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Abstract: Tropical rainforests comprise complex 3D structures and encompass heterogeneous site 
conditions; their transpiration contributes to climate regulation. The objectives of our study were to 
test the relationship between tree water use and crown metrics and to predict spatial variability of 
canopy transpiration across sites. In a lowland rainforest of Sumatra, we measured tree water use 
with sap flux techniques and simultaneously assessed crown metrics with drone-based 
photogrammetry. We observed a close linear relationship between individual tree water use and 
crown surface area (R2 = 0.76, n = 42 trees). Uncertainties in predicting stand-level canopy 
transpiration were much lower using tree crown metrics than the more conventionally used stem 
diameter. 3D canopy segmentation analyses in combination with the tree crown–water use 
relationship predict substantial spatial heterogeneity in canopy transpiration. Among our eight 
study plots, there was a more than two-fold difference, with lower transpiration at riparian than at 
upland sites. In conclusion, we regard drone-based canopy segmentation and crown metrics to be 
very useful tools for the scaling of transpiration from tree- to stand-level. Our results indicate 
substantial spatial variation in crown packing and thus canopy transpiration of tropical rainforests. 

Keywords: AMS3D; 3D structure; drone; photogrammetry; riparian sites; sap flux; scaling; structure 
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1. Introduction 

Tropical rainforests comprise a complex 3D structure, rich tree species diversity and encompass 
heterogeneous site conditions [1,2]. Transpiration (Et) is a central flux in hydrological cycles and 
contributes to cloud formation, turbulence and atmospheric cooling [3], and is thus an ecosystem 
service related to climate regulation. The prediction of canopy Et by tropical rainforests including its 
spatial heterogeneity may be fostered by a better understanding of the linkage between structure and 
function and forest structure variability across sites. 

Rainforest Et can be derived from sap flux measurements in individual trees. Therein, tree-level 
Et is scaled-up to the stand-level by using allometric relationships with stand inventory variables 
such as tree diameter at breast height (DBH) [4]. Due to often relatively high unexplained variability 
in the DBH to water use relationship, resulting uncertainties of Et at the stand-level are also relatively 
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high. In a tropical agroforest, Ahongshangbam et al. [5] found that drone-derived crown metrics 
correlated much better with tree water use than DBH. In consequence, uncertainties associated with 
the scaling to stand-level Et were reduced considerably. However, the studied stands were relatively 
simply structured and the trees were small in stature. The reported crown metrics vs. water use 
relationship cannot be applied to other vegetation types such as more heterogeneous tropical forest 
without further testing. Airborne tree crown assessments are also potentially promising for reducing 
Et scaling uncertainties in tropical forests, but there are no studies confirming this yet. 

The spatial heterogeneity in rainforest Et is potentially related to variability in site conditions. In 
North-America, several upland-to-wetland gradients were analysed in order to evaluate the 
significance of site conditions for tree and stand Et [6–8]; pronounced differences in Et were observed 
and it was concluded that it is necessary to include plots in different topographic positions for 
landscape-level assessments. For tropical rainforest regions, such studies are rare, but the influence 
of the water table on Et of certain species was analysed in northern Australia [9] and on Hawaii [10]. 
In lowland Sumatra, topography and flooding resulted in differences in Et between upland and 
riparian oil palm and rubber tree stands [11]. 

Rainforest structure assessments with conventional ground-based techniques face difficulties in 
reliably estimating key variables such as crown dimensions, which influence forest-atmosphere water 
exchange. Drones equipped with LiDAR [12,13] or optical cameras [14,15] appear more suitable for 
crown assessments. The latter produce high resolution images, from which 3D point clouds can be 
computed with the Structure from Motion technique (SfM) [16–18]. Once a certain crown assessment 
methodology is established, relatively large areas can be assessed in a short time [19–21]. 

Rainforest canopy heterogeneity analyses for predicting Et across sites and at larger scales would 
benefit from an automated delineation of individual tree crowns. Individual tree crown (ITC) 
detection algorithms often use canopy height model (CHM) based tree segmentations derived from 
local maxima in the CHM [22–24]. However, CHM-based approaches have limitations in dense 
stands and multi-layered forests as they tend to merge crowns and fail to detect understory trees with 
narrow crowns [25,26]. More recently, ITC detection based on 3D point clouds showed promising 
results, with more accurate tree segmentation in intermediate canopy strata compared to CHM-based 
approaches [25,27,28]. However, many of these studies were carried out in boreal and temperate 
forests [29,30] which tend to be less complex in structure than tropical rainforests. In a recent study 
AMS3D (Adaptive MeanShift 3D), a multimodal point-cloud-based ITC detection algorithm, was 
reported to be suitable for heterogeneous tropical rainforest stands [25] and to perform better than 
other ITC detection methods in a lowland tropical rainforest in French Guiana [31]. AMS3D was 
further reported to be able to detect even suppressed or smaller trees with narrow canopies [32]. 

