar level to that of the entire region but with a higher variability
of MWD (semi-variance larger than 0.015). A variogram range beyond the scale of a single field implies
that processes such as water erosion, which typically act at catchment scale, could be the driving force
that shapes the spatial distribution of MWD. This is supported by the clear topographic pattern in
Selected Area2, which is characterized by sloping plateaus in the south and valley bottoms in the north
(Figure 1). Previous investigations into the spatial variations in SOC in the same region also suggested
that topography was an important determinant of SOC heterogeneity [42].

The contrasting spatial structures of MWD observed in different areas and across multiple scales
imply that distinct driving factors were at play in determining the spatial distribution of soil properties.
Almost all the studies that investigated the spatial variability of AS so far relied on point-based extensive
soil sampling to investigate either the large-scale spatial variability based upon limited data [20] or the
effects of landscape position and land use type on the variation in AS [3,43]. The sampling density
in these studies was constrained by the resource-demanding laboratory analysis so that simultaneous
consideration of both field- and regional-scale variability of AS was not possible. Here, we demonstrated
the use of hyperspectral remote sensing images as an effective way to rapidly predict the large-scale
spatial distribution of AS at a high resolution. This not only allows for analysis on the general patterns of
soil properties to aid decision making in terms of agricultural management, but also provides detailed soil
information in the context of precision agriculture and site-specific soil erosion assessment.
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Figure 8. Empirical variograms (red circles) with fitted models (blue lines) for (a) the entire study region
and (b,c) two selected representative areas. 300,000 pixels were randomly selected for the computation
of empirical variogram for the entire region, while 100,000 pixels were randomly selected for each
selected area.
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The MWD map produced by hyperspectral imagery represents one of the first large-scale AS
assessments, covering more than 700 agricultural fields. However, this genre of approaches relies on the
successful extraction of bare soil fields, which are usually discretely located in space and only available
during a short time window (when croplands are harvested and prepared for the next crop). To be able
to produce spatially continuous soil maps, algorithms that assimilate multi-temporal composites are
therefore needed to enable the mosaicking of bare soil pixels (free of disturbance from soil moisture and
dry vegetation residue) across long time periods. In this context, the next generation of satellite-based
hyperspectral imagers such as EnMap [44] and PRISMA [45] will provide more frequent hyperspectral
images over large spatial scales, thus offering new opportunities to monitor soil degradation in space
and time.

4. Conclusions

The capability of Airborne Prism Experiment (APEX) hyperspectral imagery to predict soil
aggregate stability (AS) was tested in an agricultural region (ca. 230 km?) of the Belgian loam belt.
Partial least squares regression models were built using the extracted APEX spectra with three AS
indexes (i.e., mean weight diameter (MWD), microaggregate and macroaggregate fractions) and soil
organic carbon (SOC) as the response variables. We delineated a total of 788 bare soil fields from the
images using predefined spectral indexes (NDVI and soil moisture index) that are representative of
bare, dry soils. PLSR models were then applied to these fields to generate high resolution (2x2 m)
maps for MWD and SOC. Satisfactory prediction models (RPD > 1.4, R? > 0.5) were achieved for
all four variables, with the AS prediction models producing even better performance than the SOC
model. Spectral regions that were known to be SOC predictors were also found to be responsible for
the prediction of MWD due to their positive correlation. The predicted SOC and MWD maps proved
the potential of hyperspectral remote sensing technique to capture both the fine-scale, in-field as well
as between-field variability of these soil properties. Variogram analysis on MWD further revealed its
contrasting spatial structures at different scales. Over the entire region, the spatial heterogeneity of AS
was found to be driven by geomorphic processes like water erosion acting at catchment scale, while
small scale investigations suggested that field-specific practices related to agricultural management
could also lead to large variations in AS across neighboring fields.
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