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Abstract: Hyperspectral image classification methods may not achieve good performance when
a limited number of training samples are provided. However, labeling sufficient samples of
hyperspectral images to achieve adequate training is quite expensive and difficult. In this paper,
we propose a novel sample pseudo-labeling method based on sparse representation (SRSPL) for
hyperspectral image classification, in which sparse representation is used to select the purest
samples to extend the training set. The proposed method consists of the following three steps.
First, intrinsic image decomposition is used to obtain the reflectance components of hyperspectral
images. Second, hyperspectral pixels are sparsely represented using an overcomplete dictionary
composed of all training samples. Finally, information entropy is defined for the vectorized sparse
representation, and then the pixels with low information entropy are selected as pseudo-labeled
samples to augment the training set. The quality of the generated pseudo-labeled samples is evaluated
based on classification accuracy, i.e., overall accuracy, average accuracy, and Kappa coefficient.
Experimental results on four real hyperspectral data sets demonstrate excellent classification
performance using the new added pseudo-labeled samples, which indicates that the generated
samples are of high confidence.

Keywords: sparse representation; information entropy; pseudo-labeling; intrinsic image decomposition;
hyperspectral image classification

1. Introduction

Hyperspectral images (HSIs) have hundreds of spectral bands that contain detailed spectral
information. Thus, hyperspectral images are widely used in precision agriculture [1], geological
prospecting [2], target detection [3], and landscape classification [4]. Classification is one of the
important branches in hyperspectral image processing [5] because it can help people understand
hyperspectral image scenes via visual classification. However, in the context of supervised
classification, the existence of the “Hughes phenomenon” [6] caused by an imbalance between the
limited training samples and the extreme spectral dimension of hyperspectral images influences the
classification performance [7].

To alleviate the “Hughes phenomenon”, dimensionality reduction [8,9] and semi-supervised
classification [10,11] have been extensively studied. The former can reduce the dimensions of
hyperspectral images, and the latter can increase the number of training samples. In general,
the dimension reduction method can be divided into two categories: feature extraction and
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feature selection. Among them, feature extraction [12,13] reduces computational complexity by
projecting high-dimensional data into low-dimensional data space, and feature selection [14] selects
appropriate bands from the original set of spectral bands. In addition to the dimensionality reduction
method, semi-supervised classification is often used in the case of small samples. For example,
graph-based [15,16], active learning-based [17,18], and generative model-based [19,20] methods have
attracted the attention of researchers seeking to tackle the problems caused by the limited availability
of labeled samples. These semi-supervised methods can compensate for the lack of labeled samples
and improve the classification results.

Pseudo-labeled sample generation is also a commonly used method for semi-supervised
classification, which attempts to assign pseudo-labels to more samples. In [21], a combination
of active learning (AL) and semi-supervised learning (SSL) is used in a novel manner to obtain
more pseudo-labeled samples. In [22], high-confidence semi-labeled samples whose class labels are
determined by an ML classifier are added to the training samples to improve hyperspectral image
classification performance. In [23], a constrained Dirichlet process mixture model is proposed that
produces high-quality pseudo-labels for unlabeled data. In [24], a sifting generative adversarial
networks is used to generate more numerous, more diverse, and more authentic labeled samples for
data augmentation. However, active learning requires manual intervention, and other methods require
multiple iterations or deep learning to converge.

In recent years, sparse representation-based classification (SRC) methods have drawn much
attention in dealing with small training sample problems in hyperspectral image classification [25,26].
The goal of SRC is to represent an unknown sample compactly using only a small number of atoms in
an overcomplete dictionary. The class label with the minimal representative error will be assigned to the
unlabeled samples. Some researchers extended the SRC-based methods to utilize spatial information in
hyperspectral images, e.g., joint SRC [27,28], kernel SRC [29–31], adaptive SRC [32,33], etc. In addition,
there was also some work that used multi-objective optimization to improve SRC directly [34,35].
Ideally, the nonzero elements in a sparse representation vector will be associated with atoms of a single
class in the dictionary, and we can easily assign a test sample to that class.

Motivated by sparse representation, a novel sparse representation-based sample pseudo-labeling
(SRSPL) method is proposed. In the field of remote sensing, if a pixel contains only one type of land
cover, this pixel is called a pure pixel; otherwise, it is a mixed pixel. Due to the limitation of the spatial
resolution of the imaging spectrometers, the problem of mixed pixels is quite common in hyperspectral
remote sensing images [36]. In general, for the mixed pixels of HSIs, the sparse representation of their
spectral features usually involves multiple classes, so the representation coefficient vectors have larger
entropies. Conversely, for the pure pixels of HSIs, the spectral features can be linearly represented
using atoms from a single class in the overcomplete dictionary, so the representation coefficient vectors
of pure pixels will have smaller entropies. Thus, the pixels with small sparse representation entropies
can be used to augment the training samples. Using this method, the size of the training sample set can
be effectively increased. However, due to factors such as illumination, shading, and noise, the spectral
features of different land covers in natural scenes are usually subject to some degree of distortion.
Consequently, the generated pseudo-labeled samples cannot guarantee a high quality when the sparse
representation method is applied to the hyperspectral pixels. To solve this problem, the intrinsic image
decomposition (IID) [37] method is used in this paper before generating samples to extract the spectral
reflectance components of the original hyperspectral image. The classification accuracy on four HSIs
verifies that the pseudo-labeled samples generated by the proposed method are of high quality.

The main innovations of the proposed SRSPL method are summarized as follows:
1. The information entropy of sparse representation coefficient vectors is first used in the training

sample generation of HSIs. The SRC method will assign class labels with minimal sparse representation
errors for hyperspectral pixels other than training samples and test samples. However, we only select
pixels with small class uncertainty as pseudo-labeled samples to augment the original training set.
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2. We have found that, for HSI, remote sensing reflectance extraction is necessary before using the
sparse representation method. In this paper, the effective IID method is performed on the HSI, which
is beneficial for reducing the sparse representation error.

The experimental results illustrate that the proposed method for pseudo-labeled sample
generation based on sparse representation is very effective in improving the classification results.

The remainder of this paper is organized as follows. Related work is described in Section 2.
The proposed SRSPL method is introduced in Section 3. The experiment are presented in Section 4.
Discussion and conclusions are provided in Sections 5 and 6, respectively.

2. Related Work

2.1. Intrinsic Image Decomposition of Hyperspectral Images

Intrinsic image decomposition (IID) [37] is a challenging problem in computer vision that aims
at modeling the perceiving function of human vision to distinguish the reflectance and shading of
the objects from a single image [38]. Since the intrinsic components of an image reflect different
physical characteristics of the scene, e.g., reflectance, illumination, and shading, many issues such
as natural image segmentation [39] can benefit from IID. Given a single RGB image G, the IID
algorithm decomposes G into two components: the spectral reflectance component R and the shading
component S:

G = RS (1)

We denote each pixel i ∈ G as Gi = RiSi, where Gi = (Gir, Gig, Gib) and Ri = (Rir, Rig, Rib).
The parameters r, g, and b refer to the red, green, and blue channels of a color image, respectively.

