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Abstract: This study proposes a deep quadruplet network (DQN) for hyperspectral image classification
given the limitation of having a small number of samples. A quadruplet network is designed,
which makes use of a new quadruplet loss function in order to learn a feature space where the
distances between samples from the same class are shortened, while those from a different class
are enlarged. A deep 3-D convolutional neural network (CNN) with characteristics of both dense
convolution and dilated convolution is then employed and embedded in the quadruplet network to
extract spatial-spectral features. Finally, the nearest neighbor (NN) classifier is used to accomplish the
classification in the learned feature space. The results show that the proposed network can learn a
feature space and is able to undertake hyperspectral image classification using only a limited number
of samples. The main highlights of the study include: (1) The proposed approach was found to
have high overall accuracy and can be classified as state-of-the-art; (2) Results of the ablation study
suggest that all the modules of the proposed approach are effective in improving accuracy and that the
proposed quadruplet loss contributes the most; (3) Time-analysis shows the proposed methodology
has a similar level of time consumption as compared with existing methods.

Keywords: deep learning; hyperspectral image classification; few-shot learning; quadruplet loss;
dense network; dilated convolutional network

1. Introduction

A hyperspectral image covers hundreds of bands with high spectral resolution and provides
a detailed spectral curve for each pixel [1,2]. Both the spatial and the spectral information are
gathered in a hyperspectral image. Hyperspectral image classification is aimed at identifying the
specific class (i.e., label) for each pixel (for example, cropland, lake, river, grassland, forest, mineral
rocks, building, and roads). As the first step in many hyperspectral remote sensing applications,
image classification is vital in the fields of agricultural statistics, disaster reduction, mineral exploration,
and environmental monitoring.

In recent decades, many methods have been proposed for the hyperspectral image classification,
such as spectral angle mapper (SAM), mixture tuned matched filtering (MTMF), spectral feature fitting
(SFF) [3,4], neural network (NN) [5], support vector machine (SVM) [6,7], and random forest (RF) [8,9].
SAM, MTMF, and SFF are heavily influenced by anthropogenic decision-making, while NN, SVM,
and RF are gradually becoming more dependent on new machine learning methods. Since the concept of
deep learning was introduced into hyperspectral image classification for the first time [10], deep neural
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network has been gaining popularity and has triggered global research interest in establishing deep
learning models for hyperspectral image classification [11–14]. In particular, some deep-learning
methods have been proposed by combining spectral and spatial features to improve classification
accuracy [15–21].

However, the aforementioned methods still require substantial improvements in hyperspectral
image classification, especially under the condition of small-samples. For supervised classification
of remotely sensed images, the training samples are usually acquired by two methods: (1) from
field surveys and (2) directly from images with higher resolution. In particular, higher classification
accuracy is usually acquired from training samples collected by field surveys. However, compared
with laboratory work, field survey is costly, complicated, and time-consuming, which can significantly
restrict the number of training samples. A small dataset of training samples can substantially diminish
accuracy in hyperspectral image classification. Moreover, hyperspectral images suffer more from data
redundancy in the spectral dimension compared with multi-spectral images, which creates additional
difficulties for classification.

Few-shot learning involves solving the problem using a limited number of samples and has been
used for various applications such as image segmentation, image caption, object recognition, and face
identification. [22–25]. Given the limited accuracy due to having only a few labeled samples per class,
few-shot learning usually trains the model based on a well-labeled dataset, and the model is then
generalized into new classes [26]. A metric learning strategy is usually adopted to learn the features of
the object and distinguish based on the absolute distance between samples [27]. In recent years, several
few-shot learning methods have been proposed for hyperspectral image classification, e.g., DFSL (deep
few-shot learning) [28,29]. However, absolute distance ignores the relationship between inter-class and
intra-class and limits classification accuracy. The use of relative distance, based on widening inter-class
distance and shortening the intra-class distance, has been proposed in lieu of absolute distance [30].
Proposing new methods that account for the relative relationship between inter-class and intra-class is
therefore crucial in improving the accuracy of hyperspectral image classification with a limited number
of samples.

This study proposes a deep quadruplet network (DQN) for hyperspectral image classification with
a small number of samples. To improve the accuracy, we designed a quadruplet network, in particular,
a new quadruplet loss function, and a deep 3-D CNN with double branches consisting of dense
convolution and dilated convolution.

2. Materials and Methods

2.1. Data

2.1.1. Training Data

The training data used in this study are four well-known public hyperspectral datasets: “Houston”,
“Chikusei”, “KSC”, and “Botswana” [28]. The details of the four hyperspectral datasets used in training
are presented in Table 1.

Table 1. The details of the four hyperspectral datasets for training networks [28].

Dataset Name Houston Chikusei KSC Botswana

Location Houston Chikusei Florida Botswana
Height 349 2517 512 1476
Width 1905 2335 614 256
Bands 144 128 176 145

Spectral Range (nm) 380–1050 363–1018 400–2500 400–2500
Spatial Resolution (m) 2.5 2.5 18 30

Num. of Classes 31 19 13 14
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2.1.2. Testing Data

The testing data used in this study are three widely-known public hyperspectral datasets: “Salinas”,
“Indian Pines” (IP), and “University of Pavia” (UP). The details of the three hyperspectral datasets
used in testing are summarized in Table 2. The ground-truth maps of the three hyperspectral datasets
are shown in Figures 1–3.

Table 2. The details of the three hyperspectral datasets for testing networks [28].