The present study was conducted in the Harapan rainforest in the lowlands of Sumatra, 
Indonesia. The forest landscape is undulating with upland and riparian regions. We conducted sap 
flux measurements and drone-based crown and canopy assessments at four upland and four riparian 
forest plots. The objectives of our study were (1) to test the relationship between tree water use and 
crown metrics, and (2) to predict spatial variability of rainforest canopy Et within and across plots, 
including differences between riparian and upland plots. 

2. Materials and Methods 

2.1. Study Region and Sites 

The study was conducted in the lowlands of Jambi province, Sumatra, Indonesia (Figure 1). The 
region is tropical humid, with a mean annual precipitation of 2235 mm yr-1 and an average annual 
temperature of 26.7 °C [33]. The study sites were located in the Harapan rainforest, approx. 50 km 
south-west of the province capital Jambi. The Harapan rainforest was previously selectively logged 
but is now a protected area [33]. The region is characterised by mixed dipterocarp-dominated 
lowland rainforest [34]. A previous assessment in the Harapan rainforest covering four upland study 
plots (2500 m² each) found a total of 201 tree species with a DBH ≥ 10 cm [35]. The terrain is 
undulating, dividing the landscape into upland and riparian valley sites. The soil characteristics at 
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upland and riparian sites are sandy loam Acrisols [36] and acidic clay-loam Stagnosols [37], 
respectively. 

 
Figure 1. Location of the four upland and four riparian study plots in Jambi Province in the lowlands 
of Sumatra, Indonesia. 

2.2. Study Plots and Stand Characteristics 

Four study plots were established at upland sites (plot codes HF1, HF2, HF3, HF4) and four at 
riparian sites (HFr1, HFr2, HFr3, HFr4) within the Harapan rainforest as part of the EFForTs project 
[33]. The plots were 50 x 50 m2 in size. Mean elevation at the upland and riparian plots is 65 m and 
52 m asl., respectively. At upland plots, the mean tree height was 21.8 ± 0.8 m; at riparian plots, the 
mean tree height was 18.9 ± 0.8 m (for trees with a DBH ≥ 10 cm; Table 1). Among the upland plots, 
the mean nearest distance to neighboring plots was 2.1 km, among riparian plots it was 1.7 km. The 
mean nearest distance between upland and riparian plots (‘plot pairs’) was 0.3 km, only for one pair 
the distance was larger (2.5 km) (Figure 1). 

Table 1. Trees per plot, diameters at breast height (DBH, ≥ 10 cm) and tree heights at the eight study 
plots (50 x 50 m2). 

Plot  Trees per plot (n) DBH (cm) Height (m) 
  mean min max mean min max 

HF1 125 21.9 10.1 67.9 19.7 8.3 52.2 
HF2 172 20.1 10.4 67.5 18.4 7.8 48.0 
HF3 146 22.6 10.2 80.2 21.1 4.3 44.5 
HF4 143 22.5 10.0 76.8 21.0 2.5 48.2 
HFr1 135 17.8 10.0 67.0 16.9 1.1 42.5 
HFr2 136 20.1 10.0 56.3 18.3 1.4 34.4 
HFr3 160 17.9 10.1 51.0 19.9 5.2 36.7 
HFr4 140 20.7 10.1 108.1 20.4 4.6 44.0 

2.3. Sap Flux Measurements 

To assess tree water use, we measured sap flux with thermal dissipation probes (TDP) [38]. We 
selected one upland plot (HF2) and all four riparian plots (HFr1, HFr2, HFr3, HFr4) for these 
measurements; the remaining three upland plots had already been measured in a previous sap flux 
study [39]. The three plots not studied with sap flux methods served as independent tests for stand-
scale transpiration derived from two different methods. In each plot, 15 trees were equipped with 
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two TDP sensors each, with the exception of HFr1, where only 12 trees were equipped due to a lack 
of sap flux instrumentation, as this plot was measured at the end of the field campaign. Installation 
of sap flux sensors and calculation of sap flux density (JS, g cm-2 h-1) followed the methods described 
in [39] for lowland rainforest in the same region; therein, the original Granier’s [38] equation for 
deriving JS was applied. Night time zero-flux conditions, as described in Oishi et al. [40], were met 
during the early morning hours. Tree-level water use was derived by considering the water 
conductive area (AC, cm2) of trees and radial sap flux patterns measured by the heat field deformation 
technique [39]. 

