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Abstract: The Delmarva Peninsula in the eastern United States is partially characterized by thousands
of small, forested, depressional wetlands that are highly sensitive to weather variability and climate
change, but provide critical ecosystem services. Due to the relatively small size of these depressional
wetlands and their occurrence under forest canopy cover, it is very challenging to map their
inundation status based on existing remote sensing data and traditional classification approaches.
In this study, we applied a state-of-the-art U-Net semantic segmentation network to map forested
wetland inundation in the Delmarva area by integrating leaf-off WorldView-3 (WV3) multispectral
data with fine spatial resolution light detection and ranging (lidar) intensity and topographic data,
including a digital elevation model (DEM) and topographic wetness index (TWI). Wetland inundation
labels generated from lidar intensity were used for model training and validation. The wetland
inundation map results were also validated using field data, and compared to the U.S. Fish and
Wildlife Service National Wetlands Inventory (NWI) geospatial dataset and a random forest output
from a previous study. Our results demonstrate that our deep learning model can accurately determine
inundation status with an overall accuracy of 95% (Kappa = 0.90) compared to field data and high
overlap (IoU = 70%) with lidar intensity-derived inundation labels. The integration of topographic
metrics in deep learning models can improve the classification accuracy for depressional wetlands.
This study highlights the great potential of deep learning models to improve the accuracy of wetland
inundation maps through use of high-resolution optical and lidar remote sensing datasets.

Keywords: forested wetland; inundation; deep learning; lidar; WorldView-3; DEM; topographic
wetness index

1. Introduction

Within the contiguous United States (CONUS), forested wetlands are common along the East
Coast [1]. The inundation status of the wetlands provides a key indicator of climate variability
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and shifts in hydrological (e.g., floodwater storage), biogeochemical (e.g., carbon sequestration) and
biological (e.g., habitats) functions [2]. However, many of the forested wetlands occur in small (e.g.,
<1 ha), shallow depressions, and are masked by tree leaf cover for much of the year [3]. Temporally,
many wetlands are only inundated for a short period throughout the year, usually in early spring, when
evapotranspiration is relatively low. Thus, compared to other more permanent or open-surface water
wetlands, mapping the inundation status of forested wetlands in this region is extremely challenging.
Accurate and timely approaches for mapping forested wetland inundation are essential, as this type of
wetland in a coastal area is threatened by loss, yet it provides important ecosystem services [2,4].

Until now, many efforts have been made to map surface-water inundation based on the spectral
features of targets by employing multiple types of remote sensing data. Moderate spatial resolution
remote sensing data, such as Landsat [5–8], Sentinel-1 and 2 [7,9] and RADARSAT-2 datasets [10],
have been widely used for monitoring surface-water extent. In these studies, wetlands or inundation
extent water bodies were usually classified using simple statistics or machine learning classifiers,
e.g., vegetation indices, and random forest algorithms [6–8]. However, it is a great challenge to
use moderate resolution sources of imagery to characterize small wetlands, even using recently
developed, sub-pixel approaches [5,6]. Additionally, some efforts have been made to map small
wetlands using high-resolution remote sensing data, such as lidar [11], WorldView-3 (WV3) [12] and
the U.S. Department of Agriculture National Agriculture Imagery Program (NAIP) imagery [13].
Lidar intensity and lidar-derived topographic information, e.g., the topographic wetness index (TWI),
have been shown to be useful in distinguishing wetland inundation under a forest canopy [11,14].
Vanderhoof et al. [12] enhanced the detection of wetland inundation in the Delmarva region by
integrating RADARSAT-2 images, WV-3 imagery and an enhanced topographic metric in a random
forest model. However, the advantage of using high resolution data is often partially offset by the
introduction of more ‘salt and pepper’ noise in classification when the spatial context of objects is
not considered [15]. Thus, normally, another step of aggregation or filtering is needed to reduce
speckle when using high spatial resolution data [12,13]. National Wetlands Inventory (NWI) products
produced by the U.S. Fish and Wildlife Service (USFWS) provide detailed information on wetland
distribution across the CONUS. However, they are largely developed using the relatively time-intensive
process of the manual interpretation of fine spatial scale remote sensing data, and quickly fall out of
date in areas undergoing land cover change. Thus, advances in classifying forested wetlands, including
their inundation status, are needed.

High spatial resolution remote sensing data provide not only useful spectral information, but also
rich spatial contexture information. Previous studies have found that by including the spatial contextual
information, e.g., texture statistic and mathematical morphology, into classifiers, the classification
accuracy could be substantially improved [16]. However, the contexture information contained in
high spatial resolution data cannot be fully captured by these mid-level contextual metrics. Recently
developed convolutional neural networks (CNNs) can hierarchically learn the high-level contextual
information, and have now been applied to image processing and object detection [17,18]. Based on
CNN, deep semantic segmentation networks have been developed in recent years to classify each
pixel in images by extracting characteristic features from whole (or parts of) objects that exist in
images, and assigning a class label to each pixel. A number of semantic network architectures have
been proposed in the computer vison area, e.g., PspNET [19], SegNET [20], U-Net [21], and DeepLab
series [22], and have been demonstrated to be effective in classifying urban and land use features
using remote sensing data [23–26]. The U-Net architecture initially developed for biomedical image
segmentation is now widely used in the Kaggle competition for classifying urban features with high
accuracy [27]. However, thus far, little effort has been put into mapping forested wetlands using deep
learning approaches.