Dataset Name Salinas IP UP

Location California Indiana Pavia
Height 512 145 610
Width 217 145 340
Bands 204 200 103

Spectral Range (nm) 400–2500 400–2500 430–860
Spatial Resolution (m) 3.7 20 1.3

Num. of Classes 16 16 9
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The training datasets “Houston” and “Chikusei” can be acquired from the following websites,
respectively: “http://hyperspectral.ee.uh.edu/2egf4tg8hial13gt/2013_DFTC.zip” and “http://park.itc.
u-tokyo.ac.jp/sal/hyperdata/Hyperspec_Chikusei_MATLAB.zip”. The training datasets “KSC” and
“Botswana” and all the testing datasets can be acquired from the website “http://www.ehu.eus/ccwintco/

index.php?title=Hyperspectral_Remote_Sensing_Scenes”.

2.2. Structure of the Proposed Method

The structure of the proposed methodology in this study is shown in Figure 4. A deep quadruplet
network is trained to learn a feature space. The testing data is transferred to the learned feature space
to extract features. The classification is accomplished using the Euclidean distance and the nearest
neighbor (NN) classifier.
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2.3. Quadruplet Learning

Metric learning refers to the transfer of input data from the original space RF into a new feature
space RD (i.e., fθ: RF

→RD). F and D refer to the dimension of the original space and the new space,
respectively, and θ is the learnable parameter. In the new feature space RD, samples from the same
class are expected to be closer than those from different classes so that the classification can be finished

http://hyperspectral.ee.uh.edu/2egf4tg8hial13gt/2013_DFTC.zip
http://park.itc.u-tokyo.ac.jp/sal/hyperdata/Hyperspec_Chikusei_MATLAB.zip
http://park.itc.u-tokyo.ac.jp/sal/hyperdata/Hyperspec_Chikusei_MATLAB.zip
http://www.ehu.eus/ccwintco/index.php?title=Hyperspectral_Remote_Sensing_Scenes
http://www.ehu.eus/ccwintco/index.php?title=Hyperspectral_Remote_Sensing_Scenes
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in RD using nearest neighbor classifier. Several networks have been developed to accomplish this task,
including the siamese network, triplet network [31], and quadruplet network [32].

In a siamese network, a contrastive loss function is designed to train the network to distinguish
between pairs of samples from the same class and those from different classes. The designed loss
function limits the samples within the same class and enlarges the samples from the different classes.
However, for classification purposes, the feature space learned by the siamese network is inferior
to that of the triplet network. In addition, siamese networks are sensitive to calibration in order to
contextualize similarity vs. dissimilarity [31]. The loss function for a siamese network is:

Ls =
1

Ns

Ns∑
i=1

d(xa
(i), xp

(i)) (1)

where xa
(i) and xp

(i) are two samples from the same class, which has been transferred by fθ: RF
→RD;

Ns is the number of siamese pairs; and d (·) is the Euclidean distance of two elements.
Triplet network refers to training based on the use of many triplets. A triplet contains three

different samples (xa
(i), xp

(i), xn
(i)), where xa

(i) and xp
(i) are two samples from the same class (i.e., positive

pairs), while xa
(i) and xn

(i) are samples from different classes (i.e., negative pairs). Each sample in a
triplet has been transferred by fθ: RF

→RD. The loss function for the triplet network is given by [32]:

Lt =
1

Nt

Nt∑
i=1

(d(xa
(i), xp

(i)) − d(xa
(i), xn

(i)) + γ)
+

(2)

where γ is the value of the margin set that segregates the positive pairs with the negative pairs; Nt is the
number of triplets; and (z)+ = max (0, z). The first term is intended to shorten the distance between two
samples from the same class, while the second term is designed to enlarge the distance between two
samples from different classes. For the loss function in triplet networks, each positive pair and negative
pair share a given sample (i.e., xa

(i)), which compels triplet networks to focus more on obtaining the
correct ranks for the pair distances. In other words, the triplet loss only considers the relative distances
of the positive and negative pairs, which results in poor generalization for the triplet network and
difficulty applying in tracking tasks [32].

The quadruplet loss (QL) [30] introduces a different negative pair into the triplet loss.
The quadruplet loss function contains four different samples: (xa

(i), xp
(i), xn1

(i), xn2
(i)), where xa

(i)

and xp
(i) are samples from a same class while xn1

(i) and xn2
(i) are samples from another two classes. All

the samples have been transferred to the featured space by fθ: RF
→RD. The quadruplet loss is given by

the equation:

Lq =
1

Nq

Nq∑
i=1

((d(xa
(i), xp

(i)) − d(xa
(i), xn1

(i)) + γ)
+
+ (d(xa

(i), xp
(i)) − d(xn1

(i), xn2
(i)) + β)

+
) (3)

where γ and β are the margins for the two terms; and Nq is the number of quadruplets. The first term in
quadruplet loss is the same as that in the triplet loss (Equations (2) and (3)). The second term constrains
the intra-class distances to be smaller than the inter-class distances [30]. However, the loss function in
Equation (3) usually performs poorly because the number of quadruplets and quadruplet pairs would
grow rapidly when the dataset gets more extensive. Moreover, most samples are not so useful towards
adequately training the network and can overwhelm the relevant hard-learning samples, leading to
the poor performance of the network [32].

Hence, this study designed a new quadruplet loss function, as shown in Equation (4):

Lnq =
1

Nnq

Nnq∑
i=1

(d(xa
(i), xp

(i)) − d(xm
(i), xn

(i)) + γ)
+

(4)
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where xp
(i) is the farthest sample to the reference xa

(i) in the same class; xm
(i) and xn

(i) are the closest
negative pairs in the whole batch; Nnq is the number of quadruplets in the new loss function; and γ is the
value of the margin. Each sample in Equation (4) has been transferred by fθ: RF

→RD. The conceptual
diagram of the quadruplet network, as proposed in this study, is presented in Figure 5. The proposed
loss function compensates for the shortcomings of Equations (2)–(4). The procedure for batch training
using the proposed loss function is shown in Table 3, where T= {t1, t2, t3, . . . , ts} is the training dataset
for this batch, and s is the number of labeled samples. In a batch (shown in Table 3), Nnq = s, and tj or
tk represents a sample in the dataset T. (tj, tk) represents a pair of samples, C (tj) is the class label of the
sample tj, and α is the learning rate. The variables ta, tp, tm, and tn are the quadruplets before the deep
network, while xa, xp, xm, and xn are the corresponding quadruplets after the deep network.

