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Abstract: Time series analysis (TSA) based on multi-temporal polarimetric synthetic aperture radar
(PolSAR) images can deeply mine the scattering characteristics of objects in different stages and
improve the interpretation effect, or help to extract the range of surface changes. However, as far as
classification is concerned, it is difficult to directly generate the classification map for a new temporal
image, by the use of conventional TSA or change detection methods. Once some labeled samples
exist in historical temporal images, semi-supervised domain adaptation (DA) is able to use historical
label information to infer the categories of pixels in the new image, which is a potential solution
to the above problem. In this paper, a novel semi-supervised DA algorithm is proposed, which
inherits the merits of maximum margin criterion and principal component analysis in the DA learning
scenario. Using a kernel mapping function established on the statistical distribution of PolSAR data,
the proposed algorithm aims to find an optimal subspace for eliminating domain influence and
keeping the key information of bi-temporal images. Experiments on both UAVSAR and Radarsat-2
multi-temporal datasets show that, superior classification results with the average accuracy of about
80% can be obtained by a simple classifier trained with historical labeled samples in the learned low-
dimensional subspaces.

Keywords: polarimetric SAR; bi-temporal images; transfer learning; domain adaptation; scatter
matrices; graph embedding; reproducing kernel Hilbert spaces; dissimilarity measure

1. Introduction

Owing to its advantages of all-day, all-weather and multi-polarization, polarimetric synthetic
aperture radar (PolSAR) has become an important part of earth observation system [1]. In recent years,
it has been widely used in land cover classification [2–4], target detection [5], hazard assessment [6,7],
surface parameter inversion [8,9] and other fields. Time series analysis (TSA) based on multi-temporal
PolSAR images can deeply mine the backscattering characteristics of objects in different stages [10,11]
and improve the interpretation effect [12–14], or help to extract the range of surface changes [15–17].
However, as far as classification is concerned, it is difficult to directly generate the classification map
for a new temporal image, by the use of conventional TSA or change detection methods. The reasons

Remote Sens. 2020, 12, 658; doi:10.3390/rs12040658 www.mdpi.com/journal/remotesensing

http://www.mdpi.com/journal/remotesensing
http://www.mdpi.com
https://orcid.org/0000-0001-8718-1710
http://dx.doi.org/10.3390/rs12040658
http://www.mdpi.com/journal/remotesensing
https://www.mdpi.com/2072-4292/12/4/658?type=check_update&version=2


Remote Sens. 2020, 12, 658 2 of 27

are as follows: on the one hand, lots of the TSA research articles mainly focus on investigating the
scattering behavior evolution of specific targets in different time frames, e.g., Mascolo et al. [11] and
Marechal et al. [13] have successfully analyzed the seasonal impact in wetland extraction and identified
crop phenological stages by using time series PolSAR images, respectively. However, the investigation
on only a specific target of interest is not satisfactory in the general classification cases. On the
other hand, the bi-temporal [17] and multi- temporal [18] change detection methods usually focus
on distinguishing the changed and unchanged regions, or further divide the changed regions into
several types of changes [16], but it is difficult to reveal the category attributes from these types, such
as waterbody, buildings, grass and kinds of crops, etc. In addition, although a few classification-based
change detection methods (e.g., post-classification comparison [19,20]) can generate the classification
result of post-temporal image, the category-labeled samples in post-temporal image are still required
in the training phase, in order to keep the high-quality interpretation.

Essentially, the problem we want to solve is how to infer the category labels of pixels in a
new temporal image, by employing label information only in the historical temporal image. As
implementing in-situ surveys is very time-consuming and laborious, and simultaneously the remotely
sensed data volume has been growing explosively in recent years, it is certainly conceivable that the
above setting will be a bottleneck to boost the classification timeliness in the near future. It seems to be
simple and intuitive that we can directly train a classifier based on historical labeled samples and then
employ it to classify new temporal samples. However, no matter the classification models proposed in
the PolSAR field like multi-variate complex Gaussian [21] and complex Wishart classifier [22,23], or
the classification models proposed in the machine learning community like support vector machine
(SVM) [24], random forest (RF) [25] and deep neural network [26,27], the reliability of them is on
the condition that training and test samples are independent and identically distributed (i.i.d.). Due
to the high complexity of backscattering process between the transmitted microwave and ground
surface, the differences of space-time attributes, incident angles and other factors, sometimes make the
backscattering characteristics of similar and even identical objects very different in multiple PolSAR
images. This phenomenon results in the non i.i.d. samples, and thus seriously hinders the historical
category-label information to play a key role in the new temporal image classification.

As one of the research hotspots in the machine learning community, transfer learning (TL) aims at
applying the previous accumulated knowledge in one field to another different but related field [28].
The field with fund of knowledge for a certain task is referred to as source domain (SD), and the
field with scarce knowledge for another related task is referred to as target domain (TD). For instance,
Segev et al. [29] have proposed two model TL methods based on the RF model, and combined them to
deal with several cross-domain image recognition problems. The fundamental purpose of TL is to
solve the problem of adapting pre-existing data to new tasks, e.g., mass of labeled email data can be
used to train a good classifier for junk email recognition in SD, but only scarce labeled message data
exists in TD. TL is able to improve junk message recognition precision by the use of information in
SD, which provides a potential way to deal with the problem we care about. An early overview of
the TL techniques can be seen in [30]. In accord with the TL terminology, hereinafter the historical
temporal image and new temporal image are considered as the SD data and TD data respectively. The
dual-domain data are drawn from the same feature space, and own different but related probability
distributions. In the TL field, domain adaptation (DA) is a main branch which learns domain-invariant
features by matching the distributions of dual-domain data. DA theory assumes via a specific mapping
transformation, the samples in both domains could approximately obey the i.i.d. condition. In
this case, any classifier trained with the SD samples can be directly re-used for the TD data, so
employing the DA methods makes it very easy to take full advantage of the pre-existing classification
models. In this respect, two regularization frameworks [31,32] proposed by Argyriou et al. can learn
low-dimensional representation shared between SD and TD tasks, and Blitzer et al. [33] introduced
structural correspondence learning to automatically induce correspondences among features from
different domains. Moreover, dimensionality reduction and low-rank representation [34] have been
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applied to build DA models, such as maximum mean discrepancy embedding [35], transfer component
analysis [36] and maximum independence domain adaptation [37,38] etc. The above feature-based
algorithms are also collectively known as transfer subspace learning (TSL), and inspired by this, a
series of deep learning models have been transplanted into the TL field recently [39–43]. Different
from the coarse “fine-tuning” operation (i.e., start with a pretrained deep learning model and update
its parameters for a new task), the models proposed in [39–43] involve some special designed layer
modules, training strategies and so on, in order to align the joint distributions of data across domains.