The optimization-based IID [40] method is based on the assumption of the local color
characteristics in images; in a local window of an image, the changes in pixel values are usually
caused by changes in the reflectance [41]. Under this assumption, the shading component could be
separated from the input image. Thus, the reflectance value of one pixel can be represented by the
weighted summation of its neighborhood pixel values:

Ri = ∑
j∈N(i)

wijRj, wij = e−(Yi−Yj)
2/2σ2

iY+A(Gi ,Gj)
2/σ2

iA (2)

where N(i) is the set of neighboring pixels around pixel i; wij measures the similarity of the intensity
value and the spectral angle value between pixel i and pixel j; Y represents the intensity image, which is
calculated by averaging all the image bands; Rj = (Rjr, Rjg, Rjb),A(Gi, Gj) = arcos(GirGjr +GigGjg +

GibGjb) denote the angle between the pixel vectors Gi and Gj; and σiY, σiA denote the variance of the
intensities and the angle in a local window around i, respectively.

Based on Equations (1) and (2), the shading component S and the reflectance component R can be
obtained by optimizing the following energy function:

E(G, R, S) = ∑
i∈G

(Ri − ∑
j∈N(i)

wijRj)
2
+ ∑

i∈G
(

Gi
Si
−Ri)

2 (3)

The complete description of the optimized process can be found in [40].
Kang et al. [37] first extended the IID as a feature extraction method from a three-band image to

a hyperspectral image (HSI) of more than 100 bands and achieved excellent results. Here, the pixel
values of HSIs are determined by the spectral reflectance, which is determined by the material of
different objects, and the shading component, which consists of light and shape-dependent properties.
The shading component is not directly related to the material of the object. Therefore, IID is adopted to
extract the spectral reflectance components of the HSI to distinguish more classes, and remove useless
spatial information preserved in the shading component of the HSIs.
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2.2. Sparse Representation Classification of Hyperspectral Images

The sparse representation classification (SRC) framework was first introduced for face
recognition [42]. Chen et al. [43] extended the SRC to pixelwise HSI classification, which relied
on the observation that spectral pixels of a particular class should lie in a low-dimensional subspace
spanned by dictionary atoms (training pixels) from the same class. An unknown test pixel can be
represented as a linear combination of training pixels from all classes. For HSI classification, suppose
that we have C distinct classes and stack an overcomplete dictionary A = [A1, A2, ..., AN ] ∈ RB×N ,
where B denotes the number of bands and N is the number of training samples, respectively. Set
L ∈ {1, 2, ..., C} is a set of labels, and c ∈ L refers to the cth class. For a test sample x ∈ RB×1 of HSI, x
can be represented as follows:

x = A1α1 + A2α2 + · · ·+ ANαN = Aα (4)

where α = [α1, α2, ..., αN ]
T ∈ RB represents the sparse vector. Intuitively, the sparse vector α can be

measured by the l0-norm of it (l0-norm counts the number of nonzero entries in a vector). Since the
combinatorial l0-norm minimization is an NP-hard problem, the l1-norm minimization, as the closest
convex function to l0-norm minimization, is widely employed in sparse coding, and it was shown that
l0-norm and l1-norm minimizations are equivalent if the solution is sufficiently sparse [44].

As the hyperspectral signals from the same class often span the same low-dimensional subspace
that is constructed by the corresponding training samples, which involves the non-zero entries of the
sparse vector, the class of the hyperspectral signal x can be directly determined by the characteristics
of the recovered sparse vector α. Given the dictionary of training samples A, the sparse representation
coefficient vector α can be be recovered by solving the following Lasso problem:

α̂ = min
α

1
2
‖x− Aα‖2

2 + λ‖α‖1 (5)

where ‖·‖2 represents the l2 norm, ‖·‖1 represents the l1 norm of the vector and λ > 0 is a scalar
regularization parameter. This optimization problem can be solved by Proximal Gradient Descent
(PGD) [45]. After the sparse representation vector α̂ is obtained, the label of the test sample x of HSI
can be assigned by the minimal reconstructed residual:

ŷx = arg min
c=1,...,C

‖x− Acα̂c‖2
2 (6)

where Ac is the subdictionary of the cth class and α̂c denotes the representative coefficient of the
cth class.

3. Proposed Method

A novel sparse representation-based sample pseudo-labeling (SRSPL) method is proposed in
this paper. The SRSPL method consists of the following three steps. First, IID is used to reduce the
dimension and noise of the original hyperspectral image. Second, sparse representation is applied to
generate the sparse representation vectors of the hyperspectral pixels other than the training samples
and test samples. The information entropies of all these hyperspectral pixels are calculated based on the
sparse representation vectors to discriminate purity, and the samples with low representation entropies
are selected to generate candidate samples. Third, these candidate samples are assigned pseudo-labels
by the minimal reconstructed residual. Then, these pseudo-labeled samples are augmented to the
original training set, and an extended random walker (ERW) classifier is trained to evaluate the sample
quality. Figure 1 shows a graphical example illustrating the principle of the proposed SRSPL method.
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Figure 1. Graphical example illustrating the process of pseudo-labeled sample generation based on
sparse representation. In the new training sample set, small balls of different colors represent different
classes of training samples, and the plus sign represents a newly generated pseudo-labeled sample.

3.1. Feature Extraction of Hyperspectral Images

(1) Spectral Dimensionality Reduction

The initial hyperspectral image I = (I1, ..., IN) ∈ RB×N is divided into M groups of equal band
sizes [37], where N is the number of pixels and B is the dimension of the initial image. The number of
bands in each group is denoted by B1, B2, ..., BM.

The averaging-based image fusion is applied to each group and the resulting fused bands are
used for further processing:

Ĩm =
∑Bm

n=1 In
m

Bm
(7)

where m is the mth group, In
m is the nth band in the mth group of the original hyperspectral data, Bm

is the number of bands in the mth group, and Ĩm is the mth fused band. Here, the averaging-based
method can ensure that the pixels of the dimensionality-reduced hyperspectral image can still be
directly interpreted in a physical sense. In other words, the pixels of the dimensionality-reduced
image will be related to the reflectance of the scene. Moreover, this method can effectively remove
image noise.