Table 3. The procedure for training a batch.

Input: The training dataset for this batch T={t1, t2, t3, . . . , ts}
The initialized or updated learnable parameter θ

For all pairs of samples (tj, tk) in T Do
Calculate the Euclidean distance d (fθ (tj), fθ (tk))

End For
Set the loss Lnq = 0
Set (m, n) = argmin

( j,k)
d( fθ(t j), fθ(tk)), under the condition C(tj) , C(tk)

xm = fθ (tm), xn = fθ (tn). (Transfer tm, tn to xm, xn by the network fθ: RF
→RD)

For ta in the dataset T DO
xa = fθ (ta). (Transfer ta to xa by the network fθ: RF

→RD)
Set p = argmax

( j)
d( fθ(t j), xa), under the condition C(tj) = C(ta)

xp = fθ (tp). (Transfer tp to xp by the network fθ: RF
→RD)

Update: Lnq = Lnq +
1

Nnq
(d(xa, xp) − d(xm, xn) + γ)+

End For
Update: θ = θ− α∇θLnq
Output: θ, Lnq
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2.4. Deep Dense Dilated 3-D CNN

2.4.1. Deep Network Framework

As shown in Figure 6, the overall framework of the proposed deep dense dilated 3-D CNN
contains two branches: a dense CNN and a dilated CNN.
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Figure 6. The overall framework of the proposed deep dense dilated 3-D convolutional neural network
(CNN).

2.4.2. Dense CNN

The dense CNN block consists of five convolutional layers (see Figure 7a). “Conv” is a convolutional
operation with a 3 × 3 × 3 kernel, while “2 Conv” represents a convolutional layer with two kernels
(i.e., two convolutional operations). For a normal CNN block with five layers, there are five connections
(a connection is between a layer and its subsequent layer) [33] (see Figure 7b). However, as the network
becomes more and more deep, the problem with a normal CNN is that the features contained in the
input can vanish after it passes through many layers until it reaches the end [33]. So instead of using
the normal CNN, a dense CNN was used in this study. Aside from the preserving the five connections
from the normal CNN block, the dense CNN provides six other connections: three connections are
between the 1st layer and the 3rd, 4th, and 5th layers; two connections are between the 2nd Conv and
the 4th and 5th Conv; and one connection is between the 3rd Conv and the 5th Conv. Figure 7a shows
the operation at a connection point in the dense CNN, and “⊕” represents the sum of all the imported
connected lines.
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Figure 7. The dense CNN block in this study and a normal CNN block. (a) The structure of the dense
CNN block with 5 layers in this study; (b) a normal CNN block with 5 layers.

The use of the dense CNN in this study alleviates the problem regarding information vanishing
when passing through numerous layers and make full use of the features extracted by all the layers.
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2.4.3. Dilated CNN

For normal convolutional operation, the convolutional kernel covers an image area using the same
size (Figure 8a). A normal CNN employed in image classification represents the image using many
tiny feature scenes, resulting in obscure spatial structures [34]. Moreover, the spatial acuity and details
that are lost are almost impossible to restore through upsampling and training. Hence, the image
classification accuracy is limited using the normal CNN, especially for images requiring detailed scene
understanding [34]. Dilated convolution is an operation in which the convolutional kernel covers an
image area with a bigger size (Figure 8b). For example, a 3 × 3 convolutional kernel only covers a
3 × 3 image area in normal convolutional operation (Figure 8a), but a 3 × 3 convolutional kernel can
enlarge the receptive field to 5 × 5 (Figure 8b), or even bigger field. The dilated CNN represents the
image features on a bigger scale and alleviates the disadvantage of data redundancy in a hyperspectral
dataset without increasing the network’s depth or complexity [34]. The structure of the dilated branch
in this study is shown in Figure 9.
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In both the dense CNN block and the dilated CNN block, there is an operation called ReLU. ReLU
is an activation function defined as:

f (x)=max(0, x) (5)

2.5. Nearest Neighbor (NN) for Classification

In this study, an embedded feature space is learned after training the proposed deep quadruplet
CNN using the training data. For the testing data, the supervised samples and the samples to be
classified are transferred to the embedded feature space by the trained deep quadruplet CNN. The
classification is completed using the average Euclidean distance between the supervised samples and
the samples to be classified using the nearest neighbor classifier.

2.6. Parameters Setting

Details of the network architecture for the proposed deep quadruplet network are summarized in
Table 4. The layer names in Table 4 correspond with the blocks in Figure 6, Figure 7, and Figure 9. N
is the band number of the hyperspectral dataset. The N bands are selected by graph representation
based band selection (GRBS) [35]. “ceil (N/2)” is the ceiling function, which is equal to the rounded-up
integer of N/2. The learning rate α for optimizing DQN is set to be 10-3 with a weight decay of 10-4

and a momentum of 0.9. The sensitivity of the margin γ to the classification accuracy was tested with
15 supervised samples per class. The overall accuracy (OA) for all three testing datasets is shown in
Figure 10. The value of γ was set to be 0.4, which refers to the best accuracy obtained for all the three
testing datasets, as presented in Figure 10.
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Table 4. The network architecture details of the proposed deep quadruplet network.