2.4. Remote sensing 

2.4.1. Drone Image Acquisition 

Drone flights were conducted within the sap flux measurement period between August and 
December 2016. An octocopter drone (MikroKopter EASY Okto V3, HiSystems GmbH, Germany) 
equipped with an RGB camera (Sony Alpha 5000 with Sony E PZ 16-50mm lens) was used to capture 
the images. The drone was additionally equipped with GPS (MKBNSS V3 GPS/Glonass, HiSystems, 
Germany); the accuracy of the GPS measurements was ± 5 m. Flight routes were planned with 
MikroKopter-Tool V2.14b and the flight path followed superposing circular and grid patterns. 
Images were taken at an altitude of 80 m above ground (i.e., 30 - 40 m above canopy). Further flight 
specifications are provided in Table A1. 

2.4.2. 3D Point Cloud Generation, Individual Tree Crown Detection and Crown Metrics 

An average of 209 images per plot were used to build 3D point clouds and derive orthomosaics. 
Images of insufficient quality (e.g., blurry images) were removed from the datasets. Each image was 
aligned and geo-referenced with the drone GPS logs using Agisoft Photoscan Professional 1.2.6 [41]. 
The drone-based GPS measurements provide higher accuracy than ground-based measurements 
under the dense canopies; we used more than 200 GPS points at each study plot from the geo-tagged 
images for georeferencing the whole plot map. The workflow included building dense point clouds, 
creating a mesh from the clouds, generating digital elevation models (DEM) and then generating the 
orthomosaics. 3D point clouds were generated using the Structure from Motion (SfM) technique 
[17,18] in Agisoft Photoscan Professional 1.2.6 software. An example of such an orthomosaic is 
depicted in Figure 2. 
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Figure 2. RGB orthomosaic image of one of the riparian study plots (HFr2). 

Based on ground inventories, tree location information with tree ID and plot corner GPS 
coordinates were available. The tree location maps were in local Cartesian coordinates; they were 
georeferenced in UTM WGS 84 using the GPS points of the plot corners. The georeferenced location 
maps were overlain with the RGB orthomosaic images to manually identify the sap flux sample trees. 
The identification of the sample trees was based on the visible tree crowns with respect to the tree 
location points in the RGB orthomosaic image. To analyse the tree crown to water use relationship, 
the corresponding tree crowns were delineated manually through visual interpretations using QGIS 
3.6 software [42] and cloud compare v.2.9 software [43]. Overall, the crowns of 42 out of the 72 sap 
flux sample trees could clearly be identified in the images, 5 in the upland plot and 3, 9, 13 and 12, 
respectively, in the four riparian plots. Due to this limited sample size for testing crown metrics vs. 
water use relationships, we pooled the data across all plots. The crown polygons were used for 
extraction of the point clouds with the lasclip function of the lidR R package [44]; for computing 
different crown metrics, the rLIDAR R package was used [45]. We extracted the metrics crown 
volume, crown projection area and crown surface area for the identified sap flux trees. 