(2) Band Grouping

The dimensionality-reduced image Ĩ is partitioned into several subgroups of adjacent bands
as follows:

Îk
=

{
(Ĩ(k−1)Z+1, ..., Ĩ(k−1)Z+Z), k = 1, 2, ..., bM/Zc

(ĨM−Z+1, ..., ĨM), k = dM/Ze 6= bM/Zc
(8)

where Îk refers to the kth subgroup, bM/Zc is the largest integer not greater than M/Z, and dM/Ze is
the smallest integer not less than M/Z. Here, Z refers to the number of bands in each subgroup.

(3) Reflectance Extraction with the Optimization-Based IID

For each subgroup Îk, the optimization-based IID method is used to obtain the reflectance and
shading components, and the equation is as follows:

(Rk∗ , Sk∗) = arg min
Rk ,Sk

E(Îk, Rk, Sk) (9)

where Rk and Sk refer to the reflectance and the shading components of the kth subgroup, respectively.



Remote Sens. 2020, 12, 664 6 of 21

The reflectance components of the different subgroups are combined to obtain the resulting IID
features, which is an M-dimensional feature matrix R̃ that can be used for subsequent processing.

R̃ =


R1

...
Rk

...
RdM/Ze

 ∈ RM×N (10)

3.2. Candidate Sample Selection Based on Sparse Representation

To find the purest pixels and use them as candidate samples, we first calculate the sparse
representation of all the hyperspectral samples other than the training samples and test them (denoted
as Sunlabeled = (Ii)

u
i=1). Then, we determine the purity of the samples by calculating its sparse

representation information entropy. When a sample has a lower sparse representation information
entropy, it is very likely to be a pure pixel. The process can be described as follows:

(1) Calculating the Hyperspectral Sample’s Sparse Representation

For a given sample Ii ∈ Sunlabeled, R̃Ii denotes the reflectance component of Ii, and R̃Ii ∈ RM .
The goal of sparse representation is to represent R̃Ii by a sparse linear combination of training samples
that make up the dictionary. Suppose L ∈ {1, 2, ..., C} is a set of labels and c ∈ L refers to the cth
class. The representation coefficient α̃ of R̃Ii can be calculated based on an overcomplete dictionary Ã
according to Equation (5). Therefore, R̃Ii is assumed to lie in the union of the C different subspaces,
which can be seen as the sparse linear combination of all the training samples:

R̃Ii = Ã1
α̃1 + Ã2

α̃2 + · · ·+ ÃC
α̃C

=
[

Ã1 · · · ÃC
] 

α̃1

· · ·
α̃C

 = Ãα̃
(11)

where Ã ∈ RM×Nm is the structured overcomplete dictionary, which consists of the class
sub-dictionaries {Ãc}c=1,...,C. Nm is the number of training samples, and α̃ is an Nm-dimensional
representation coefficient vector formed by concatenating the sparse vectors {α̃c}c=1,...,C.

The representation coefficient α̃ of R̃Ii can be recovered by solving the following
optimization problem:

α̃ = min
α̃

1
2

∥∥R̃Ii − Ãα̃
∥∥2

2 + λ‖α̃‖1 (12)

where λ is a scalar regularization parameter and requires experimental analysis to determine the
optimal value.

(2) Discriminating the Purity of Hyperspectral Samples based on Information Entropy

The information entropy of each R̃Ii is calculated based on its representation coefficient:

Ent(R̃Ii ) = −
Nm

∑
j=1

α̃jlog(α̃j) (13)

where Ent(·) denotes an entropy function and α̃ is the representation coefficient vector of R̃Ii .
The purity of R̃Ii is determined according to the magnitude of the entropy.
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(3) Finding the Candidate Samples

First, the information entropy for the reflectance components of each R̃Ii is obtained. Second,
these samples corresponding to these reflectance components are sorted in ascending order according
to the magnitude of their entropies. Third, the first T samples are selected as the candidate samples set
Scandidate = (R̃Ii )

T
i=1, where the parameter T is an optimal value obtained by experiments.

3.3. Pseudo-label Assignment for Candidate Samples

For each candidate sample, one pseudo-label is determined based on the minimal
reconstructed residual:

ỹIi
= arg min

c=1,...,C

∥∥∥R̃Ii − Ãc
α̃c
∥∥∥2

2
(14)

where Ãc is the sub-dictionary of the cth class and α̃c denotes the representative coefficient of the cth
class. Thus, the pseudo-labeled sample set is Spseudo = (R̃Ii , ỹIi

)T
i=1.

3.4. Classification Model Optimization Using Pseudo-Labeled Samples

First, the pseudo-labeled samples set Spseudo and the initial labeled samples set Sinitial are combined
to form the new labeled samples set Slabeled. Then, the ERW [46] algorithm is used as a classification
model to evaluate the quality of these newly generated pseudo-labeled samples, where the ERW
algorithm is adopted to calculate a set of optimized probabilities for the class of each pixel to be
determined based on the maximum probability.

3.5. Pseudo-Code of the Proposed SRSPL Method

For a detailed illustration of the proposed SRSPL method, the pseudocode of the proposed SRSPL
method is shown in Algorithm 1.

Algorithm 1: Sparse Representation-based Sample Pseudo-Labeling (SRSPL) for Hyperspectral Image
Classification

Input: Hyperspectral image I = (I1, ..., IN); the initial labeled samples set Sinitial = (Ii, yi)
l
i=1; the hyper-

spectral samples set other than the training samples and test samples: Sunlabeled = (Ii)
u
i=1

Output: Classification map C

1: Reduce the dimension and noise of I based on averaging image fusion (Equation (7)) to obtain the
dimensionally reduced image Ĩ.

2: According to Equation (8), partition the Ĩ into several subgroups of adjacent bands, denoted as Îk.
3: According to Equations (9) and (10), obtain the spectral reflectance components of each Îk, (through the

optimization-based IID method) and combined to obtain the resulting IID features R̃.
4: For each Ii, i = 1 : u(Ii ∈ Sunlabeled) Do

(1) According to Equation (11) and (12), solve the sparse representation coefficient α̃ of each sample Ii
based on the reflectance component R̃Ii and the overcomplete dictionary Ã.

(2) According to Equation (13), calculate the information entropy of each R̃Ii to discriminating the
purity of each sample Ii.

5: End For
6: Sort the samples corresponding to these reflectance components in ascending order according to their

entropy magnitudes.
7: Selected the first T samples as the candidate samples set Scandidate = (R̃Ii )

T
i=1.

8: According to Equation (14), assign the pseudo-label for each sample in set Scandidate, to obtain the pseudo-
labeled samples set Spseudo = (R̃Ii , ỹIi

)T
i=1.

9: Combine the initial labeled samples set Sinitial and the pseudo-labeled samples set Spseudo to the new
labeled samples set Slabeled.

10: Classify the spectral reflectance components R̃ with the extended random walker (ERW) classifier and the
new labeled samples set Slabeled to obtain the final classification map C.