Layer Name Input Layer Filter Size Padding Output Shape

Input / / / 9 × 9 × N

2-D Convolution 1 Input 3 × 3 × 1 × 2 Yes 9 × 9 × N × 2

3-D Dense
Convolution 1 2-D Convolution 1 3 × 3 × 3 × 2 Yes 9 × 9 × N × 2

3-D Dense
Convolution 2

3-D Dense
Convolution 1 3 × 3 × 3 × 2 Yes 9 × 9 × N × 2

3-D Dense
Convolution 3

3-D Dense
Convolution 2 3 × 3 × 3 × 2 Yes 9 × 9 × N × 2

3-D Dense Shortcut 1 3-D Dense
Convolution 1&3 3-D Dense Convolution 1 + 3-D Dense Convolution 3 9 × 9 × N × 2

3-D Dense
Convolution 4 3-D Dense Shortcut 1 3 × 3 × 3 × 2 Yes 9 × 9 × N × 2

3-D Dense Shortcut 2 3-D Dense
Convolution 1&2&4

3-D Dense Convolution 1 + 3-D Dense Convolution 2 +
3-D Dense Convolution 4 9 × 9 × N × 2

3-D Dense
Convolution 5 3-D Dense Shortcut 2 3 × 3 × 3 × 2 Yes 9 × 9 × N × 2

3-D Dense Shortcut 3 3-D Dense
Convolution 1&2&3&5

3-D Dense Convolution 1 + 3-D Dense Convolution 2 +
3-D Dense Convolution 3 + 3-D Dense Convolution 5 9 × 9 × N × 2

Max Pooling 1 3-D Dense Shortcut 3 2 × 2 × 2 No 5 × 5×ceil (N/2)×2

3-D Dilated
Convolution 1 2-D Convolution 1 3-D Dilated 3 ×3 × 3× 2 Yes 9 × 9 × N × 2

3-D Dilated
Convolution 2

3-D Dilated
Convolution 1 3-D Dilated 3 × 3 × 3 × 2 Yes 9 × 9 × N × 2

3-D Dilated
Convolution 3

3-D Dilated
Convolution 2 3-D Dilated 3 × 3 × 3 × 2 Yes 9 × 9 × N × 2

3-D Dilated
Convolution 4

3-D Dilated
Convolution 3 3-D Dilated 3 × 3 × 3 × 2 Yes 9 × 9 × N × 2

3-D Dilated
Convolution 5

3-D Dilated
Convolution 4 3-D Dilated 3 × 3 × 3 × 2 Yes 9 × 9 × N × 2

Max Pooling 2 3-D Dilated
Convolution 5 2 × 2 × 2 No 5 × 5×ceil (N/2) × 2

Concatenation Max Pooling 1&2 / / 5 × 5 × ceil (N/2) × 4

2-D Convolution 2 Concatenation 3 × 3 × 1 × 4 No 3 × 3 × ceil (N/2) × 4

2-D Convolution 3 2-D Convolution 2 3 × 3 × 1 × 4 No 1 × 1 × ceil (N/2) × 4

Full Connected 2-D Convolution 3 / / 150

3. Results and Discussion

3.1. Accuracy

For the Salinas and the UP datasets, the number of supervised samples (L) used in the testing
experiments was set to 5, 10, 15, 20, and 25. Given the limited total number of labeled samples in
the IP dataset, the number of supervised samples (L) used in the testing experiments was set to 5,
10, and 15. For each case of L, the supervised samples are selected randomly and ten runs were
performed. The overall accuracy of each run was recorded. The results of the classification using the
proposed method (DQN+NN) are presented in Figures 11–13. The overall accuracy of the proposed
approach was then compared with other methods, including: SVM [6], LapSVM [36], TSVM [37],
SCS3VM [38], SS-LPSVM [39], KNN+SNI [40], MLR+RS [41], SVM+S-CNN, 3D-CNN [19], DFSL+NN,
and DFSL+SVM [28]. The average value and the standard deviation (STD) of the overall accuracy
in the ten runs for the three testing datasets using the different methods are shown in Tables 5–7.
The overall accuracy of 3D-CNN was examined based on the method described by Hamida et al. [19].
The accuracy of the SVM, LapSVM, TSVM, SCS3VM, SS-LPSVM, KNN+SNI, MLR+RS, SVM+S-CNN,
DFSL+NN, and DFSL+SVM are derived from the study of Liu et al. [28]. The training datasets and
testing datasets in our paper are exactly same with that in Reference [28], which are public and have
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been widely used for comparing different methods for hyperspectral image classification [28,38–41].
Hence, the comparison of different methods is appropriate.
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Table 5. The average ± STD overall accuracy (OA, %) with Salinas dataset using different methods
(The bold value is the best accuracy in each case).