2.4.3. Automatic Crown Detection using AMS3D 

In contrast to the manually delineated crowns of the 42 clearly identified sap flux trees, we 
followed an automated tree segmentation approach to detect and delineate the tree crowns of all 
other trees in the plots for scaling-up to stand transpiration; the time-consuming manual delineation 
for the hundreds of trees within a given stand would not be feasible. For all eight study plots, dense 
point clouds were extracted and the automated individual tree crown (ITC) detection algorithm 
AMS3D was applied [25]. AMS3D follows a non-parametric approach independent of pre-defined 
crown shape models and uses a multi-scale bandwidth technique that does not rely on single 
biophysical parameters. Due to its self-adaptive approach, which calibrates kernel bandwidth as a 
function of local tree allometric models, the segmentation process has the ability to characterize 
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complex dense crowns and can deal with different crown shapes and multiple layers in the tropical 
forest [25]. As the AMS3D was previously only used with LiDAR, we adapted our high-resolution 
SfM point clouds to LiDAR standards by reducing the point density from 198 to 58 points m-2. The 
point cloud density was reduced based on minimum distance between points as threshold criteria 
using the cloud compare v.2.9 software [43]. We cleared all points from the point clouds that lay 
below the minimum tree height of the respective plot to filter out non-canopy points and avoid 
interferences of single ground points in crown modelling. We then used the meanshiftR R package 
[46] which allows individual tree crown segmentation using the Adaptive Mean Shift 3D (AMS3D) 
clustering algorithm [25]. In our study, we calibrate the kernel bandwidth value based on the ratio of 
crown diameter and tree diameter as observed from ground inventories. In contrast, the original 
AMS3D approach uses local allometric models constructed from CHM to further calibrate kernel 
bandwidth. In our case, a CHM could not reliably be constructed from the point cloud data at our 
study plots due to the lack of clearly identifiable ground points. After ITC segmentation, we removed 
all crowns that comprised relatively low point cloud densities (fewer than 40 points per crown) in 
order to avoid irrelevant crowns (also see Aubry-Kientz et al. [31]). All individually segmented 
crowns of a given study plot were vectorised and crown metrics were computed analogously to the 
previously described methodology for manually selected trees. 

We compared the number of segmented crowns per plot to ground stem counts (trees ≥ 10 cm 
DBH) and performed accuracy assessments by matching the ground-recorded stem locations of each 
tree to the centroid of delineated crowns. Matching was performed by finding the nearest neighbour 
distance within threshold criteria, i.e., a distance to nearest ground measured tree location below the 
segmented crown diameter of the tree (Figure A1). The threshold distance thus varied depending on 
the crown diameter. The accuracy assessment defines True Positives (TP), i.e., the detected trees 
match the actual trees in terms of tree location and threshold nearest neighbour distance, False 
Positives (FP) or commission error and False Negatives (FN) or omission error. From TP, FP and FN, 
the accuracy metrics precision (Pr), recall (Re) and F-score were calculated. Re indicates the tree 
detection rate, Pr indicates the correctness of the detected trees and the F-score is the overall accuracy 
considering both commission and omission errors [47]. 

2.5. Drone-Based Scaling, Uncertainties And Heterogeneity Assessment of Transpiration 

To test the relationship between tree water use and different crown metrics, we used linear 
regressions, followed by residual plot analysis for normality and homoscedasticity tests. The 
allometric relationships from the linear regression served as the basis for scaling-up from individual 
tree water use to stand-level canopy Et. The uncertainties associated with the scaling to stand Et were 
compared among the different crown metrics and conventional ground-based approaches. 
Uncertainties in stand Et estimates were assessed by bootstrapping the linear relationships between 
water use and the according predictor variables with the R package ‘boot’ (50,000 iterations) [48,49]. 
This yielded estimates of means for slope and intercept, as well as corresponding standard deviations 
as measures of uncertainty. For deriving stand Et, the best performing crown metric (i.e., the metric 
with the lowest uncertainty) was applied to the stand-level crown datasets from the automated 
delineation algorithm. To test for differences in stand-level canopy Et between upland and riparian 
plots, we performed an ANOVA. All statistical analyses were performed with R version 3.4.3 [50]. 
Plotting was performed using the Seaborn library [51]. 

3. Results 

3.1. Tree Water Use vs. Crown metrics 

Out of the initial 72 sap flux sample trees 42 could clearly be identified and delineated in the 
aerial images and thus constituted the sample for further analyses. Their daily water use ranged from 
8.5 to 95.7 kg day-1 (average of three sunny days). Crown volume and crown surface area ranged from 
36 to 1604 m3 and from 57.5 to 724.5 m2, respectively. Linear regression models between sap flux-
derived daily tree water use and drone-derived crown metrics (Table A2) suggest highly significant 
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linear relationships (P < 0.001) that explain 64% (crown volume) and 76% (crown surface area) of the 
observed variability in tree water use (Figure 3). For the conventionally applied ground-based 
inventory variable DBH, the regression model explained 38% of the observed variability (P < 0.001). 

  
(a) (b) 

Figure 3. Tree water use vs. (a) crown volume and (b) crown surface area. Water use rates were 
estimated with sap flux techniques; 42 sap flux sample trees could be clearly identified in the aerial 
images (pooled data from upland and riparian plots). Crown metrics were derived from 
simultaneously carried out drone-based surveys. 