In this paper, the DA theory is introduced into bi-temporal PolSAR image processing, to deal with
the discrepancy of distributions between the SD and TD data. In this regard, we design a novel TSL
algorithm, named scatter matrix based domain adaptation (SMbDA): firstly, it constructs two objective
subfunctions to keep the category separability or unsupervised structural information in two domains,
by the use of graph embedding theory and scatter matrices; later in reproducing kernel Hilbert spaces
(RKHSs), the proposed algorithm employs Hilbert-Schmidt independence criterion to reduce and
even remove domain influence. Furthermore, a dissimilarity measure established on the statistical
distribution of PolSAR data can be used to build a specific kernel mapping function, which helps the
SMbDA find a better subspace for promoting information transfer effect of bi-temporal images. Via
SMbDA projection, dual-domain data approximately keeps the i.i.d. condition and valuable category
information, so we can train kinds of conventional classifiers with historical labeled samples and test
them with unknown samples in new temporal image.

The rest of this paper is as follows: Section 2 first gives an overview of two relevant TSL methods,
and then introduces our proposed SMbDA in detail. The above methods are comparative analyzed
together using UAVSAR and Radarsat-2 multi-temporal datasets. All of the experimental results and a
brief discussion are respectively in Section 3 and 4. Finally, Section 5 summarizes the main content and
contributions, and our future work is also presented in this part.

2. Methods

2.1. Relevant Works

Let x ∈ RD×1 denotes the D-dimensional feature vector of a sample, the total sample set X =

[x1 x2 . . . xNS+NT ] ∈ RD×(NS+NT) includes both the SD set XS = [x1 x2 . . . xNS ] ∈ RD×NS and the TD set
XT = [xNS+1 xNS+2 . . . xNS+NT ] ∈ RD×NT , where NS and NT are the SD and TD sample sizes. If the
categories of SD samples are known, then we have a SD label set CS = [c1 c2 . . . cNS ] but have no
TD label set CT, here any ci ∈ {1, 2, . . . , Nc} and Nc is the number of categories. In general, a domain
consists of two parts, its feature space and the marginal probability distribution of its dataset P(X).
In this paper, our focus needs to be on the marginal probability distributions of XS and XT, because
time series data are drawn from the same feature space. As TSL assumes that SD and TD data would
have similar low-dimensional feature structure, the discrepancy of data distributions between two
domains can be reduced via mapping original data X into a new feature space, that is, the generated
data Y = f (X) = [y1 y2 . . . yNS+NT ] ∈ Rd×(NS+NT), where f ( · ) is a transformation function and d ≤ D.

In this subsection, two TSL algorithms are briefly reviewed and give us a few patterns to transfer
information across different domains.

2.1.1. Transfer Component Analysis

Transfer component analysis (TCA) [36] is a well-known unsupervised TSL method proposed
by Pan et al. in 2011. It mainly utilizes the dual-domain unlabeled data to achieve the goal
of DA. In terms of image classification, the preferable adaptation effect is matching conditional
probabilities,P(CS

∣∣∣YS) ≈ P(CT
∣∣∣YT) .YS and YT are respectively the generated SD and TD data using

f ( · ). However, absence of CT results in the difficulty of estimating the above conditional probabilities.
An alternative approach is adopted by TCA. This method try to learn f by meeting the following two
conditions, and Pan et al. believe that such a f can make YS and YT satisfy P(CS

∣∣∣YS) ≈ P(CT
∣∣∣YT) .
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• Shorten the distribution distance between P(YS) and P(YT) as much as possible
• Preserve the valuable information of original data XS and XT after the transformation f

For the first condition, TCA applies maximum mean discrepancy (MMD) to estimate the
discrepancy of different marginal probability distributions. As a nonparametric estimation method,
MMD simply calculates the distance between SD and TD sample centers in a RKHS, and does not
require intermediate density estimate. For the second condition, TCA chooses to preserve data variance,
and thus the principal component analysis (PCA) process is performed on dual-domain Gram kernel
matrix. In addition, a regularization term used for controlling the model complexity and avoiding
rank deficiency is also taken into account. In conclusion, the overall objective of TCA is minimizing
both the MMD value between P(YS) and P(YT), and the regularization term, with the constraint of
preserving data variance.

TCA utilizes unsupervised information but ignores category labels. However, although the TD
label set is scarce, it is easy to acquire the SD label set CS in many cases. Once the label information in
CS is considered, a semi-supervised extension known as semi-supervised transfer component analysis
(SSTCA) can be built on TCA. Besides distribution matching like the aforementioned TCA, another
two conditions are also investigated in the SSTCA model:

• Reduce the empirical error on the SD labeled data as much as possible
• Preserve the local structure information of original data XS and XT after the transformation f

For the first condition, SSTCA applies Hilbert-Schmidt independence criterion (HSIC) to estimate
the dependence between samples and the corresponding labels. Increase of the dependence is roughly
equivalent to the reduction of empirical error. Similar to MMD, HSIC is a nonparametric criterion [44].
Later a detailed description about this criterion is given in Section 2.3. For the second condition,
reference to manifold learning theory [45], the locality preserving projection [46] process is performed
on dual-domain Gram kernel matrix. Comparatively speaking, SSTCA is much more complicated and
usually performs better than TCA.

2.1.2. Maximum Independence Domain Adaptation

As a criterion for estimating the dependence between two sets, HSIC can also be used to measure
the independence between data and the corresponding domain. After a DA transformation, intuitively
the more independent the data is, the better the information transfer effect. A recently proposed TSL
method named maximum independence domain adaptation (MIDA) [37] aims at maximizing the
independence. Domain features are defined to describe the background information of samples. If only
one source domain and one target domain exist, the domain feature di of a sample xi can be expressed
as the one-hot encoding form:

di =

 [1 0]T, i f xi ∈ XS

[0 1]T, i f xi ∈ XT
(1)

So the domain feature set is D = [d1 d2 . . . dNS+NT ], and then the dual-domain Gram kernel matrix
and domain feature kernel matrix are built on dual-domain samples and set D. It is worth noting
that, the samples used in MIDA are augmented with domain features, i.e.,̃xi = [xT

i dT
i ]

T. The feature
augmentation operation is able to increase the initial input dimension before DA, to the benefit of
better searching transformation approach. Using the above two kernel matrices, the independence (or
in fact, the dependence) between dual-domain data and domain features is evaluated by HSIC. On
the other hand, PCA process is also performed on Gram kernel matrix to preserve data variance. In
conclusion, the objective of MIDA is simultaneously reducing domain influence (minimizing the HSIC
criterion) and preserving variance (maximizing the trace of data covariance matrix).

Considering SD label information, the semi-supervised method named semi-supervised maximum
independence domain adaptation (SMIDA) is built on MIDA. The idea is similar to SSTCA, videlicet,



Remote Sens. 2020, 12, 658 5 of 27

HSIC is applied again to estimate the dependence between samples and their category labels. As a
result, in addition to reducing domain influence and preserving data variance, SMIDA needs to reduce
the empirical error on SD labeled data.