Method 1 L = 5 L = 10 L = 15 L = 20 L = 25

SVM 73.90 ± 1.91 75.62 ± 1.73 79.08 ± 1.45 77.89 ± 1.20 78.05 ± 1.49
LapSVM 75.31 ± 2.31 76.34 ± 1.77 77.93 ± 2.42 79.40 ± 0.73 80.56 ± 1.33

TSVM 60.43 ± 1.40 67.47 ± 1.05 69.12 ± 1.32 71.03 ± 1.78 71.83 ± 1.16
SCS3VM 74.12 ± 2.44 78.49 ± 2.02 81.83 ± 0.93 81.22 ± 1.27 77.08 ± 0.80

SS-LPSVM 86.79 ± 1.75 90.36 ± 1.35 90.86 ± 1.36 91.77 ± 0.96 92.11 ± 1.07
KNN + SNI 80.39 ± 1.58 84.64 ± 1.54 86.94 ± 1.52 88.28 ± 1.49 87.64 ± 1.72
MLR + RS 78.29 ± 2.16 85.03 ± 1.43 87.20 ± 1.74 88.76 ± 1.87 89.42 ± 0.85

SVM + S-CNN 12.66 ± 2.75 50.04 ± 14.34 60.72 ± 4.85 70.30 ± 2.61 71.62 ± 12.05
3D-CNN 85.58 ± 2.18 86.26 ± 1.84 88.01 ± 1.47 88.94 ± 1.38 91.21 ± 1.23

DFSL + NN 88.40 ± 1.54 89.86 ± 1.69 92.15 ± 1.24 92.69 ± 0.98 93.61 ± 0.83
DFSL + SVM 85.58 ± 1.87 89.73 ± 1.24 91.21 ± 1.64 93.42 ± 1.25 94.28 ± 0.80

New Approach 89.92 ± 1.87 91.11 ± 1.50 93.66 ± 1.68 94.46 ± 1.17 95.85 ± 1.14
1 The accuracy of SVM, LapSVM, TSVM, SCS3VM, SS-LPSVM, KNN+SNI, MLR+RS, SVM+S-CNN, DFSL+NN,
and DFSL+SVM are from Liu et al. [28]. Abbreviations: SVM, support vector machine; LapSVM, laplacian
support vector machines; TSVM: transductive support vector machine; SCS3VM: spatial-contextual semi-supervised
support vector machine; SS-LPSVM: spatial-spectral label propagation based on the SVM; KNN+SNI: k-nearest
neighbor + spatial neighborhood information; MLR+RS: multinomial logistic regression + random selection; CNN:
convolutional neural network; S-CNN: Siamese CNN; 3D: 3-dimensions; DFSL: deep few-shot learning; NN:
nearest neighbor.

Table 6. The average ± STD overall accuracy (OA, %) with IP dataset for different methods (The bold
value is the best accuracy in each case).

Method 1 L = 5 L = 10 L = 15

SVM 50.23 ± 1.74 55.56 ± 2.04 58.58 ± 0.80
LapSVM 52.31 ± 0.67 56.36 ± 0.71 59.99 ± 0.65

TSVM 62.57 ± 0.23 63.45 ± 0.17 65.42 ± 0.02
SCS3VM 55.42 ± 0.35 60.86 ± 5.08 67.24 ± 0.47

SS-LPSVM 56.95 ± 0.95 64.74 ± 0.39 78.76 ± 0.04
KNN + SNI 56.39 ± 1.03 74.88 ± 0.54 78.92 ± 0.61
MLR + RS 55.38 ± 3.98 69.28 ± 2.63 75.15 ± 1.43

SVM + S-CNN 10.02 ± 1.48 17.71 ± 4.90 44.00 ± 5.73
3D-CNN 63.54 ± 2.72 71.25 ± 1.64 76.25 ± 2.17

DFSL + NN 67.84 ± 1.29 76.49 ± 1.44 78.62 ± 1.59
DFSL + SVM 64.58±2.78 75.53 ± 1.89 79.98 ± 2.23

New Approach 70.24 ± 1.26 78.20 ± 1.64 82.65 ± 1.82
1. The accuracy of SVM, LapSVM, TSVM, SCS3VM, SS-LPSVM, KNN+SNI, MLR+RS, SVM+S-CNN, DFSL+NN,
and DFSL+SVM are from Liu et al. [28].



Remote Sens. 2020, 12, 647 14 of 20

Table 7. The average ± STD overall accuracy (OA, %) with UP dataset for different methods (The bold
value is the best accuracy in each case).

Method 1 L = 5 L = 10 L = 15 L = 20 L = 25

SVM 53.73 ± 1.30 61.53 ± 1.14 60.43 ± 0.94 64.89 ± 1.14 68.01 ± 2.62
LapSVM 65.72 ± 0.34 68.26 ± 2.20 68.34 ± 0.29 65.91 ± 0.45 68.88 ± 1.34

TSVM 63.43 ± 1.22 63.73 ± 0.45 68.45 ± 1.07 73.72 ± 0.27 69.96 ± 1.39
SCS3VM 56.76 ± 2.28 64.25 ± 0.40 66.87 ± 0.37 68.24 ± 1.18 69.45 ± 2.19

SS-LPSVM 69.60 ± 2.30 75.88 ± 0.22 80.67 ± 1.21 78.41 ± 0.26 85.56 ± 0.09
KNN + SNI 70.21 ± 1.29 78.97 ± 2.33 82.56 ± 0.51 85.18 ± 0.65 86.26 ± 0.37
MLR + RS 69.73 ± 3.15 80.30 ± 2.54 84.10 ± 1.94 83.52 ± 2.13 87.97 ± 1.69

SVM + S-CNN 23.68 ± 6.34 66.64 ± 2.37 68.35 ± 4.70 78.43 ± 1.93 72.87 ± 7.36
3D-CNN 71.58 ± 3.58 79.63 ± 1.75 83.89 ± 2.93 85.98 ± 1.76 89.56 ± 1.20

DFSL + NN 80.81 ± 3.12 84.79 ± 2.27 86.68 ± 2.61 89.59 ± 1.05 91.11 ± 0.83
DFSL + SVM 72.57 ± 3.93 84.56 ± 1.83 87.23 ± 1.38 90.69 ± 1.29 93.08 ± 0.92

New Approach 81.03 ± 1.52 86.10 ± 0.97 89.55 ± 1.28 93.11 ± 1.23 94.71 ± 1.11
1. The accuracy of SVM, LapSVM, TSVM, SCS3VM, SS-LPSVM, KNN+SNI, MLR+RS, SVM+S-CNN, DFSL+NN,
and DFSL+SVM are from Liu et al. [28].