3.2. Individual Tree Crown Segmentation 

The AMS3D algorithm produced between 140 and 181 segmented crowns per study plot. The 
difference between crown counts of the automated AMS3D approach and stem counts from the 
ground was 7% on average (Table 2). The F-score, which indicates the overall tree identification 
accuracy of the aerial method, had a moderate value of 60%, wherein a recall and precision of 65% 
and 56% were achieved, respectively (Table 2). The subsequently derived crown surface areas of the 
automatically segmented trees ranged from 7.7 to 1578.0 m2, respectively (Table 3). A visualization of 
segmented crowns is shown as an example in Figure A2. 

Table 2. Accuracy assessment of the automatically segmented trees by the AMS3D individual tree 
crown delineation method. Tree counts from the ground vs. aerial assessments, relative differences 
and accuracy metrics for each of the eight study plots. 

 
Ground-

Based 
Counted 

Trees  

Drone-
Based 

Detected 
Trees  

Difference 
(%) 

True 
Positive 

False 
Positive 

False 
Negative 

Precision Recall F-
index 

HF1 125 162 22.8 78 84 40 0.48 0.68 0.56 
HF2 172 181 5.0 82 99 65 0.45 0.60 0.52 
HF3 146 159 8.2 96 63 44 0.60 0.59 0.60 
HF4 142 151 6.0 85 66 51 0.56 0.56 0.56 
HFr1 135 140 3.6 74 66 31 0.53 0.68 0.60 
HFr2 136 155 12.3 86 69 11 0.56 0.86 0.68 
HFr3 157 140 12.1 101 39 33 0.72 0.54 0.62 
HFr4 140 152 7.9 88 64 29 0.58 0.69 0.63 
Mean 144 155 7.0 86 68 38 0.56 0.65 0.60 
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Table 3. Tree counts at the eight study plots based on automated crown segmentation using the 
AMS3D individual tree crown delineation method. Subsequently, the crown metrics volume, surface 
area and projection area were derived for all segmented trees. 

Plot 
ID 

Drone-Based 
Detected Trees Crown Volume (m3) Crown Surface Area 

(m2) 
Crown Projection Area 

(m2) 
  mean min max mean min max mean min max 

HF1 162 409.1 5.4 2817.0 311.9 18.6 1217.0 30.5 3.3 165.0 
HF2 181 338.9 3.9 3659.0 260.1 18.6 1292.0 35.6 2.5 249.6 
HF3 159 512.1 1.7 4826.0 337.5 10.9 1578.0 39.3 2.2 299.5 
HF4 151 610.3 1.4 4702.0 393.2 12.0 1493.0 45.9 2.5 251.9 
HFr1 140 121.0 0.9 843.6 141.0 7.7 588.1 12.5 1.7 49.0 
HFr2 155 61.6 0.7 427.6 90.8 7.8 353.2 10.0 2.3 38.4 
HFr3 140 153.9 1.3 1068.0 155.9 10.1 562.7 21.4 2.3 126.6 
HFr4 152 370.5 1.6 4221.0 275.7 9.9 1376.0 35.9 1.7 298.5 

3.3. Canopy Transpiration: Scaling, Uncertainties and Spatial Heterogeneity 

The bootstrapping method suggests large differences in the uncertainties associated with the 
respective stand Et estimates derived from crown metrics vs. conventional ground-based methods. 
As such, uncertainties when using crown surface area for Et scaling were much smaller (17%) than 
when using the conventional DBH-based approach (51%) (Table 4). The drone-based Et estimates 
ranged from 1.82 to 2.1 mm day-1 at the four upland plots and from 0.81 to 1.60 mm day-1 at the four 
riparian plots. Mean Et was significantly higher (44%) in upland plots (1.9 ± 0.1 mm day-1, mean ± SE) 
than in riparian plots (1.0 ± 0.2 mm day-1, mean ± SE) (ANOVA, P = 0.004) (Table A3). 

Table 4. Uncertainties associated with the scaling of transpiration from tree-level to stand-level based 
on different ground and drone-based methods. R² and P-values of linear regressions between plant 
water use and the according scaling variables. Uncertainties associated with scaling-up to stand 
transpiration based on these relationships, derived from parametric bootstrapping (with 50,000 
iterations). N is the sample size of trees with sap flux measurements. 