2.2. PolSAR Data Description

In general, a PolSAR sensor alternately transmits and receives the horizontally polarized and
vertically polarized electromagnetic waves. In each resolution cell, PolSAR data is represented as a 2 ×
2 Sinclair matrix in brief,

S =

[
SHH SHV

SVH SVV

]
(2)

where all the items in Sinclair matrix are complex backscattering coefficients, and the symbol “H”
indicates horizontal polarization, “V” indicates vertical polarization. Obviously, the matrix S contains
abundant scattering information in different polarization state combinations, which is related to the
sizes, orientations and dielectric properties of observed targets in the resolution cell.

The reciprocity principle can be satisfied in most cases, and therefore the Sinclair matrix can
be equivalently vectorized as a 3 × 1 complex Lexicographic vector Ω. The superscript “T” below
represents transpose operation.

Ω = [ SHH
√

2SHV SVV ]
T

(3)

Because distributed targets vary with time or space, and always show stochastic behaviour in
SAR images, the second-order statistics of Lexicographic vector is more suitable for describing these
targets than the vector itself. In practice, the covariance matrix of Ω is adopted more often:

C =
〈
Ω ·ΩH

〉
(4)

The 3 × 3 Hermitian matrix C is known as polarimetric covariance matrix. Here the superscript
“H” in Equation (4) denotes conjugate transpose operation, and the angle brackets denote ensemble
average operation. There are totally three real-valued diagonal elements and six complex-valued
off-diagonal elements in this matrix, but only nine real-valued variables are mutually independent. As
vector form widely serves as the input in DA and classification algorithms, the 9 × 1 vector consisting
of the nine independent real-valued variables will be used as the feature descriptor of PolSAR targets
and be input into several DA and classification models in Section 3. It is worth mentioning that, an
alternative input form is the magnitudes and phase angles of elements in C, however we have not
observed stable and better experimental results. For simplicity, we skip the relevant content in the
following part.

2.3. Scatter Matrix Based Domain Adaptation

Two DA algorithms and two semi-supervised extensions have already introduced before. It is
easy to see that, TSL takes both inter-domain information influence and intra-domain information
preservation into account in the DA process. SD data is able to guide TD classification, only if to
some extent, the data consistency across domains and key information integrity in each domain can
be guaranteed. Given historical labeled samples, our emphasis in this paper is on the post-temporal
supervised classification, so the category information preservation of SD data is pivotal. However, as
the semi-supervised TSL extensions, SSTCA and SMIDA both put unsupervised structural information
first, and put empirical classification error reduction in second place.

Start from category information preservation, a novel semi-supervised TSL algorithm named
scatter matrix based domain adaptation (SMbDA) is proposed in this subsection. During the process of
eliminating domain influence, this algorithm gives priority to keeping category separability in SD, and
later preserves structural information in both domains. Different from the previous TSL methods, the
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SMbDA prefers to investigate category distinction and thus benefits the subsequent TD classification
intuitively. The objective function F of SMbDA consists of three parts:

F(Y) = αFS(Y) + βFU(Y) + FDA(Y) (5)

where FS,FU and FDA are respectively the supervised information preservation term, unsupervised
information preservation term, and domain adaptation term.α and β are trade-off hyperparameters
and both of them need to be nonnegative numbers. Y is the generated dataset via DA processing. As
the feature descriptor of PolSAR targets is 9 × 1 vector, the feature dimension d of samples in Y is less
than 9.

The integrated DA effect can be evaluated by (5). To promote nonlinear mapping ability, our
SMbDA employs the similar kernel trick like TCA and MIDA. First, let a mapping function φ
maps X into an extremely high and even infinite dimensional RKHS, leading to the implicit dataset
Φ = [φ(x1) φ(x2) . . . φ(xNS+NT )], in which any φ(xi) is the feature vector of i-th sample in the RKHS.
If the inner product of two RKHS vectors is represented by < φ(xi), φ(x j) >, the dual-domain Gram
kernel matrix KG can be defined as the equation below, where (KG)i j =< φ(xi), φ(x j) >, N = NS + NT.

KG =

[
KSS KST
KTS KTT

]
= ΦTΦ ∈ RN×N (6)

Equation (6) shows that, the Gram kernel matrix includes four block matrices. The diagonal ones
are conventional kernel matrices built on single domain and have been widely used in kernel-based
machine learning models [24]. The off-diagonal ones are cross-domain kernel matrix, and (KST)i j =<
φ(xi), φ(xNS+ j) >,(KTS)i j =< φ(xNS+i), φ(x j) >.

In the next step, the linear dimensionality reduction is performed on Φ, or more specifically, a
projection matrix Uφ is used to transform Φ into the desired dataset Y ∈ Rd×N, and Y = UT

φΦ. Because
each projection direction can be expressed as a linear combination of all samples in the RKHS [35–37],
we have Uφ = ΦU, U ∈ RN×d, and thus Y = UTΦTΦ = UTKG. Obviously, it does not matter that the
explicit form of function φ is undefined, as Y is just related to the Gram kernel matrix and projection
matrix. Once the inner product operation, also known as kernel mapping function, is selected, the
matrix KG is determinate. As a consequence,Y changes only when U changes, and hence (5) can be
rewritten as:

F(U) = αFS(U) + βFU(U) + FDA(U) (7)

The optimal U can be obtained by maximizing (7), and later Y is generated based on U. When an
out-of-sample x comes, the inner product of φ(x) and each φ(xi) in Φ should be calculated at first, and
later the corresponding projection vector of x would be gotten, using the product result of the previous
step and projection matrix U.

In order to avoid trivial solutions, some specific constraints need to be added, e.g., orthogonal
constraint UTU = Id,Id is a d× d identity matrix. From the above, the objective of SMbDA is (8). The
remainder of this subsection will describe the main components FS,FU and FDA in detail.

U = argmaxF(U), s.t. UTU = Id (8)

2.3.1. Supervised Information Preservation

The difficulty level of object identification depends on category separability, that is, decided
by both inter-category scatter and intra-category scatter. Linear discriminant analysis (LDA) [47]
maximizes the former and minimizes the latter using a trace ratio operation. Instead of trace ratio,
maximum margin criterion (MMC) [48] is inspired by the well-known SVM classifier and adopts a
trace difference operation to achieve the similar goal. In comparison to LDA, MMC avoids the rank
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defect problem and therefore improves the robustness of solutions. Here we introduce and further
generalize this criterion to the DA scope.

Consistent with the previous works, the SD sample set XS, SD label set CS and TD sample set XT

are given, but there is no TD label set in our semi-supervised setting. Denote the separability between
the i-th and j-th categories as Ji j, then the total category separability J is a weighted sum:

J =
1
2

Nc∑
i=1

Nc∑
j=1

PiP j Ji j (9)

Pi and P j are the prior probabilities of the i-th and j-th categories. Because the prior distributions
of categories are all unknown, these probabilities are assumed to be equivalent, so Pi = P j = 1/Nc.
The factor “1/2” in Equation (9) is for balancing the total separability, as separability is symmetric,
e.g.,Ji j = J ji.J is an indicator to judge whether the labeled samples are easy to classify. In other words, it
is able to evaluate the effectiveness of supervised information in a certain feature space.