Tables 5–7 show that the accuracy of the proposed method with different numbers of supervised
samples is better compared to other methods in all three testing datasets. From Tables 5–7, it can be
inferred that the proposed method is state-of-the-art for few-shot hyperspectral image classification in
terms of classification accuracy.

There are some other results reported in existing publications [28]. The OA could reach 97.81%,
98.35%, and 98.62% for Salinas, IP, and UP dataset, respectively [28]. However, these results are
obtained based on 200 supervised samples per class (L = 200). It is obvious that more supervised
samples lead to better accuracy. Our paper pays attention to the hyperspectral image classification
with a small number of samples, so the situation with L = 200 is out of our discussion.

Here is an explanation about the generalization of the network from some classes to new classes.
Traditional artificial neural network has been successful in data-intensive applications, but it is hard
to learn from a limited number of examples. To solve this problem, few-shot learning (FSL) is
proposed [42]. Few-shot learning (FSL) is a type of machine learning problems where there is a little
supervised information for the target. A strategy is that the network learns prior knowledge, and it can
be generalized to new tasks with limited supervised samples. In fact, it is an important and famous
branch of machine learning and has been widely used to solve many problems [28,32,42] (e.g., face
recognition). The feature space learned from hyperspectral image has been demonstrated the ability to
generalize to the new classes [28]. The network trained in this paper is also essentially a generalized
feature extractor. The extracted features of supervised samples and samples to be classified are put
into the classifier (nearest neighbor) to finish the classification.

Here we make it clear that the L specific supervised samples are not exactly the same as those
in [28], due to the randomness of selecting supervised samples. However, the way of selection of
supervised samples and comparative analysis in this paper is the same as that in [28,39]. It is common
to randomly select supervised samples and conduct several runs of experiments (e.g., 10 runs in [28,39],
and also our paper). The purpose is to avoid the occasionality of accuracy in one run.

3.2. Ablation Study

There are three key modules in the proposed methodology: the quadruplet loss, the dense branch,
and the dilated branch. To demonstrate the effectiveness of each module, the classification accuracy
was calculated when one of the modules is replaced. Simply put, an ablation study was performed. The
proposed quadruplet loss was replaced by the siamese loss, the triplet loss, and the original quadruplet
loss. The dense branch or dilated branch was replaced using a normal CNN module. In the proposed
methodology, when one module is replaced, the other modules are kept the same. The summary of
average values ± STD of OA in the ten runs is shown in Tables 8–10 for all three testing datasets.
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Table 8. The OA of the Salinas dataset when the modules are replaced.

L = 5 L = 10 L = 15 L = 20 L = 25

Method New Approach
OA (%) 89.92 ± 1.87 91.11 ± 1.50 93.66 ± 1.68 94.46 ± 1.17 95.85 ± 1.14

Method The proposed quadruplet loss was replaced by the siamese loss.
OA (%) 88.93 ± 2.18 90.31 ± 1.88 92.85 ± 1.94 93.68 ± 1.59 94.79 ± 1.48

Method The proposed quadruplet loss was replaced by the triplet loss.
OA (%) 89.21 ± 1.96 90.58 ± 1.82 93.01 ± 1.53 93.87 ± 1.46 94.96 ± 1.34

Method The proposed quadruplet loss was replaced by the original quadruplet loss.
OA (%) 89.34 ± 2.04 90.62 ± 1.95 93.30 ± 1.62 94.06 ± 1.57 95.14 ± 1.43

Method The dense branch was replaced by a normal CNN module.
OA (%) 89.36 ± 2.15 90.75 ± 1.96 93.34 ± 1.91 94.15 ± 1.69 95.25 ± 1.57

Method The dilated branch was replaced by a normal CNN module.
OA (%) 89.50 ± 2.36 90.97 ± 2.04 93.52 ± 1.96 94.21 ± 1.54 95.47 ± 1.39

Table 9. The OA of the IP dataset when the when the modules are replaced.

L = 5 L = 10 L = 15

Method New Approach
OA (%) 70.24 ± 1.26 78.20 ± 1.64 82.65 ± 1.82

Method The proposed quadruplet loss was replaced by the siamese loss.
OA (%) 68.19 ± 1.59 77.12 ± 1.71 80.35 ± 1.87

Method The proposed quadruplet loss was replaced by the triplet loss.
OA (%) 68.58 ± 1.62 77.37 ± 2.09 81.19 ± 1.58

Method The proposed quadruplet loss was replaced by the original quadruplet
loss.

OA (%) 68.72 ± 1.75 77.62 ± 1.84 81.38 ± 1.57

Method The dense branch was replaced by a normal CNN module.
OA (%) 68.71 ± 1.68 77.58 ± 2.07 81.22 ± 1.69

Method The dilated branch was replaced by a normal CNN module.
OA (%) 68.85 ± 1.56 77.64 ± 2.14 81.39 ± 1.62

Table 10. The OA of the UP dataset when the modules are replaced.