11: Return C
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4. Experiment

4.1. Experimental Data Sets

(1) Indian Pines data set: The Indian Pines image was acquired by the Airborne Visible/Infrared
Imaging Spectrometer (AVIRIS) sensor, which captured the Indian Pines unlabeled agricultural site
in northwestern Indiana. The image contains 220 × 145 × 145 bands. Twenty water absorption
bands (Nos. 104–108, 150–163, and 220) were removed before hyperspectral image classification.
The spatial resolution of the Indian Pines image is 20 m per pixel, and the spectral coverage ranges
from 0.4 to 2.5 µm. Figure 2 shows a color composite of the Indian Pines image and the corresponding
ground-truth data.

(a) (b) (c)

Figure 2. Indian Pines data set. (a) false-color composite; (b,c) ground truth data.

(2) University of Pavia data set: The University of Pavia image, which captured the campus of
the University of Pavia, Italy, was recorded by the Reflective Optics System Imaging Spectrometer
(ROSIS). This image contains 115 bands of size 610 × 340 and has a spatial resolution of 1.3 m per
pixel and a spectral coverage ranging from 0.43 to 0.86 µm. Using a standard preprocessing approach
before hyperspectral image classification, 12 noisy channels were removed. Nine classes of interest are
considered for this image. Figure 3 shows a color composite of the University of Pavia image and the
corresponding ground-truth data.

(a) (b) (c)

Figure 3. University of Pavia data set. (a) false-color composite; (b, c) ground truth data.

(3) Salinas data set: The Salinas image was captured by the AVIRIS sensor over Salinas Valley,
California, at a spatial resolution of 3.7 m per pixel. The Salinas image contains 224 bands of
size 512 × 217. Twenty water absorption bands (Nos. 108–112, 154–167, and 224) were discarded
before classification. Figure 4 shows a color composite of the Salinas image and the corresponding
ground-truth data.
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(4) Kennedy Space Center data set: The Kennedy Space Center (KSC) image was captured by
the National Aeronautics and Space Administration (NASA) Airborne Visible/Infrared Imaging
Spectrometer instrument at a spatial resolution of 18 m per pixel. The KSC image contains 224 bands
of size 512 × 614. The water absorption and low signal-to-noise ratio (SNR) bands were discarded
before classification. Figure 5 shows the KSC image and the corresponding ground-truth data.

(a) (b) (c)

Figure 4. Salinas data set. (a) false-color composite; (b,c) ground truth data.

(a) (b) (c)

Figure 5. Kennedy Space Center data set. (a) false-color composite; (b,c) ground truth data.

4.2. Parameter Analysis

(1) Analysis of the Influence of Parameter λ

For sparse representation, the regularization parameter λ used in Equation (12) controls the
relative importance between sparsity level and reconstruction error, leading to different classification
accuracies. Figure 6 shows the effect of varying λ on the classification accuracies for Indian Pines,
University of Pavia, Salinas, and Kennedy Space Center data sets. In the experiment, the four different
data sets are trained with 20 samples per class, respectively, and the remaining labeled samples are used
for testing. The regularization parameter λ for sparse representation is chosen between λ = 1× 10−8

and λ = 1. In Figure 6, when λ < 1× 10−6, the overall accuracy (OA) shows an increasing trend on
each data set. As λ continues to increase, the overall trend of OA is decreasing. This is because more
weight on sparsity level and less weight on approximation accuracy. Therefore, λ = 1× 10−6 is set as
the optimal value in this paper.
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(2) Analysis of the Influence of Parameter T

The parameter T is selected by using the five-fold cross-validation strategy and repeating the
finetuning procedure. As described in Section 3.2, when the entropy of the sparse representation vector
of a sample is small, the probability of that sample being a pure sample is large. As T increases, samples
subsequently added will have a larger entropy, and these newly pseudo-labeled samples have a high
probability of being mixed pixels. Thus, although the number of samples increases, the magnitude of
the increase in the classification accuracy is small; consequently, it is important to choose a suitable
T. In the experiment, the four different data sets are trained with 20 samples per class, respectively,
and the remaining labeled samples are used for testing. Figure 7 shows the impact of different numbers
of pseudo-labeled samples on the OA for the four data sets. The OA corresponding to different T
values is the mean value of 30 random replicate experiments. As seen by observing Figure 7, for the
different data sets, when T < 40, the OA tends to grow, although there is a downward trend in the
interval related to the quality of the generated samples and the selected sample points. When T > 40,
the OA shows a significant downward trend. In addition, when T = 40, the OAs are highest. Therefore,
in this paper, we selected T = 40 as the default parameter value.

Figure 6. Effects of the regularization parameter λ on the overall accuracy (OA) for four different
data sets.

Figure 7. Effects of the number of generated pseudo-labeled samples (T) on the overall accuracy (OA)
for different data sets.
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(3) Analysis of the Influences of Parameters M and Z

The parameters M and Z from Equation (8) are hyperparameters that require tuning. We evaluated
the influences of the parameters M and Z by objective and visual analyses. In the experiment, the four
different data sets are trained with 5, 20, 3, and 15 samples per class, respectively, and the remaining
labeled samples are used for testing. Figure 8 shows the OA of the proposed SRSPL method of
four different data sets. For the four data sets, as Figure 8 shows, as M and Z change, the OA
exhibits large fluctuations. When M is less than 10, the accuracy of the proposed method is relatively
low. This result indicates that, when M has few features, useful spectral information will be lost.
Furthermore, the results show that the proposed method can achieve stable and high accuracy when
the size of the subgroup is less than 8 because the IID method works for small channel images. In this
paper, the default parameter settings M = 32 and Z = 4 were adopted for subsequent testing of the
data sets.
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Figure 8. Experimental results. (a) the results for the Indian Pines data set; (b) the results for University
of Pavia data set; (c) the results for Salinas data set; (d) the results for Kennedy Space Center data set.
Each image displays the overall classification accuracy of the proposed method with respect to varying
feature numbers (M) and different subgroup sizes (Z).

(4) Sensitivity Analysis

The parameters involved in our proposed SRSPL method are mainly regularization parameter λ,
the number of generated pseudo-labeled samples T, feature numbers M and different subgroup sizes
Z. We have conducted an extensive experimental analysis of each parameter for the SRSPL method.
The one-parameter-at-a-time (OAT) [47] approach is used for model parameter sensitivity analysis,



Remote Sens. 2020, 12, 664 12 of 21

that is, to ensure that other parameters remain unchanged when changing one parameter, and then
to study the effect of one parameter on the model. Figure 9 shows the sensitivity of parameters λ, T,
M and Z for four data sets. It can be seen that the sensitivity value of λ on the four data sets is the
smallest. However, parameters T, M, and Z show a higher sensitivity value on the four different data
sets. Thus, it follows that the λ has a slight effect on the SRSPL method and T, M, Z have a greater
effect on the SRSPL method, which is highly sensitive and should be tuned.