The separability Ji j needs to comprehensively investigate inter- and intra-category dispersions.
As for the generated SD sample set YS = [y1 y2 . . . yNS ], MMC represents inter-category dispersion as
the square of distance among category centers, and represents intra-category dispersion as the trace of
intra-category scatter matrix, so

Ji j = ‖y
i
S − y j

S‖
2
− Sci − Sc j (10)

where,

Sci = Tr

 ni∑
m=1

(
yi

m − yi
S

)(
yi

m − yi
S

)T
 (11)

Sci and yi
S are respectively the dispersion and center of i-th category, so do Sc j and y j

S. The m-th
sample in i-th category is yi

m, and ni is the sample size of i-th category.‖ · ‖ denotes l2 norm,Tr( · ) is
trace operator. Substitute (10) into (9), and we get

J =
1
2

Nc∑
i=1

Nc∑
j=1

PiP j‖y
i
S − y j

S‖
2
−

1
2

Nc∑
i=1

Nc∑
j=1

PiP j
(
Sci + Sc j

)
(12)

The square of distance can be expanded to,

‖yi
S − y j

S‖
2

= Tr
(
(yi

S − y j
S)(yi

S − y j
S)

T)
= Tr

(
(yi

S − yS)(yi
S − yS)

T
+ (yS − y j

S)(yS − y j
S)

T
+ · · ·

(yi
S − yS)(yS − y j

S)
T
+ (yS − y j

S)(yi
S − yS)

T
) (13)

where yS is the sample center of YS, hence
∑Nc

i=1 Pi(yS − yi
S) = 0. After derivation, it is shown that,

1
2

Nc∑
i=1

Nc∑
j=1

PiP j

(
(yi

S − yS)(yS − y j
S)

T
+ (yS − y j

S)(yi
S − yS)

T
)
= 0 (14)

Using (13) and (14), the first term in (12) can be derived as,

1
2

Nc∑
i=1

Nc∑
j=1

PiP j‖y
i
S − y j

S‖
2

=
Nc∑
i=1

Nc∑
j=1

PiP jTr
(
(yi

S − yS)(yi
S − yS)

T
)

= 1
Nc

Tr
(

Nc∑
i=1

(yi
S − yS)(yi

S − yS)
T
) (15)
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which is basically consistent with the total inter-category scatter in LDA. Based on graph embedding [49],

we can directly use the matrix description YSSBYT
S instead of the expression

∑Nc
i=1 (yi

S − yS)(yi
S − yS)

T

in Equation (15), and SB =
∑Nc

i=1 ei
S(e

i
S)

T/ni − eSeT
S/NS.eS is a NS × 1 vector and its elements are all

one.ei
S is also a NS × 1 vector with (ei

S) j = 1 if the label c j of j-th SD sample is i; 0 otherwise.
On the other hand, the second term in (12) can be expanded to Equation (16), which is basically

consistent with the total intra-category scatter in LDA. Similar to (15), the matrix description YSSWYT
S

can be used instead of
∑Nc

i=1
∑ni

m=1 (yi
m − yi

S)(yi
m − yi

S)
T

, and SW = INS −
∑Nc

i=1 ei
S(e

i
S)

T/ni.

1
2

Nc∑
i=1

Nc∑
j=1

PiP j
(
Sci + Sc j

)
= 1

Nc

Nc∑
i=1

Sci

= 1
Nc

Tr
(

Nc∑
i=1

ni∑
m=1

(yi
m − yi

S)(yi
m − yi

S)
T
) (16)

Taken (15) and (16) into account, the total category separability is,

J =
1

Nc
Tr(YSSBYT

S) −
1

Nc
Tr(YSSWYT

S) (17)

The capacity of supervised information preservation of YS can be evaluated by J. Besides, the
connection between Y and J should be built in the DA learning scenario. We put Y into (17), and
accordingly adopt two generalized matrices ŜB and ŜW instead of SB and SW . Finally, we obtain the
first subfunction FS of SMbDA based on MMC.

FS(U) = Tr(YŜBYT) − Tr(YŜWYT) = Tr
(
UTKG(ŜB − ŜW)KGU

)
(18)

and,

ŜB =

[
SB ONS×NT

ONT×NS ONT×NT

]
(19)

ŜW =

[
SW ONS×NT

ONT×NS ONT×NT

]
(20)

O represents a matrix with all zero elements. Compared with (17), the scaling constant 1/Nc is
omitted in (18). It is easy to see that,J and FS are equivalent, except the difference of input modes.

2.3.2. Unsupervised Information Preservation

Learning the projection matrix U by only preserving category separability is not enough. If
the fundamental structural information of dual-domain samples is distorted after projection, the
difficulty of subsequent classification is inevitable. However in most cases, only SD samples are
labeled, so unsupervised information preservation is also necessary. Considering the high simplicity
and practicability of PCA, the proposed SMbDA aims at maximizing data variance. As Y = UTKG, the
variance of Y is,

Var(Y) =
N∑

i=1

‖yi − y‖2 = Tr

 N∑
i=1

(yi − y)(yi − y)T

 = Tr(UTKGHKGU) (21)

in which,y represents the sample center of Y, and H = IN − eeT/N is the centering matrix.e is a N × 1
column vector and all the elements are one. We can further simplify (21) by normalizing Gram kernel
matrix. Namely, normalize KG as KG − eeTKG/N −KGeeT/N − eeTKGeeT/N2 beforehand, and hence H
can be deleted. In this case, the second subfunction of SMbDA,FU(U) = Tr(UTKGKGU), is obtained.
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2.3.3. Domain Influence Reduction

Except investigating supervised and unsupervised information of dual-domain data, domain
influence ought to be reduced. As previously mentioned in Section 1, one of the most important goals
in the DA field is to approximately hold the i.i.d. condition. That is to say, via the projection in RKHSs,
it should look like that the SD and TD data are drawn from the same distribution. But this requirement
is always hindered by inter-domain variable factors. Therefore, we consider to achieve this goal by
virtue of reducing the dependency between data and domains. If the projected data Y are independent
of the relevant domains, the domain which any sample in Y belongs to cannot be distinguished, and
thus in the specific feature space, the inter-domain discrepancy is diminished.