L = 5 L = 10 L = 15 L = 20 L = 25

Method New Approach
OA (%) 81.03 ± 1.52 86.10 ± 0.97 89.55 ± 1.28 93.11 ± 1.23 94.71 ± 1.11

Method The proposed quadruplet loss was replaced by the siamese loss.
OA (%) 80.07 ± 2.25 84.13 ± 2.08 88.17 ± 1.67 91.09 ± 1.54 93.02 ± 1.28

Method The proposed quadruplet loss was replaced by the triplet loss.
OA (%) 80.31 ± 1.87 84.69 ± 1.54 88.53 ± 1.73 91.78 ± 1.70 93.19 ± 1.58

Method The proposed quadruplet loss was replaced by the original quadruplet loss.
OA (%) 80.54 ± 1.95 84.88 ± 1.73 88.71 ± 1.76 91.96 ± 1.69 93.27 ± 1.52

Method The dense branch was replaced by a normal CNN module.
OA (%) 80.64 ± 2.28 84.94 ± 2.09 88.78 ± 1.89 92.12 ± 1.75 93.35 ± 1.54

Method The dilated branch was replaced by a normal CNN module.
OA (%) 80.90 ± 2.11 85.47 ± 1.87 88.96 ± 1.80 92.34 ± 1.67 93.47 ± 1.64

In every method where a module was replaced, the accuracy was lower compared with the
proposed methodology (see Tables 8–10). The inclusion of the quadruplet loss, the dense branch,
and the dilated branch contributes to improving the accuracy, which was demonstrated by the ablation
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study. In particular, the decrease in accuracy was most substantial when the quadruplet loss was
replaced, which suggests that the designation of the quadruplet loss contributes the most in improving
the accuracy in the proposed methodology.

Tables 11–13 shows the average accuracy (AA) and Kappa coefficients of the proposed method,
3D-CNN, and the five experiments in ablation study. There is no enough information in publications
for other existing methods. Tables 11–13 suggest that the proposed method obtains satisfying results in
terms of average accuracy and Kappa coefficient.

Table 11. The average accuracy (AA, %) and the Kappa coefficient (%) for Salinas dataset.

L = 5 L = 10 L = 15 L = 20 L = 25

Method New Approach
AA 90.19 ± 1.69 90.75 ± 1.59 93.54 ± 1.79 94.37 ± 1.26 95.58 ± 1.26

Kappa 89.68 ± 1.47 91.06 ± 1.28 93.26 ± 1.59 94.28 ± 1.32 95.46 ± 1.17

Method The proposed quadruplet loss was replaced by the siamese loss.
AA 88.86 ± 1.88 90.22 ± 2.02 92.93 ± 1.86 93.79 ± 1.53 94.86 ± 1.36

Kappa 88.72 ± 2.39 89.94±1.97 92.78 ± 2.14 93.59 ± 1.68 94.68 ± 1.54

Method The proposed quadruplet loss was replaced by the triplet loss.
AA 89.14 ± 1.87 90.39 ± 1.98 93.16 ± 1.56 93.89 ± 1.50 95.02 ± 1.42

Kappa 89.06 ± 2.16 90.24 ± 2.03 92.86 ± 1.69 93.72 ± 1.54 94.89 ± 1.57

Method The proposed quadruplet loss was replaced by the original quadruplet loss.
AA 89.19 ± 1.96 90.44 ± 1.89 93.21 ± 1.59 93.93 ± 1.52 95.11 ± 1.54

Kappa 89.26 ± 2.17 90.32 ± 2.14 92.99 ± 1.73 93.85 ± 1.69 94.92 ± 1.63

Method The dense branch was replaced by a normal CNN module.
AA 89.29 ± 1.99 90.56 ± 1.89 93.35 ± 1.88 94.09 ± 1.74 95.17 ± 1.69

Kappa 89.24 ± 2.06 90.43 ± 2.03 93.08 ± 2.07 93.91 ± 1.78 95.13 ± 1.70

Method The dilated branch was replaced by a normal CNN module.
AA 89.43 ± 2.07 90.59 ± 2.36 93.44 ± 2.06 94.18 ± 1.65 95.29 ± 1.45

Kappa 89.36 ± 2.41 90.50 ± 2.13 93.13 ± 2.56 94.04 ± 1.77 95.31 ± 1.46

Method 3D-CNN
AA 84.63 ± 2.06 86.36 ± 1.82 87.76 ± 1.68 89.36 ± 1.56 91.03 ± 1.54

Kappa 85.36 ± 2.43 86.14 ± 2.03 87.96 ± 1.85 88.76 ± 1.89 90.96 ± 1.63

Table 12. The average accuracy (AA, %) and the Kappa coefficient (%) for IP dataset.

L = 5 L = 10 L = 15

Method New Approach
AA 70.35 ± 1.32 78.58 ± 1.71 82.77 ± 1.88

Kappa 70.15 ± 1.16 77.84 ± 1.54 82.59 ± 1.69

Method The proposed quadruplet loss was replaced by the siamese loss.
AA 67.95 ± 2.07 77.75 ± 1.69 80.78 ± 1.68

Kappa 68.12 ± 1.68 77.05 ± 1.74 80.29 ± 2.13

Method The proposed quadruplet loss was replaced by the triplet loss.
AA 68.39 ± 1.85 77.96 ± 1.95 81.26 ± 1.64

Kappa 68.45 ± 1.77 77.28 ± 1.86 80.93 ± 1.89

Method The proposed quadruplet loss was replaced by the original quadruplet loss.
AA 69.16 ± 1.69 78.08 ± 1.63 81.67 ± 1.65

Kappa 68.65 ± 2.14 77.54 ± 1.91 81.26 ± 1.91

Method The dense branch was replaced by a normal CNN module.
AA 68.89 ± 1.64 77.74 ± 1.86 81.43 ± 1.60

Kappa 68.64 ± 1.79 77.47 ± 2.15 80.86 ± 1.88

Method The dilated branch was replaced by a normal CNN module.
AA 69.14 ± 1.68 77.96 ± 1.98 81.57 ± 1.58

Kappa 68.73 ± 2.03 77.53 ± 2.36 81.32 ± 1.89

Method 3D-CNN
AA 64.35 ± 2.58 71.69 ± 1.78 76.64 ± 2.04

Kappa 63.48 ± 2.87 71.26 ± 1.95 76.21 ± 2.36
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Table 13. The average accuracy (AA, %) and the Kappa coefficient (%) for UP dataset.