Figure 9. Sensitivity of the parameters for different data sets.

4.3. Performance Evaluation

We applied the proposed SRSPL method and other methods to four hyperspectral images to
evaluate the effectiveness of various hyperspectral image classification methods. We compared the
proposed SRSPL method with several other classification methods, including the traditional SVM [48],
three semi-supervised methods, e.g., extended random walker (ERW) [46], spatial-spectral label
propagation based on SVM (SSLP-SVM) [49], the maximizer of the posterior marginal by loopy belief
propagation (MPM-LBP) [50] and two deep learning methods, e.g., recurrent 2D convolutional neural
network (R-2D-CNN) [51], cascaded recurrent neural network (CasRNN) [52]. IID [37] is used to
extract the useful features and reduce noise in the proposed SRSPL method. Therefore, in order to
verify the validity of the IID, an experiment that does not use the IID method is added (record as
Without-IID). In this section, the effect of different feature extraction methods to the proposed method
is also analyzed, e.g., principal component analysis (PCA) [53], image fusion, and recursive filtering
(IFRF) [54] (record as With-PCA and With-IFRF, respectively). Here, the magnitude setting of the
parameter T in the With-PCA and With-IFRF methods is the same as the SRSPL method. The SVM
classifier was implemented from a library for LIBSVM and used a Gaussian kernel. The tests were
performed using five-fold cross-validation.

The parameters for the ERW, SSLP-SVM, MPM-LBP, R-2D-CNN, CasRNN, PCA and IFRF methods
were set to the default parameters reported in the corresponding papers. In this paper, three common
metrics, namely: the OA, average accuracy (AA), and Kappa coefficient, were used to evaluate classifier
performance. The classification results for each method are given as the average of 30 experiments to
reduce the influence of sample randomness. The data on the left side of Tables 1–3 represent the mean
values, while those on the right represent the standard deviations.

The experiment was first performed on the Indian Pines date set. As shown in Table 1, the training
samples were randomly selected and accounted for 5, 10, 15, 20, and 25 per class of the reference
data. Note that, as the number of training samples increases, the classification accuracy grows steadily.
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The proposed SRSPL method always outperforms the other methods, such as ERW, SSLP-SVM, and
MPM-LBP, in terms of the highest overall classification accuracies; this method obtained the highest
accuracies in all cases (84.73%, 90.90%, 93.88%, 95.52% and 97.09%, respectively). Compared with
the two deep learning methods R-2D-CNN and CasRNN, the SRSPL method can achieve higher
accuracy in the case of small samples. Compared with the three methods of Without-IID, With-PCA,
and With-IFRF, Table 1 shows that the proposed SRSPL method obtains higher accuracies, which
indicates that feature extraction using the IID method is effective.

Table 1. Classification performance of different methods performed on the Indian Pines data set with
5–25 training samples per class. Without-IID is the proposed method without the IID Step. With-PCA
and With-IFRF denote the proposed method using different methods for feature extraction. (SVM,
support vector machine; ERW, extended random walker; SSLP-SVM, spatial-spectral label propagation
based on SVM; MPM-LBP, the maximizer of the posterior marginal by loopy belief propagation;
R-2D-CNN, recurrent 2D convolutional neural network; CasRNN, cascaded recurrent neural network;
SRSPL, sample pseudo-labeling method based on sparse representation. Three common metrics:
overall accuracy (OA), average accuracy (AA), Kappa coefficient. The bold values indicate the greatest
accuracy among the methods in each case.)

Method Metric
Number of Training Samples per Class

5 10 15 20 25

SVM
OA 45.31 ± 5.19 57.58 ± 2.98 63.56 ± 2.61 66.92 ± 1.47 69.68 ± 0.97
AA 47.41 ± 3.71 55.19 ± 2.27 59.84 ± 2.21 62.13 ± 1.86 63.84 ± 0.91

Kappa 39.21 ± 5.43 52.52 ± 3.17 59.11 ± 2.82 62.80 ± 1.56 65.82 ± 1.08

Without-IID
OA 81.97 ± 5.93 86.89 ± 3.45 90.13 ± 3.47 92.64 ± 1.74 94.92 ± 1.70
AA 84.35 ± 6.40 89.07 ± 3.47 92.73 ± 1.23 95.63 ± 0.97 96.76 ± 0.95

Kappa 80.91 ± 6.50 85.12 ± 3.77 89.42 ± 3.91 91.59 ± 1.99 94.20 ± 1.94

With-PCA
OA 76.08 ± 3.60 82.62 ± 2.90 86.80 ± 2.13 90.90 ± 1.83 93.53 ± 1.55
AA 81.47 ± 4.20 80.47 ± 2.94 87.36 ± 3.51 91.02 ± 2.76 95.06 ± 0.79

Kappa 73.03 ± 3.91 80.40 ± 3.20 85.30 ± 2.39 89.78 ± 2.07 92.61 ± 1.77

With-IFRF
OA 82.47 ± 2.30 88.62 ± 2.91 92.80 ± 2.13 94.90 ± 1.66 96.67 ± 1.21
AA 89.68 ± 0.91 90.47 ± 0.94 93.36 ± 2.03 95.02 ± 2.63 97.83 ± 0.72

Kappa 80.12 ± 2.56 89.40 ± 3.23 92.97 ± 1.96 93.78 ± 2.80 96.19 ± 1.39

ERW
OA 72.30 ± 4.38 84.87 ± 4.41 90.02 ± 1.30 92.94 ± 1.86 94.64 ± 1.17
AA 83.32 ± 2.41 91.48 ± 2.30 94.39 ± 0.94 96.18 ± 1.00 97.14 ± 0.62

Kappa 68.96 ± 4.69 82.95 ± 4.86 88.69 ± 1.46 91.99 ± 2.10 93.91 ± 1.33

SSLP-SVM
OA 64.84 ± 1.43 76.05 ± 1.44 80.79 ± 0.73 82.13 ± 0.44 85.41 ± 0.26
AA 65.96 ± 2.38 78.07 ± 0.98 82.08 ± 0.64 82.25 ± 0.68 86.87 ± 0.35

Kappa 60.63 ± 1.49 73.17 ± 1.60 78.38 ± 0.80 79.90 ± 0.49 83.49 ± 0.29

MPM-LBP
OA 59.36 ± 5.80 72.83 ± 3.99 78.15 ± 2.51 81.92 ± 2.17 85.12 ± 2.18
AA 72.10 ± 3.61 83.61 ± 1.27 87.34 ± 0.92 90.33 ± 1.63 91.82 ± 1.09