As HSIC is a simple and nonparametric approach to estimate the dependency between two
sets, we employ it to measure the dependency between Y and domain features. Similar to MIDA,
domain features are defined as the one-hot encoding form [37] and are used to describe the background
information of samples. When there are only one SD and one TD, the domain feature di of a sample
xi is shown in Equation (1), and the domain feature set D = [d1 d2 . . . dNS+NT ] is built. Because
HSIC calculates the square of the Hilbert-Schmidt norm of the cross-covariance operator, an empirical
estimation form of HSIC is represented as [50],

HSIC(A, B) =
1

(n− 1)2 Tr(HKAHKB) (22)

where A and B are the sets we want to measure the dependency,KA and KB are respectively the
kernel matrices of the two sets,n is the number of samples in sets. A small HSIC value implies a
weak dependence between A and B. Only if A and B are independent, HSIC reaches the minimum
value, zero.

Substituting the kernel matrices of Y and D into (22), the dependency between data and the
corresponding domains is evaluated. The kernel matrices KY of Y is YTY = KGUUTKG, and using
the linear kernel function, the kernel matrix KD of D is DTD. For convenience, if KG is normalized in
advance, we can also omit the centering matrix H and the scaling factor in (22). As a consequence, the
last subfunction FDA of SMbDA can be written as:

FDA(U) = −HSIC(Y, D) = −Tr(KGUUTKGKD) = −Tr(UTKGKDKGU) (23)

From all the above, our SMbDA aims at maximizing the category separability, data variance, and
simultaneously minimizing domain dependence by a linear projection in the RKHS. Combining three
equations (18), (21) and (23), the overall objective of SMbDA is

U = argmaxF(U) = argmaxTr
(
UTKG(−KD + αŜB − αŜW + βIN)KGU

)
s.t. UTU = Id

(24)

Solving (24) is equivalent to find the eigenvectors of KG(−KD + αŜB − αŜW + βIN)KG. The
eigenvectors corresponding to the d largest eigenvalues are the column vectors in U.

2.4. Wishart-Based Radial Basis Function

The selection of kernel mapping function is of great importance on the algorithm performance.
Gaussian radial basis function (RBF) is a widely-used kernel function in image processing, which is
defined as,

RBFG(a, b) = exp
(
−‖a− b‖2

2σ2

)
(25)

b where a,are two arbitrary real-valued vectors.σ is a smoothing parameter and should be a
positive number.
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This function is the exponent of negative weighted square of the distance between feature vectors.
It is evident that, a suitable distance measure is to the benefit of promoting the potential of RBF. In
our previous work [1], a Wishart distribution-derived dissimilarity measure has been used to build
a simple classification model, which achieves better experimental results than the classical Wishart
classifier [22] and several mainstream models. We believe that, this measure is helpful to build a new
RBF that is more suitable for PolSAR data. This dissimilarity measure is defined as,

dm(C1, C2) = 2 log
∣∣∣C∣∣∣− log|C1| − log|C2| (26)

C1,C2 are the polarimetric covariance matrices of samples, and C = (C1 + C2)/2, |·|means the
determinant operation. Note that, (26) is available for multi-look PolSAR data.

Because the square root of dm meets the nonnegativity, definiteness, symmetry and triangle
inequality properties,

√
dm can be called as metric. Replace ‖a− b‖with

√
dm, the new kernel function is

RBFW(C1, C2) = exp

−2 log
∣∣∣C∣∣∣+ log|C1|+ log|C2|

2σ2

 (27)

The symmetry property of
√

dm indicates that,RBFW is a positive semi-definite function, so
RBFW meets Mercer kernel theorem. As dm is derived from Wishart distribution,RBFW is named as
Wishart-based RBF hereinafter.

In general, the SMbDA Algorithm 1 is easy to implement and can be summarized as follows.

Algorithm 1. SMbDA

Input: SD and TD sample sets XS,XT, and SD label set CS
Output: projection matrix U
Step 1. Define domain feature of each sample based on (1) and form domain feature matrix D
Step 2. Construct Gram kernel matrix KG based on (6) (Wishart-based RBF is recommended)
Step 3. Normalize KG as KG − eeTKG/N −KGeeT/N − eeTKGeeT/N2

Step 4. Construct two scatter-related matrices ŜB and ŜW based on (19) and (20)
Step 5. Calculate the kernel matrix KD of domain features, KD = DTD
Step 6. Eigen decompose the matrix KG(−KD + αŜB − αŜW + βIN)KG
Step 7. Select the d leading eigenvectors to construct the projection matrix U

2.5. Relationship with Other Methods

Leaving the difference of kernel mapping functions alone, the proposed SMbDA algorithm is
closely related to a series of dimensionality reduction and TSL methods:

• If the SD and TD data are regarded as a whole without considering inter-domain discrepancy, the
Gram kernel matrix KG degrades into traditional kernel matrix, and accordingly the unsupervised
information preservation term degrades into the objective function of standard PCA in kernel
spaces. Then if we set α = 0, SMbDA is the same as kernel PCA.

• If we only pay attention to SD samples, SMbDA is further simplified down to a kernel-based
combination of MMC and PCA, which can be seen as a semi-supervised dimensionality reduction
algorithm. We use two core matrices SB and SW to capture scatter information and preserve
category separability. Originally, the two matrices were used in LDA and kernel LDA. In this
paper, they are generalized and reused for dual-domain kernel matrix. In source domain, our
SMbDA is similar to the idea in [51], in which a combination of local LDA and PCA was discussed.

• As the inter- and intra-category scatter matrices have been reformed in [49], the proposed algorithm
has an implicit relationship with the graph embedding framework. From this perspective, the
term −KD + αŜB − αŜW + βIN can be regarded as a special Laplacian matrix.
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• SMbDA, TCA and MIDA have some points in common. All of the three algorithms use the
covariance matrix of data to keep unsupervised information, and try to reduce the negative
cross-domain influence. However, TCA, MIDA and their semi-supervised extensions primarily
consider unsupervised information. On the contrary, SMbDA primarily makes full use of label
information to keep category separability, which makes it more benefit for classification in theory.
Besides, SMbDA avoids inversion operation when solving projection matrix, and thus is more
efficient than TCA and SSTCA.

3. Materials and Results

3.1. Experimental Datasets and Parameter Settings

As in practice, TD samples are usually unlabeled, it is very difficult to transfer valuable information
from SD to TD. Therefore, two groups of experiments have been conducted in this section. The first
group is based on a multi-temporal PolSAR dataset obtained by the airborne UAVSAR system in
Winnipeg, Canada. The time intervals are only several days, so the difficulty of DA and classification
is relatively low. The second group is based on another multi-temporal PolSAR dataset obtained by
the Radarsat-2 satellite in Erguna, China. The time intervals are as long as several months and the
spatial distribution of objects was very different in time frames, so this group is much closer to reality.