L = 5 L = 10 L = 15 L = 20 L = 25

Method New Approach
AA 81.15 ± 1.59 86.23 ± 1.04 89.68 ±1.36 93.05 ± 1.21 94.57 ± 1.25

Kappa 80.97 ± 1.41 86.05 ± 1.08 89.49 ± 1.30 92.97 ± 1.13 94.42 ± 1.18

Method The proposed quadruplet loss was replaced by the siamese loss.
AA 80.16 ± 2.16 84.36 ± 1.89 87.86 ± 1.69 90.87 ± 1.63 92.86 ± 1.46

Kappa 79.95 ± 2.37 84.16 ± 1.95 87.93 ± 1.86 90.94 ± 1.78 92.78 ± 1.53

Method The proposed quadruplet loss was replaced by the triplet loss.
AA 80.39 ± 1.75 84.56 ± 1.78 88.40 ± 1.84 91.56 ± 1.89 92.94 ± 1.63

Kappa 80.06 ± 1.94 84.37 ± 1.85 88.26 ± 2.02 91.36 ± 1.86 92.89 ± 1.74

Method The proposed quadruplet loss was replaced by the original quadruplet loss.
AA 80.46 ± 1.86 84.69 ± 1.96 88.46 ± 1.86 91.83 ± 1.76 93.05 ± 1.69

Kappa 80.25 ± 2.03 84.59 ± 2.03 88.37 ± 1.94 91.58 ± 1.88 92.93 ± 1.82

Method The dense branch was replaced by a normal CNN module.
AA 80.58 ± 1.89 85.03 ± 1.94 88.59 ± 1.98 91.06 ± 1.89 93.16 ± 1.66

Kappa 80.41 ± 2.36 84.76 ± 2.18 88.44 ± 2.14 92.10 ± 1.83 92.97 ± 1.56

Method The dilated branch was replaced by a normal CNN module.
AA 80.68 ± 2.23 85.34 ± 1.94 88.77 ± 1.94 92.16 ± 1.75 93.36 ± 1.79

Kappa 80.49 ± 2.56 85.23 ± 2.00 88.69 ± 2.03 91.95 ± 1.84 93.15 ± 1.84

Method 3D-CNN
AA 71.26 ± 3.64 80.02 ± 1.69 83.52 ± 3.14 85.53 ± 1.89 89.23 ± 1.36

Kappa 70.89 ± 3.85 79.38 ± 1.87 83.46 ± 3.26 85.06 ± 2.03 88.91 ± 1.41

3.3. Time Consumption

In terms of the overall accuracy of the three datasets, SS-LPSVM, 3D-CNN, DFSL+NN,
and DFSL+SVM show the closest accuracy performance with our method. Hence, these methods
were selected for the comparative analysis of time consumption. The time consumption of 3D-CNN,
DFSL+NN, DFSL+SVM, and the proposed method based on the IP dataset is shown in Table 14. Details
regarding the computer configuration and program coding used in analyzing the time consumption
are presented in Table 15. Based on the comparative analysis of time consumption, the proposed
approach is similar to other classification techniques. SS-LPSVM has been demonstrated that it takes
much longer time than DFSL+NN and DFSL+SVM based on the IP dataset [28] (198.30s vs. 11.14s +

0.36s and 11.14s + 2.21s). Hence, it can be inferred that the proposed method shows obvious advantage
over SS-LPSVM.

Table 14. The time consumption of the proposed approach and other methods (“+”: the time of feature
extraction + the time of classification).

Number of
Labeled Samples L = 5

Method Proposed DFSL + NN DFSL + SVM 3D-CNN + NN
Time 10.08 s + 0.30 s 11.09 s + 0.34 s 11.09 s + 2.09 s 13.59 s + 0.38 s

Number of
Labeled Samples L = 25

Method Proposed DFSL + NN DFSL + SVM 3D-CNN + NN
Time 10.08 s + 0.75 s 11.09 s + 0.78 s 11.09 s + 123.48 s 13.59 s + 0.84 s



Remote Sens. 2020, 12, 647 18 of 20

Table 15. The details about computer configuration and program coding for testing operation time.

Configuration and Program Details

Processor Intel (R) Core (TM) i5-9400 @ 2.90 GHz
Memory Crucial DDR4 2666MHz, 8.00 GB
Graphics NVIDIA GeForce GTX 1060, 6 GB
CUDA Version 9.1.0

Programming Language Python, Version 3.6.10
Deep Learning Platform Google TensorFlow, Version 1.9.0

4. Conclusions

This study integrates quadruplet loss with deep 3-D CNN with dense and dilated characteristics
in proposing a quadruplet deep learning method for few-shot hyperspectral image classification.
Verification and comparative analysis were performed using public hyperspectral datasets, and the
results suggest the following conclusions:

(1) The proposed approach was found to have higher overall accuracy than existing methods,
which suggests that the classification method is state-of-the-art.

(2) An ablation study was conducted replacing each module of the proposed approach
(i.e., quadruplet loss, dense branch, and dilated branch) to demonstrate the effectiveness of their
contributions. The results show that all modules are effective and necessary in improving classification
accuracy, with the proposed quadruplet loss providing the highest contribution.

(3) The time consumption for the different methods was tested under the same operating
environment. The analysis shows the proposed methodology has a similar level of time consumption
compared to existing methods.

In the future, given the scarcity of training samples in some cases, a sample-synthesis method can
be explored for a few-shot hyperspectral image classification.
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