 Scaling Approach R² P value 
Mean Tree Water Use 

(WUmean) kg day-1 
Bootstrapped Scaling 

Uncertainty % 
Ground-

based 
measurem

ents 

N x WUmean - - 27.63 (measured) 67.51 

DBH (cm) 0.38 <0.001 27.52 50.6 

Drone-
based 
crown 
metrics 

Crown volume (convex 
hull, m3) 0.63 <0.001 27.63 19.9 

Crown surface area (m2) 0.76 <0.001 27.55 17.0 
Crown projection area 

(m2) 
0.68 <0.001 27.51 21.6 

1no bootstrapping possible, instead CV-based approach Granier [52]. 

Based on the scaling variable with the lowest uncertainty (crown surface area, Table 4), we 
further assessed the spatial heterogeneity of Et at different scales. Plot-to-plot heterogeneity of Et was 
much higher among the four riparian plots (28.0% coefficient of variation, CV) than among the four 
upland plots (5.3% CV). In contrast, the relative within-plot variability of Et was similar for riparian 
and upland plots (ANOVA, P = 0.72), with respective mean CV values of 30.1 % and 31.2%; however, 
the absolute within-plot variability of Et was higher at the upland plots (Figure 4).
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Figure 4. Spatial heterogeneity of canopy transpiration (Et, mm day-1) within the (a) four upland and (b) four riparian study plots derived from the water use vs. crown 
surface area relationship (Fig. 3b). The blank tiles are due to the exclusion of low level canopies. 
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4. Discussion 

Airborne tree crown detection in the studied tropical rainforest reduced the uncertainties in 
estimating canopy transpiration considerably. The newly established workflow resulted in scaling 
uncertainties from tree to stand of 17%, which is considered a great improvement compared to 
conventional DBH-based scaling (51% uncertainty). The predicted canopy transpiration suggests 
high stand-level differences between upland and riparian plots, with a 31% lower mean value at 
riparian plots, but higher plot-to-plot variation; these differences are driven by differences in crown 
packing among the plots. Likewise, the considerable variation of transpiration within plots is driven 
by local small-scale differences in crown packing. Overall, our study demonstrates the great potential 
of new drone-based methods for ecohydrological research, but it also points to some challenges. 

Identifying the 72 sap flux sample trees in the aerial images proved to be difficult due to the 
dense and multi-layered canopy; only 42 of the sampled trees could be clearly identified to be used 
for further analyses. The 30 unidentifiable sap flux trees were uniformly distributed in terms of DBH. 
Therein, due to the linear relationship between crown surface area (or crown volume) and water use, 
all unidentified trees matter proportionally to their respective crown surface area (or volume). This 
seemingly stands in contrast to a previous study reporting over-proportional contributions of large 
emergent trees to stand Et in old-growth tropical lowland forest [53] however, this divergence is likely 
due to the lack of considerable emergent trees within our study plots in previously-logged lowland 
tropical forest. In previous studies applying airborne remote sensing approaches, the detection of 
small-statured trees was also reported to be particularly low and difficult [54,55]. For tree 
identification, we used tree location maps in local Cartesian coordinates drawn in ground surveys. 
These maps were georeferenced with the respective corner coordinates of the plots and subsequently 
overlain with their orthomosaics to locate the targeted trees from above. A clear identification was 
partially hindered by the lack of ground control points or tree markers, which would have likely 
facilitated the identification of smaller sub-canopy crowns within the dense forest canopy. Our 
attempts of letting helium balloons rise to the top of selected tree crowns (following [56]) were 
unsuccessful due to the high, dense and multi-layered canopies, wind and difficulty in controlling 
the balloons. 