In both groups, discriminant analysis classifier (DAC) was selected as our classification model,
and we investigated the classification performances when applying different DA algorithms, including
TCA, SSTCA, MIDA, SMIDA and SMbDA. On one hand, Gaussian RBF was used for all the five
algorithms to compare the effectiveness of them; on the other hand, Wishart-based RBF was also used
for SMbDA to compare the effectiveness of different RBFs. The SMbDA model with Wishart-based
RBF is called as WSMbDA for short. Our goal is to use the classifier trained with historical labeled
samples to classify the samples in a new temporal image. So in the training phase, the samples in XS
and XT have been picked randomly, and only the labels of SD samples were given to the DAC and DA
methods. In the test phase, lots of TD out-of-samples were projected into the learned subspaces and
then classified. The sample selection, domain adaptation and classification steps have been repeated
10 times to obtain reliable performances.

Before the training phase, we picked some labeled TD samples to compare the classification results
under different hyperparameter values and projection dimensions, and finally decided the optimal
parameters for subsequent experiments. In our experiments, the search strategy refers to [36,37]. For
the proposed SMbDA and WSMbDA, we first fixed α = 1, β = 1e− 4 and searched for the best σ value
in [10−6, 10]. Afterwards, we fixed σ and searched for the best α value in [0, 10]. Finally, both σ and α
were fixed and we searched for the best β value in [0, 10]. The big difference between the initial values
of α and β is because the assumption that in a cross-domain classification task, supervised information
is more likely to be helpful than unsupervised information. As the ranges of hyperparameters were
continuous, logarithmic sampling was implemented. The same strategies were applied to TCA, SSTCA,
MIDA and SMIDA, in order to fairly evaluate and compare these algorithms.

3.2. Experiments on UAVSAR Dataset

The UAVSAR dataset includes three PolSAR images. The acquisition times are 2012-07-05,
2012-07-08 and 2012-07-17, respectively recorded as Domain A, Domain B, Domain C in this subsection.
After 4 × 4 multi-look preprocessing and geocoding, the image sizes are all 295 × 413 pixels. The
PauliRGB images are shown in Figure 1. Pairing the three domains, there are totally six DA and
classification tasks: A->B, B->A, A->C, C->A, B->C, C->B. 100 samples per category were randomly
selected in the training phase.
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Figure 1. PauliRGB images of multi-temporal UAVSAR dataset. (a) Domain A (2012-07-05); (b) Domain
B (2012-07-08); (c) Domain C (2012-07-17).

Because the time intervals are very short, the categories of objects in the three images have not
changed, so the correlation between any two images is very strong, and the difficulty of DA is relatively
low. Although it seems that DA has no practical application significance for this dataset, it can still
help us test DA effects under ideal conditions. Moreover, since most of the crops in this area were in
their growing stage, there are indeed some backscattering differences of the same category in different
times. The classification maps are generated by the use of different methods, as shown in Figures 2–7.

By comparing the classification maps with ground truth map, it is found that the overall DA
effects between Domain A and Domain B are significantly better than that between Domain A and Domain
C, Domain B and Domain C. The reason is that, the data distribution discrepancy between Domain A
and Domain B is very small (time interval is just 3 days), but the discrepancies between Domain A and
Domain C, Domain B and Domain C are larger (time intervals are 12 days and 9 days). Furthermore, by
observing the DA effect between Domain A and Domain C, and the DA effect between Domain B and
Domain C, we find the latter is better than the former, because the imaging time between Domain B and
Domain C is closer. This point also proves that inter-domain correlation can directly affect the difficulty
level of DA, which is consistent with our intuition.
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Figure 2. Ground truth map and classification maps in Winnipeg (SD: A -> TD: B), generated by 
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Figure 2. Ground truth map and classification maps in Winnipeg (SD: A -> TD: B), generated by
different methods: (a) Ground truth; (b) DAC; (c) TCA+DAC; (d) SSTCA+DAC; (e) MIDA+DAC; (f)
SMIDA+DAC; (g) SMbDA+DAC; (h) WSMbDA+DAC.
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Figure 3. Ground truth map and classification maps in Winnipeg (SD: B -> TD: A), generated by
different methods: (a) Ground truth; (b) DAC; (c) TCA+DAC; (d) SSTCA+DAC; (e) MIDA+DAC; (f)
SMIDA+DAC; (g) SmbDA+DAC; (h) WSMbDA+DAC.
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Figure 4. Ground truth map and classification maps in Winnipeg (SD: A -> TD: C), generated by 
different methods: (a) Ground truth; (b) DAC; (c) TCA+DAC; (d) SSTCA+DAC; (e) MIDA+DAC; (f) 
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Figure 4. Ground truth map and classification maps in Winnipeg (SD: A -> TD: C), generated by
different methods: (a) Ground truth; (b) DAC; (c) TCA+DAC; (d) SSTCA+DAC; (e) MIDA+DAC; (f)
SMIDA+DAC; (g) SMbDA+DAC; (h) WSMbDA+DAC.
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Figure 5. Ground truth map and classification maps in Winnipeg (SD: C -> TD: A), generated by 
different methods: (a) Ground truth; (b) DAC; (c) TCA+DAC; (d) SSTCA+DAC; (e) MIDA+DAC; (f) 
SMIDA+DAC; (g) SMbDA+DAC; (h) WSMbDA+DAC. 

(a) (b) 

Figure 5. Ground truth map and classification maps in Winnipeg (SD: C -> TD: A), generated by
different methods: (a) Ground truth; (b) DAC; (c) TCA+DAC; (d) SSTCA+DAC; (e) MIDA+DAC; (f)
SMIDA+DAC; (g) SMbDA+DAC; (h) WSMbDA+DAC.
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Figure 6. Ground truth map and classification maps in Winnipeg (SD: B -> TD: C), generated by 
different methods: (a) Ground truth; (b) DAC; (c) TCA+DAC; (d) SSTCA+DAC; (e) MIDA+DAC; (f) 
SMIDA+DAC; (g) SMbDA+DAC; (h) WSMbDA+DAC. 
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Figure 6. Ground truth map and classification maps in Winnipeg (SD: B -> TD: C), generated by
different methods: (a) Ground truth; (b) DAC; (c) TCA+DAC; (d) SSTCA+DAC; (e) MIDA+DAC; (f)
SMIDA+DAC; (g) SMbDA+DAC; (h) WSMbDA+DAC.



Remote Sens. 2020, 12, 658 18 of 27

Remote Sens. 2020, 12, 658 16 of 26 

(c) (d) 

(e) (f) 

(g) (h) 
Wheat Corn Canola Soybeans Background 

Figure 6. Ground truth map and classification maps in Winnipeg (SD: B -> TD: C), generated by 
different methods: (a) Ground truth; (b) DAC; (c) TCA+DAC; (d) SSTCA+DAC; (e) MIDA+DAC; (f) 
SMIDA+DAC; (g) SMbDA+DAC; (h) WSMbDA+DAC. 

(a) (b) 

(c) (d) Remote Sens. 2020, 12, 658 17 of 26 

(e) (f) 

(g) (h) 
Wheat Corn Canola Soybeans Background 

Figure 7. Ground truth map and classification maps in Winnipeg (SD: C -> TD: B), generated by 
different methods: (a) Ground truth; (b) DAC; (c) TCA+DAC; (d) SSTCA+DAC; (e) MIDA+DAC; (f) 
SMIDA+DAC; (g) SMbDA+DAC; (h) WSMbDA+DAC. 