Kappa 54.39 ± 6.31 69.50 ± 4.25 75.38 ± 2.75 79.61 ± 2.42 83.14 ± 2.42

R-2D-CNN
OA 51.63 ± 3.81 59.83 ± 3.79 64.15 ± 2.18 70.92 ± 1.07 75.03 ± 1.18
AA 52.01 ± 3.16 58.61 ± 2.72 65.43 ± 1.21 69.33 ± 1.36 76.82 ± 1.39

Kappa 50.93 ± 3.13 60.50 ± 2.52 63.82 ± 1.57 71.61 ± 1.24 74.19 ± 1.43

CasRNN
OA 60.57 ± 4.51 70.25 ± 2.18 75.22 ± 2.23 81.43 ± 1.69 87.79 ± 1.50
AA 58.44 ± 3.12 72.86 ± 1.87 76.59 ± 1.74 83.66 ± 1.87 88.94 ± 1.21

Kappa 60.92 ± 3.58 69.34 ± 2.74 74.54 ± 2.05 80.49 ± 1.72 86.62 ± 1.74

SRSPL
OA 84.73 ± 1.23 90.90 ± 1.25 93.88 ± 0.67 95.52 ± 0.39 97.09 ± 0.21
AA 88.86 ± 1.51 93.97 ± 0.95 96.27 ± 0.58 97.04 ± 0.57 97.96 ± 0.39

Kappa 81.79 ± 1.45 89.64 ± 1.05 93.02 ± 0.72 94.88 ± 0.45 96.66 ± 0.27

Figure 10 shows the classification maps obtained for the Indian Pines data set with the five
methods when using 25 training samples from each class. As shown in Figure 10c–g, the proposed
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SRSPL method performs better than the other classification methods (i.e., ERW, SSLP-SVM, MPM-LBP,
R-2D-CNN, and CasRNN) when fewer training samples are provided. For example, the classification
maps of the SVM, SSLP-SVM, MPM-LBP, R-2D-CNN, and CasRNN methods include more noise,
and the ERW method does not perform as well as the SRSPL method does on certain classes.

(a) Ground-truth data (b) OA = 69.68 (c) OA = 94.64 (d) OA = 85.41

(e) OA = 85.12 (f) OA = 75.03 (g) OA = 87.79 (h) OA = 97.09

Figure 10. The classification maps of the different tested methods for the Indian Pines image.
(a) ground-truth data; (b) SVM, support vector machine; (c) ERW, extended random walke;
(d) SSLP-SVM, spatial-spectral label propagation based on SVM; (e) MPM-LBP, the maximizer of
the posterior marginal by loopy belief propagation; (f) R-2D-CNN, recurrent 2D convolutional neural
network; (g) CasRNN, cascaded recurrent neural network; (h) SRSPL, sample pseudo-labeling method
based on sparse representation.

Table 2 shows the experimental results using the University of Pavia data set when the number
of training samples per class is 20. As Table 2 shows, the nine compared methods achieve various
performance characteristics when only 20 training samples per class are provided. The proposed SRSPL
method not only outperforms the R-2D-CNN and CasRNN methods, which are the state-of-the-art
methods based on deep learning in the hyperspectral image classification, but also outperforms the
other compared methods by 2–20%. Notably, on classes such as “Asphalt” and “Trees”, the proposed
SRSPL method performs much better than does the ERW method-by 12.57% and 12.94%, respectively.
In the feature extraction experiment, the OA of the proposed SRSPL method outperforms the
Without-IID, With-PCA, and With-IFRF methods by 2.01%, 15.14%, and 1.87%, respectively. Figure 11
shows the classification maps obtained for the University of Pavia data set with the different methods
when using 20 training samples from each class. As Figure 11 shows, the SRSPL method is superior to
other semi-supervised and deep learning methods in visual appearance, which shows its effectiveness.

The third experiment was conducted on the Salinas data set. In Table 3, three training samples per
class were randomly selected for training, and the rest were used for testing. Given the limited samples,
the experiment is quite challenging. The corresponding quantitative values of the classification results
are tabulated in Table 3. As shown, although only limited training samples were provided, some of the
methods achieved high OA and Kappa scores. In fact, some of the methods achieved 100% classification
accuracy on several classes. This is because the Salinas image includes many large uniform regions
that make classification simpler. Compared with the other methods, the proposed SRSPL method
greatly improves the classification accuracy when training samples are extremely limited. Because
the R-2D-CNN and CasRNN methods require a large number of samples for training, when there are
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small training samples, it is easy to produce overfitting and thus lead to poor classification results.
As seen from Figure 12, the proposed SRSPL method can classify most of the features correctly, which
reflects the effectiveness of the method.

Table 2. Classification accuracies (University of Pavia) in percentages for the tested methods when
20 training samples per class are provided. (The bold values indicate the greatest accuracy among the
methods in each case.)

Class Training Test SVM Without-IID
Different Feature Extraction Methods Different Semi-Supervised Methods Deep Learning Methods

SRSPL
With-PCA With-IFRF ERW SSLP-SVM MPM-LBP R-2D-CNN CasRNN

Asphalt 20 6611 92.99 ± 2.27 90.92 ± 2.21 70.23 ± 6.45 99.84 ± 0.03 86.36 ± 6.78 96.22 ± 0.64 90.39 ± 8.38 79.34 ± 5.38 83.52 ± 6.33 98.93 ± 1.33
Meadows 20 18,629 90.78 ± 2.36 99.99 ± 0.58 80.84 ± 4.31 90.03 ± 3.61 98.32 ± 2.67 97.65 ± 0.20 92.95 ± 11.81 79.96 ± 3.61 71.37 ± 5.81 99.48 ± 0.57

Gravel 20 2079 55.61 ± 6.89 99.86 ± 0.07 98.98 ± 0.74 98.97 ± 0.03 96.34 ± 5.82 71.05 ± 1.69 85.25 ± 8.21 78.88 ± 6.12 64.51 ± 10.21 99.95 ± 0.03
Trees 20 3044 67.48 ± 10.20 85.81 ± 2.07 89.01 ± 5.77 90.70 ± 3.45 78.92 ± 4.07 81.88 ± 4.50 89.48 ± 5.91 73.91 ± 4.48 85.43 ± 3.42 91.86 ± 1.66

Metal Sheets 20 1325 94.27 ± 3.49 100.00 ± 0.00 99.31 ± 0.16 99.77 ± 0.02 99.66 ± 0.27 96.95 ± 1.91 98.56 ± 0.66 98.25 ± 0.20 98.55 ± 0.47 99.62 ± 0.20
Bare Soil 20 5009 49.36 ± 7.80 92.25 ± 3.42 85.18 ± 7.13 98.42 ± 2.50 97.04 ± 3.62 66.64 ± 4.67 87.25 ± 10.38 80.94 ± 4.51 89.08 ± 5.25 98.49 ± 0.08
Bitumen 20 1310 53.58 ± 6.35 100.00 ± 0.00 99.19 ± 0.53 95.53 ± 1.85 99.42 ± 0.33 60.77 ± 3.59 97.94 ± 1.66 78.49 ± 2.92 91.13 ± 2.62 99.95 ± 0.09