The high canopy closure of tropical forest canopies makes it difficult to classify ground points 
as a prerequisite for deriving CHMs from SfM point clouds. Thus, we opted for an exclusively point-
cloud-based tree segmentation approach due to the reported enhanced performance in structurally 
diverse stands such as tropical forests [31]. We applied the self-adaptive approach called AMS3D, 
which calibrates kernel bandwidth as a function of local tree allometric models [25]. Before applying 
this algorithm, we reduced the initial high density of our SfM point clouds (198 points m-2) to the 
density (58 points m-2) in order to increase the speed and quality of the clustering process [57]. Our 
adapted approach resulted in an overall moderate accuracy of tree detection (60%); however, the 
number of detected crowns at the plot-level was similar to ground stem counts, with a mean 
difference of less than 7%. Previous studies achieved higher detection rates, e.g., 69% in multi-layered 
Mediterranean forest [58] or 74% in French Guianian tropical rainforest [31], which is the best 
performance of an automated segmentation algorithm in a tropical forest so far. Other point cloud 
based methods such as Li2012 [27] performed well in woodlands dominated by few tree species, with 
accuracies over 81%; however, lower accuracy (<60%) was achieved in stands characterized by a 
dense canopy [59]. We further compared the automatically segmented crowns with the manually 
delineated crowns of the sap flux sample trees with respect to crown metrics. A linear regression 
model of automatically vs. manually derived crown surface area of the sap flux trees (forced through 
origin, R²=0.50, P<0.001 has a slope of 1.25, suggesting that the automated algorithm on average 
overestimates the crown surface area of individual trees by 25% compared to manual delineation. 
However, due to the linear relationship between water use and the applied scaling variable, crown 
surface area, individual segmentation accuracy is not a constraint when assessing stand Et: the sum 
of individual over- or under-segmented crowns within the plot boundaries will inevitably equal 
stand crown surface area and thus the predicted stand transpiration value. 
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Among the 42 identified sap-flux trees, we found close correlations between tree water use and 
crown metrics (best: crown surface area, R2 = 0.76). Such a relationship has already been indicated for 
trees and palms in an agroforest [5]. Pooling these data suggests that a universal scaling may apply 
for trees, but palms are different, and seem to follow another scaling factor (Figure A3). However, 
these relationships still need further exploration. In accordance with our results, several previous 
studies also explained variability in tree water use with crown or leaf area metrics [39,60–62]. Further 
studies from related ecological fields have also pointed to the high potential of using drone-derived 
crown metrics as predictors and scalars, e.g., for above ground biomass and canopy biomass [63]. 

Using crown surface area to scale-up from tree water use to stand-level Et resulted in a 
substantial reduction of Et estimation uncertainties compared to conventional ground-based 
approaches. In conventional approaches, DBH or DBH-derived sapwood area are used for scaling to 
Et (e.g., [4,64], but associated uncertainties can be substantial when estimating Et in heterogeneous 
stands [52]. Compared to the DBH approach (51% uncertainty), our crown-metric-based approach 
reduced scaling uncertainties (17%). This finding is in line with a previous study, where drone-
derived crown volume substantially reduced Et uncertainties in oil palm agroforests and 
monocultures [5]. 

The three upland plots with previous sap flux measurements were used for testing the quality 
of predictions. Although the sap flux was not measured concurrently, the results indicated low 
divergence of stand-scale means, with a much-reduced uncertainty (Table A3). Plotting stand Et 
derived from crown metrics vs. Et derived from conventional ground-based approaches for the eight 
study plots shows a significant linear relationship (R²=0.56, P<0.001) and also suggests low 
divergence among the two methods (Figure. A4). The stand-level canopy Et estimates derived from 
the new drone-based methodology were significantly higher for the four upland than the four 
riparian study plots. One may have expected that Et at riparian sites is higher than at upland sites. 
However, a previous sap flux-based study at the same four upland plots showed no indications of 
soil water limitation of tree water use, in 2013 and 2014 (non-ENSO years) [39]. Further in accordance 
with our results, rubber and oil palm plantations in the lowlands of Sumatra had lower Et at riparian 
sites than at upland sites [11]. Heterogeneity in Et among sites at different topographic positions was 
also observed in other previous studies [6,7]. A study of Japanese cypress (Chamaecyparis obtusa) 
found Et to be higher in valleys than at upland sites [65], while being similar for Japanese cedar 
(Cryptomeria japonica) [66]. In our study, the observed much lower Et in riparian than in upland plots 
may be due to several factors. Rainforest species indicating disturbance (e.g., genus Macaranga) were 
more abundant in the riparian plots [67], and aboveground biomass was 43% lower than in upland 
plots [68]. The trees in the riparian plots were also smaller than in upland plots, which may go along 
with less turbulent energy exchange at the canopy level. Additionally, the position of the riparian 
study plots in moist landscape depressions probably induces higher air humidity at the canopy level 
and thus reduced atmospheric evaporative demand. 