By comparing the classification maps with ground truth map, it is found that the overall DA 
effects between Domain A and Domain B are significantly better than that between Domain A and 
Domain C, Domain B and Domain C. The reason is that, the data distribution discrepancy between 
Domain A and Domain B is very small (time interval is just 3 days), but the discrepancies between 
Domain A and Domain C, Domain B and Domain C are larger (time intervals are 12 days and 9 days). 
Furthermore, by observing the DA effect between Domain A and Domain C, and the DA effect between 
Domain B and Domain C, we find the latter is better than the former, because the imaging time between 
Domain B and Domain C is closer. This point also proves that inter-domain correlation can directly 
affect the difficulty level of DA, which is consistent with our intuition. 

3.3. Experiments on Radarsat-2 Dataset 

The Radarsat-2 dataset includes four PolSAR images. The acquisition times are 2012-09-01, 2013-
06-16, 2013-07-10 and 2013-08-03, respectively recorded as Domain A, Domain B, Domain C and Domain
D in this subsection. A 4 4× multi-look operation has been carried out to suppress speckle noises and
reduce image sizes. After geocoding, the sizes are all1091 1274× pixels. Four PauliRGB images are
shown in figure 8(a)-(d), and the corresponding ground truth maps are displayed in figure 8(e), figure 
9(a), figure 10(a), figure 11(a). There are five main types of ground objects in the imaging area: wheat,
rapeseed, birches, shrubs and waterbody. As two kinds of crops, wheat and rapeseed both own
different scattering characteristics in different growth stages. Birches and shrubs are also able to vary
with seasons, local incidence angles and other factors. All these conditions have a bad impact on
cross-domain learning. Moreover, the spatial distribution of crops has also changed from 2012 to
2013. Therefore, this dataset can be used as a typical verification data to test the performance of DA
algorithms.

Figure 7. Ground truth map and classification maps in Winnipeg (SD: C -> TD: B), generated by
different methods: (a) Ground truth; (b) DAC; (c) TCA+DAC; (d) SSTCA+DAC; (e) MIDA+DAC; (f)
SMIDA+DAC; (g) SMbDA+DAC; (h) WSMbDA+DAC.

3.3. Experiments on Radarsat-2 Dataset

The Radarsat-2 dataset includes four PolSAR images. The acquisition times are 2012-09-01,
2013-06-16, 2013-07-10 and 2013-08-03, respectively recorded as Domain A, Domain B, Domain C and
Domain D in this subsection. A 4× 4 multi-look operation has been carried out to suppress speckle
noises and reduce image sizes. After geocoding, the sizes are all 1091× 1274 pixels. Four PauliRGB
images are shown in Figure 8a–d, and the corresponding ground truth maps are displayed in Figure 8e,
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Figure 9a, Figure 10a, Figure 11a. There are five main types of ground objects in the imaging area:
wheat, rapeseed, birches, shrubs and waterbody. As two kinds of crops, wheat and rapeseed both
own different scattering characteristics in different growth stages. Birches and shrubs are also able to
vary with seasons, local incidence angles and other factors. All these conditions have a bad impact
on cross-domain learning. Moreover, the spatial distribution of crops has also changed from 2012
to 2013. Therefore, this dataset can be used as a typical verification data to test the performance of
DA algorithms.Remote Sens. 2020, 12, 658 18 of 26 
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Figure 8. PauliRGB images of multi-temporal Radarsat-2 dataset and ground truth map in 2012. (a) 
Domain A (2012-09-01); (b) Domain B (2013-06-16); (c) Domain C (2013-07-10); (d) Domain D (2013-08-
03); (e) Ground truth map of Domain A. 

In this subsection, we have conducted three challenging tasks: A->B, A->C, A->D, i.e., only use 
the labeled samples acquired on 2012 to classify the unlabeled samples acquired on 2013. 200 samples 
per category were randomly selected in the training phase. The classification maps are generated by 
the use of different methods, as shown in figures 9-11. Obviously, the three tasks are much more 
difficult than those in the previous subsection. Because the time intervals are less than two weeks in 
the UAVSAR dataset, the distribution discrepancies of this dataset are not very large. Even if we skip 
the DA step and directly use DAC to classify TD samples, the classification maps shown in figures 2-
7(b) are still acceptable in part. But without any DA processing, the classification maps generated 
directly by DAC in figures 9-11(b) are almost completely wrong. Fortunately, all the DA methods 
take inter-domain distribution into account. As a result, the classification results shown in figures 9-
11 (c)-(h) have significant improvements in different degrees. Besides, the performance of direct 
classification in the last task is significantly better than the first two, and a similar tendency happens 
in other methods as well. The reason is that, the backscattering information of same categories can be 
relatively similar in adjacent months. The imaging times in the last task satisfies this condition 
(Domain A: September, Domain D: August). 

Figure 8. PauliRGB images of multi-temporal Radarsat-2 dataset and ground truth map in 2012. (a)
Domain A (2012-09-01); (b) Domain B (2013-06-16); (c) Domain C (2013-07-10); (d) Domain D (2013-08-03);
(e) Ground truth map of Domain A.
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Figure 9. Ground truth map and classification maps in Erguna (SD: A -> TD: B), generated by different 
methods: (a) Ground truth; (b) DAC; (c) TCA+DAC; (d) SSTCA+DAC; (e) MIDA+DAC; (f) 
SMIDA+DAC; (g) SMbDA+DAC; (h) WSMbDA+DAC. 

Figure 9. Ground truth map and classification maps in Erguna (SD: A -> TD: B), generated by
different methods: (a) Ground truth; (b) DAC; (c) TCA+DAC; (d) SSTCA+DAC; (e) MIDA+DAC; (f)
SMIDA+DAC; (g) SMbDA+DAC; (h) WSMbDA+DAC.
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Figure 10. Ground truth map and classification maps in Erguna (SD: A -> TD: C), generated by 
different methods: (a) Ground truth; (b) DAC; (c) TCA+DAC; (d) SSTCA+DAC; (e) MIDA+DAC; (f) 
SMIDA+DAC; (g) SMbDA+DAC; (h) WSMbDA+DAC. 