Bricks 20 3662 76.30 ± 5.67 98.00 ± 1.83 98.14 ± 1.00 97.71 ± 2.85 97.34 ± 2.13 87.75 ± 1.46 88.32 ± 5.45 83.81 ± 2.45 93.54 ± 3.41 99.84 ± 3.07
Shadows 20 927 99.88 ± 0.09 98.05 ± 0.09 94.45 ± 1.48 98.88 ± 0.15 99.89 ± 0.09 99.95 ± 0.13 98.78 ± 1.58 94.27 ± 0.30 94.72 ± 1.78 99.03 ± 0.06

OA 75.49 ± 3.45 96.62 ± 1.35 83.49 ± 1.86 96.76 ± 1.15 94.86 ± 1.33 86.71 ± 1.44 87.40 ± 4.70 78.15 ± 1.47 80.86 ± 3.74 98.63 ± 0.31
AA 76.06 ± 1.98 96.42 ± 2.98 88.61 ± 2.56 96.54 ± 2.74 95.02 ± 3.25 88.55 ± 2.15 88.75 ± 2.05 79.19 ± 1.35 84.29 ± 4.53 98.34 ± 0.13

Kappa 69.06 ± 3.94 95.52 ± 1.72 79.88 ± 2.21 95.18 ± 3.73 93.19 ± 1.73 82.92 ± 1.75 87.62 ± 5.48 77.34 ± 1.81 77.93 ± 3.18 98.18 ± 0.41

(a) Ground-truth data (b) OA = 75.49 (c) OA = 94.86 (d) OA = 86.71

(e) OA = 87.40 (f) OA = 78.15 (g) OA = 80.86 (h) OA = 98.63

Figure 11. The classification maps of different methods for the University of Pavia image.
(a) ground-truth data; (b) SVM; (c) ERW; (d) SSLP-SVM; (e) MPM-LBP; (f) R-2D-CNN; (g) CasRNN;
(h) SRSPL.
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(a) Ground-truth data (b) OA = 76.06 (c) OA = 97.17 (d) OA = 83.30

(e) OA = 87.79 (f) OA = 78.12 (g) OA = 81.81 (h) OA = 98.69

Figure 12. The classification maps of different methods for the Salinas image. (a) ground-truth data;
(b) SVM; (c) ERW; (d) SSLP-SVM; (e) MPM-LBP; (f) R-2D-CNN; (g) CasRNN; (h) SRSPL.

The fourth experiment was performed on the Kennedy Space Center data set. In the experiment,
the proposed SRSPL method was compared with the SVM method and three other semi-supervised
methods, e.g., ERW, SSLP-SVM, MPM-LBP, and two different deep learning methods, e.g., R-2D-CNN,
CasRNN. Figure 13 shows the changes in OA and Kappa coefficient as the number of training samples
per class increases from 3 to 15. Compared with the deep learning-based classification methods
R-2D-CNN and CasRNN, the proposed SRSPL method shows great advantages. As shown in Figure 13,
the SRSPL method achieves the highest accuracy among the tested methods.
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Table 3. Classification accuracies (University of Pavia) in percentages for the tested methods when
20 training samples per class are provided. (The bold values indicate the greatest accuracy among the
methods in each case.)

Class Training Test SVM Without-IID
Different Feature Extraction Methods Different Semi-Supervised Methods Deep Learning Methods

SRSPL
With-PCA With-IFRF ERW SSLP-SVM MPM-LBP R-2D-CNN CasRNN

Weeds 1 3 2006 86.74 ± 12.68 96.74 ± 12.68 100.00 ± 0.00 100.00 ± 0.00 100.00 ± 0.00 99.87 ± 0.15 98.82 ± 0.80 88.83 ± 1.85 90.12 ± 1.28 100.00 ± 0.00
Weeds 2 3 3723 99.08 ± 0.89 99.08 ± 0.89 100.00 ± 0.00 99.34 ± 0.04 99.95 ± 0.03 98.75 ± 0.24 99.40 ± 0.67 99.46 ± 0.37 99.20 ± 0.69 99.96 ± 0.06
Fallow 3 1973 77.08 ± 16.42 98.08 ± 1.42 100.00 ± 0.00 100.00 ± 0.00 100.00 ± 0.00 84.21 ± 2.16 90.98 ± 12.66 79.49 ± 2.66 81.88 ± 3.76 100.00 ± 0.00

Fallow_P 3 1391 96.94 ± 1.23 84.94 ± 1.23 96.81 ± 3.16 85.28 ± 6.84 86.28 ± 7.64 97.64 ± 0.12 99.47 ± 0.30 96.13 ± 0.46 97.48 ± 0.47 94.64 ± 2.84
Fallow_S 3 2675 90.08 ± 8.26 97.08 ± 1.26 97.36 ± 2.97 98.41 ± 0.25 99.41 ± 0.27 96.86 ± 3.22 97.94 ± 1.53 90.07 ± 1.35 92.97 ± 1.73 97.38 ± 6.17
Stubble 3 3956 99.11 ± 4.76 98.11 ± 1.76 98.00 ± 2.01 97.34 ± 1.58 97.72 ± 4.58 99.87 ± 0.25 97.75 ± 3.28 97.81 ± 1.78 97.89 ± 0.38 99.92 ± 0.06
Celery 3 3576 93.79 ± 4.17 98.79 ± 1.17 100.00 ± 0.00 90.20 ± 4.77 72.20 ± 24.77 98.95 ± 0.41 99.06 ± 0.84 94.91 ± 2.43 96.56 ± 1.64 99.35 ± 0.18
Grapes 3 11268 64.24 ± 7.87 94.24 ± 2.87 93.12 ± 2.18 99.15 ± 0.42 99.17 ± 0.92 72.05 ± 3.23 72.48 ± 18.65 70.84 ± 6.55 73.45 ± 7.67 99.70 ± 2.56

Soil 3 6200 96.20 ± 3.03 96.20 ± 2.03 98.38 ± 1.48 100.00 ± 0.00 100.00 ± 0.00 99.37 ± 0.17 99.21 ± 0.60 96.18 ± 1.06 97.41 ± 0.78 100.00 ± 0.00
Corn 3 3275 72.58 ± 19.06 97.58 ± 1.06 91.57 ± 6.35 97.21 ± 7.15 95.36 ± 7.15 89.21 ± 3.90 83.91 ± 10.82 75.06 ± 10.28 78.04 ± 9.12 97.36 ± 9.51