In addition to this spatial Et variation between riparian sites and upland sites, we found varying 
plot-to-plot variation of Et within each of the two categories. Relative Et variation was low among the 
upland plots (5% CV) and more pronounced among the riparian plots (28% CV). These findings are 
in line with biomass assessments at these same sites that also point to a larger relative variability in 
the riparian sites than in upland sites [68]. Furthermore, our findings are in line with a previous study 
in an oil palm and rubber monoculture plantation in the same region, where Et variability was 
enhanced by factors between 2.4 and 4.2 at (partially flooded) valley sites compared to adjacent 
upland sites [11]. 

We further used the new method to analyse spatial variability of transpiration within the plots. 
The canopy of the rainforest shows different degrees of crown packing, which we assessed with 3D 
canopy analyses; individually segmented trees would not be necessary but were used for calibration. 
The depicted differences in predicted transpiration per 9 m² tile of ground area (Figure 4) are driven 
by these local differences in crown packing. The minimum and maximum values of a derived ‘crown 
surface area index’ across the eight study plots were 0.18 and 32 m2 m-2, respectively. The strong 
differences in canopy packing result in the observed substantial small-scale variability of Et; whether 
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such small-scale differences can be considered realistic requires further investigation. Overall, our 
study underlines that topography and differences between riparian and upland forest sites exhibit Et 
heterogeneity. 

5. Conclusions 

Crown surface area derived from drone-based imagery was a well-suited predictor of tree water 
use. In its application for scaling tree water use to stand-level transpiration, uncertainties were largely 
reduced compared to conventional diameter-based scaling approaches. The scaling was facilitated 
by an automated tree crown segmentation algorithm, which yielded moderately accurate results. 
Applying the method to the studied tropical rainforest in lowland Sumatra suggests large variations 
in spatial transpiration, both among and within study plots. Overall, we see great potential and 
improvement in drone-based methods for better understanding canopy structure and related 
ecohydrological responses in tropical forests and beyond. 
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Appendix A 

Table A1. Specifications of the drone flight campaigns. 

Item Specification 
Camera Sony A5000 
Drone MikroKopter OktoXL V3 

Flight altitude 80 m 
Number of images 220 per 50x50 m2 plot 

Focal length  16 mm 
Ground resolution 1.8 cm/pixel 

Point density 198 points m-2 

Table A2. Linear regression models between tree water use and different drone-derived crown 
metrics and ground-based variables. 

 
Equation 

Y = tree water use 
X = variables 

R2 P value 

Drone-based    
Crown surface area (m2) Y = 0.07 * X + 6.65 0.76 P < 0.001 

Crown volume (m3) Y = 0.04 * X + 12.44 0.64 P < 0.001 
Crown projection area (m2) Y = 0.25 * X + 7.33 0.69 P < 0.001 

Ground-based    
DBH (cm) Y = 0.94 * X - 1.17 0.38 P < 0.001 
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Sapwood area (cm2) Y = 0.08 * X + 0.25 0.37 P < 0.001 

Table A3. Stand transpiration and uncertainty estimates using drone-based and ground-based 
methods. 

    Transpiration (mm day-1) 
Estimate ± uncertainty 

Plot type Plot ID Drone-based Ground-based Divergence % 

Upland plots 

HF1 1.87 ± 0.36 2.16 ± 1.23 13 
HF2 1.82 ± 0.35 1.71 ± 0.98 6 
HF3 1.95 ± 0.37 1.83 ± 1.04 7 
HF4 2.10 ± 0.40 1.43 ± 0.82 46 

Riparian plots 

HFr1 0.94 ± 0.18 0.67 ± 0.38 39 
HFr2 0.81 ± 0.15 1.14 ± 0.65 29 
HFr3 1.00 ± 0.19 0.79 ± 0.45 27 
HFr4 1.60 ± 0.30 0.94 ± 0.54 70 

    Mean 13 

 
Figure A1. Distance matrix between ground-based tree locations and locations of the centroid of 
automatically segmented crowns (with the AMS3D individual tree crown delineation method) at one 
of the riparian study plots (HFr2). 



Remote Sens. 2020, 12, 651 14 of 18 

 

 

Figure A2. 3D RGB point cloud (left) and segmented tree crown map (with the AMS3D individual 
tree crown delineation method, right) of one of the riparian study plots (HFr2). 

 
Figure A3. Relationship between water use and crown surface area. 
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Figure A4. Linear relationship between stand transpiration (Et, mm day-1) estimates based on drone-
derived crown surface area and ground-measured sapwood area in eight plots. 
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