Figure 10. Ground truth map and classification maps in Erguna (SD: A -> TD: C), generated by
different methods: (a) Ground truth; (b) DAC; (c) TCA+DAC; (d) SSTCA+DAC; (e) MIDA+DAC; (f)
SMIDA+DAC; (g) SMbDA+DAC; (h) WSMbDA+DAC.
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In this subsection, we have conducted three challenging tasks: A->B, A->C, A->D, i.e., only use
the labeled samples acquired on 2012 to classify the unlabeled samples acquired on 2013. 200 samples
per category were randomly selected in the training phase. The classification maps are generated by
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the use of different methods, as shown in Figures 9–11. Obviously, the three tasks are much more
difficult than those in the previous subsection. Because the time intervals are less than two weeks in
the UAVSAR dataset, the distribution discrepancies of this dataset are not very large. Even if we skip
the DA step and directly use DAC to classify TD samples, the classification maps shown in Figures 2,
3, 4, 5, 6 and 7b are still acceptable in part. But without any DA processing, the classification maps
generated directly by DAC in Figures 9, 10 and 11b are almost completely wrong. Fortunately, all
the DA methods take inter-domain distribution into account. As a result, the classification results
shown in Figures 9, 10 and 11c–h have significant improvements in different degrees. Besides, the
performance of direct classification in the last task is significantly better than the first two, and a similar
tendency happens in other methods as well. The reason is that, the backscattering information of same
categories can be relatively similar in adjacent months. The imaging times in the last task satisfies this
condition (Domain A: September, Domain D: August).

4. Discussion

In this part, two quantitative indices, overall accuracy (OA) and Kappa coefficient (Kappa), are
selected to evaluate the performances of different DA algorithms. The precision evaluation results
of two experiments are listed in Tables 1 and 2. The results given in Table 1 are consistent with our
findings in Section 3, and it is obvious that four conclusions can be drawn from the table:

• No matter in which task, the OA and Kappa values are generally upgraded after DA processing.
It is proved that DA is of significant help for these classification tasks, especially the three tasks,
Domain B -> Domain A, Domain A -> Domain C and Domain B -> Domain C.

• Compared with TCA and MIDA, SSTCA and SMIDA are more conducive to improving
interpretation performances, as both of them take label information into account. Even in
the worst case, the two can be respectively equivalent to TCA and MIDA.

• In all of the tasks, our proposed SMbDA caused no negative transfer effect, and has achieved
better performances than TCA, SSCTA, MIDA and SMIDA in half of the tasks. In the other half,
the OA and Kappa values of SMbDA are basically close to the best ones.

• WSMbDA can further improve the performances of SMbDA in most cases, and has obtained the
best results in general, which verifies the superiority of Wishart-based RBF. The well-designed DA
model SMbDA, coupled with the suitable kernel mapping function, is able to achieve the average
OA value of more than 80% and the average Kappa value of more than 0.75.

Table 1. Precision evaluation results in Winnipeg.

Method A->B (OA) A->B
(Kappa) B->A (OA) B->A

(Kappa) A->C (OA) A->C
(Kappa)

DAC 0.753 0.656 0.679 0.525 0.597 0.440
TCA 0.799 0.723 0.829 0.761 0.645 0.517

SSTCA 0.809 0.737 0.839 0.774 0.667 0.546
MIDA 0.788 0.705 0.786 0.695 0.633 0.504

SMIDA 0.788 0.705 0.798 0.717 0.655 0.539
SMbDA 0.817 0.749 0.845 0.785 0.699 0.592

WSMbDA 0.870 0.821 0.896 0.854 0.843 0.786

Method C->A (OA) C->A
(Kappa) B->C (OA) B->C

(Kappa) C->B (OA) C->B
(Kappa)

DAC 0.701 0.571 0.666 0.527 0.734 0.637
TCA 0.680 0.565 0.737 0.640 0.735 0.638

SSTCA 0.684 0.570 0.773 0.686 0.735 0.638
MIDA 0.702 0.569 0.715 0.610 0.766 0.677

SMIDA 0.720 0.610 0.715 0.610 0.766 0.677
SMbDA 0.712 0.594 0.764 0.675 0.742 0.649

WSMbDA 0.758 0.666 0.857 0.804 0.765 0.675
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Table 2. Precision evaluation results in Erguna.

Method A->B (OA) A->B
(Kappa) A->C (OA) A->C

(Kappa) A->D (OA) A->D
(Kappa)

DAC 0.117 -0.012 0.126 -0.009 0.204 0.010
TCA 0.486 0.321 0.590 0.462 0.713 0.608

SSTCA 0.492 0.327 0.607 0.468 0.713 0.608
MIDA 0.508 0.348 0.567 0.432 0.776 0.686

SMIDA 0.508 0.348 0.600 0.477 0.776 0.686
SMbDA 0.529 0.369 0.636 0.524 0.758 0.666

WSMbDA 0.667 0.549 0.841 0.775 0.808 0.733

Similar to the precision evaluation results in Winnipeg, SMbDA has generally achieved better
performances than TCA, SSTCA, MIDA and SMIDA in Erguna, while WSMbDA has shown great
advantages with the highest OA of 84.1% and Kappa of 0.775 in Table 2. An interesting phenomenon
is that, although the two evaluation indices of each method (except DAC) in the last task are very
high, a large proportion of wheat was mistakenly classified into the rapeseed category in Figure 11c–g,
resulting in the disappearance of blue areas in these classification maps. In contrast, although the
overall performances of most of DA methods are poor in the first two tasks, the blue areas of wheat
still exist in Figures 9 and 10. This is because the two kinds of crops are both mature in the third
task and thus the volume scattering components of them are both large, which causes the confusion
between wheat and rapeseed. In addition, the wavelength of C-band microwave used by Radarsat-2 is
short and accordingly the penetrability is weak. This point further aggravates the above dilemma.
As a consequence, most of DA methods failed to preserve the backscattering differences between the
two crops. This situation would change with longer wavelength. As seen from Table 2, the direct
DAC classification results are very bad, the OA values are only 11%-20% and the Kappa values are
around zero. However, WSMbDA always performs well. Especially in the task Domain A -> Domain D,
WSMbDA is still able to accurately distinguish the main categories.

5. Conclusions

With the rapid growth of remotely sensed data volume, the inefficient in-situ surveys will limit
classification timeliness in the near future. Domain adaptation helps to adapt pre-existing data to new
tasks, which provides a potential way to deal with this problem. In this paper, a novel semi-supervised
domain adaptation algorithm, named scatter matrix based domain adaptation, has been proposed
to transfer and share valuable information between bi-temporal PolSAR images. Different from the
previous methods, the proposed algorithm pays more attention to supervised information preservation
and hence is very helpful for supervised classification task. Empirical results have demonstrated that
after applying it, the superior post-temporal classification maps can be obtained by a simple classifier
trained with labeled samples in pre-temporal PolSAR imagery. Moreover, the performance of this
algorithm can be further improved by the use of Wishart-based kernel mapping function. Apart
from time series image processing, we believe the proposed algorithm also has the potential to adapt
cross-regional PolSAR images. However, how to determine the hyperparameter values is still an
opening issue. We plan to design an adaptive hyperparameter selection strategy in the future. Besides,
this paper mainly focuses on the situation of single pre-existing source domain. We would like to
generalize the proposed algorithm and make it suitable for multiple domains.
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