Lettuce_4 3 1065 74.66 ± 19.37 96.66 ± 2.37 80.51 ± 6.47 98.76 ± 2.23 100.00 ± 0.00 83.41 ± 4.40 92.94 ± 4.87 77.27 ± 8.78 80.64 ± 6.76 99.98 ± 0.06
Lettuce_5 3 1924 81.48 ± 10.07 98.48 ± 0.07 83.16 ± 12.54 99.60 ± 1.83 100.00 ± 0.00 92.60 ± 5.67 99.36 ± 1.97 83.55 ± 7.75 85.61 ± 5.67 100.00 ± 0.00
Lettuce_6 3 913 78.58 ± 13.93 98.58 ± 0.93 98.31 ± 2.74 98.74 ± 0.47 97.88 ± 0.47 95.24 ± 0.66 97.17 ± 3.24 80.20 ± 6.24 82.80 ± 4.41 98.47 ± 0.27
Lettuce_7 3 1067 83.59 ± 19.14 93.59 ± 2.14 97.24 ± 2.59 95.33 ± 2.21 95.35 ± 2.36 92.14 ± 4.74 94.76 ± 2.63 85.73 ± 7.36 88.78 ± 5.37 96.26 ± 0.68

Vinyard_U 3 7265 45.43 ± 6.21 97.43 ± 2.21 88.51 ± 8.64 99.37 ± 0.17 99.18 ± 0.05 58.67 ± 7.83 70.93 ± 25.10 71.81 ± 10.01 75.93 ± 9.70 98.92 ± 0.13
Vinyard_T 3 1804 83.43 ± 18.80 99.43 ± 0.80 100.00 ± 0.00 99.48 ± 0.89 100.00 ± 0.00 71.12 ± 4.44 76.88 ± 11.35 86.12 ± 6.35 89.06 ± 4.35 99.68 ± 0.79

OA 76.06 ± 2.97 95.88 ± 3.63 86.06 ± 2.97 97.65 ± 1.36 97.17 ± 2.23 83.30 ± 1.58 87.79 ± 3.26 78.12 ± 2.42 81.81 ± 3.89 98.69 ± 1.22
AA 82.69 ± 2.46 96.76 ± 2.64 90.69 ± 2.46 97.78 ± 1.69 96.62 ± 2.69 88.12 ± 0.78 92.57 ± 2.07 77.45 ± 2.04 82.34 ± 2.10 98.01 ± 1.44

Kappa 73.52 ± 3.22 94.59 ± 3.97 85.52 ± 3.22 98.00 ± 1.45 96.84 ± 2.49 81.46 ± 1.72 86.41 ± 3.63 79.47 ± 2.31 80.87 ± 3.38 98.54 ± 1.37

(a) (b)

Figure 13. The classifications of different methods for the Kennedy Space Center image when the
number of training samples increases from three per class to 15 per class. (a) OA; (b) Kappa coefficient.

Finally, we evaluated the computational times of the three different semi-supervised methods
(i.e., MPM-LBP, SSLP-SVM, and SRSPL) on the four different data sets using 20 samples per class using
MATLAB on a computer with 3.6 GHz CPU and 8-GB memory. Because the semi-supervised method
proposed in this paper does not involve a single training process, its computational cost is greatly
improved. Table 4 shows that the proposed SRSPL method requires less time to process the Indian
Pines, Salinas, and Kennedy Space Center data sets than do the other tested methods.

Table 4. Execution times of three semi-supervised methods of four data sets. (The bold values indicate
the minimum computational times among the methods in each data set.)

Data Sets
Computational Times (s)

MPM-LBP SSLP-SVM SRSPL

Indian Pines 197.78 479.51 124.31
University of Pavia 604.35 164.09 240.14

Salinas 339.03 1592.75 202.14
Kennedy Space Center 939.519 122.20 72.32
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5. Discussion

In hyperspectral image classification, it is difficult and expensive to obtain enough labeled
samples for model training. Considering the strong spectral correlation between labeled and unlabeled
samples in the image, we proposed a novel sparse representation-based sample pseudo-labeling
method (SRSPL). The pseudo-labeled samples generated by this method can be used to augment the
training set, thereby solving the problem of poor classification performance under the condition of
small samples.

Compared with other pseudo-labeled sample generation method (such as SSLP-SVM),
the proposed SRSPL method is more reliable in generating pseudo-labeled samples. The SSLP-SVM
method only adds a small number of pseudo-labeled samples near the labeled samples, and the
added samples may be mixed samples. The proposed SRSPL method considers the relationship
between sample purity and information entropy, that is, the purer the sample’s spectrum, the lower the
information entropy of the sparse representation coefficient, and vice versa. Specifically, the spectral
characteristics of a pure sample can be linearly represented using a single class of atoms in an
overcomplete dictionary, so its coefficient vector will have smaller entropy. In our method, pure
samples with smaller entropy are used to expand the initial training sample set, which can greatly
improve classifier performance.

In the case of small samples, compared with other classifiers (such as SVM, ERW, and MPM-LBP),
the SRSPL method produces a good classification map for each hyperspectral data set visually,
as shown in Figures 9–11. This is because the hyperspectral image is first processed using the intrinsic
image decomposition technology, which helps reduce errors in subsequent sparse representations,
and the pseudo-label samples generated by the SRSPL method can help optimize the classification
model. In addition, compared with deep-learning-based classifiers (such as R-2D-CNN and CasRNN),
the proposed SRSPL method performs better for a limited number of samples because, in such cases,
these two methods are more likely to overfit the training samples, resulting in poor classification results.
Thus, the proposed SRSPL method shows better classification results than other comparative methods.

6. Conclusions

In this paper, we proposed a novel sample pseudo-labeling method based on sparse representation
that addresses the problem of limited samples. The previously proposed semi-supervised methods
for generating pseudo-labeled samples typically select some samples and assign them a pseudo-label
based on spectral information correlations or local neighborhood information. However, due to
the presence of mixed pixels, the selected samples are not necessarily representative. To find the
purest samples, we designed a sparse representation-based pseudo-labeling method that utilizes
the coefficient vector of sparse representation and draws on the definition and idea of entropy from
information theory. Overall, the proposed SRSPL method provides a new option for semi-supervised
learning, which is the first contribution of the paper. Moreover, the proposed SRSPL method also solves
the problem of uneven sample distribution through sparse representation based on spectral features,
which is beneficial for subsequent classification. In addition, by comparing the standard deviations
of OA, AA, and Kappa of 30 random replicate experiments with other state-of-the-art classification
methods, we found that the proposed SRSPL method had higher robustness and stability. This is the
second contribution of the paper. The experimental results on four real-world hyperspectral images
show that the proposed SRSPL method is superior to other state-of-the-art classification methods from
the perspectives of both quantitative indicators and classification maps.
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