In this study, we applied a novel semantic segmentation network approach based on U-Net
architecture to classify the forested wetland inundation extent during the leaf-off period within
the upper Choptank River watershed in the Delmarva Peninsula. We tested the ability of WV3
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multi-spectral data, fine-resolution lidar intensity data and topographic metrics, including a digital
elevation model (DEM) and TWI, to map wetland inundation. Our specific objectives included:
(1) Deriving wetland inundation maps using lidar intensity-derived inundation labels to train the deep
learning network; (2) Evaluating multiple combinations of model inputs (i.e., WV3, WV3 + DEM,
WV3 + TWI, and WV3 + DEM + TWI) to explore the contribution of topographic information on
classification accuracy; and (3) Evaluating the strengths of the deep learning method in classification by
comparisons with traditional random forest output from Vanderhoof et al. [12] and the NWI geospatial
dataset. In our study, all classification results were validated at the pixel level using field data, and at
the object level using lidar intensity-derived inundation labels.

2. Materials and Methods

2.1. Study Area

The study area was the upper Choptank River watershed (116, 729 ha) located in the Delmarva
Peninsula across eastern portions of Maryland and Delaware (Figure 1a). It is characterized by
hummocky topography with low local relief and many seasonally ponded wooded depressions [28].
The mean elevation of the study area is ~16 m with a maximum of ~45 m above sea level (Figure 1b).
The Delmarva Peninsula is part of the Outer Coastal Plain Physiographic Province, and is thus
dominated by poorly drained soils on lowlands and well-drained soils on uplands [28]. This region
has a humid, temperate climate with an average temperature ranging from 2 ◦C in January and
February to 25 ◦C in July and August [29]. Rainfall is uniformly distributed throughout the year
(~1200 mm/yr of precipitation), but approximately half of the annual precipitation is lost through
evapotranspiration, and the remainder recharges ground water or runs off to streams [30]. Major
land cover types within the study area include >50% croplands, ~20% woody wetlands, and ~10%
forests (mostly deciduous forests) [31]. A large percentage of wetlands in this watershed are located
in depressions and floodplains. Many wetlands are inundated or saturated for a short period with a
peak normally occurring in early spring (March/April) after snowmelt and before leaf-out. Agriculture
plays an important role in the Delmarva’s economy, and historically many depressional wetlands have
been drained and modified to accommodate agricultural activities.

2.2. Data Sources

We used the 2-m resolution WV3 multispectral imagery (8 bands) which was obtained on April 6,
2015, over the upper Choptank River watershed (Figure1a, Table 1). This dataset was also used to
support earlier wetland inundation [12] and surface-water connection studies [32]. The winter during
2014–2015 prior to the WV3 acquisition date was found to be colder and wetter than normal [32].
We mosaicked the eight separate images collected with overlaps using histogram matching and
then atmospherically corrected them to get ground reflectance using Fast Line-of-sight Atmospheric
Analysis of Hypercubes (FLAASH) in ENVI 5.5.2 (Figure 2).

We used the lidar intensity data collected on March 27, 2007, for a subset of the study area
(~5065 ha) in the head-water region of the Choptank River (Figure 1a, Table 1). The lidar intensity
data were first interpolated using an inverse weighted distance method to produce a 1-m resolution
intensity image and then filtered using an enhanced Lee filter. A more detailed description of this data
collection and data processing is available in Lang and McCarty [11]. Both lidar intensity and the WV3
data were acquired during early spring (March and April, respectively) with a minimal difference in
wetness conditions [11]. Thus, we assume that the two datasets represent similar climatic conditions.
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Figure 1. Map of study area in the upper Choptank River watershed located in the Delmarva 
Peninsula, USA. (a) The 2-m WorldView3 (WV3) imagery (acquisition date: April 6, 2015) in a natural 
color composite. (b) The 2-m light detection and ranging (lidar) digital elevation model (DEM) 
generated from three separate lidar collections. (c) Topographic wetness index (TWI) derived from 
the 2-m lidar DEM, which was generated from the System for Automated Geoscientific Analysis 
(SAGA) v. 7.3.0. 
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Figure 1. Map of study area in the upper Choptank River watershed located in the Delmarva Peninsula,
USA. (a) The 2-m WorldView3 (WV3) imagery (acquisition date: April 6, 2015) in a natural color
composite. (b) The 2-m light detection and ranging (lidar) digital elevation model (DEM) generated
from three separate lidar collections. (c) Topographic wetness index (TWI) derived from the 2-m lidar
DEM, which was generated from the System for Automated Geoscientific Analysis (SAGA) v. 7.3.0.

Table 1. Datasets used in this study.

Data Description Acquisition Data Spatial Resolution

WorldView-3 Eight bands multispectral imagery
(wavelengths: 400–1040 nm) 6 April 2015 2 m

Lidar intensity One band normalized intensity
image (wavelengths: 1064 nm) 27 March 2007 1 m

Lidar DEM Three separate lidar collections in
Maryland and Delaware

April–June 2003, March–April
2006, April 2007 2 m

Field polygons
Ground-inundated and upland

polygons using global positioning
systems

16 March–6 April 2015 Shapefile

NWI
National Wetlands Inventory

Version 2 dataset for
Chesapeake Bay

2013, 2007 Shapefile

Random forest
inundation map

Wetland inundation map using
random forest based on WV3

imagery by Vanderhoof et al. [12]
6 April 2015 2 m
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demonstrated to be effective at identifying water extent below deciduous forests due to the strong 
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bare-earth returns from multiple returns. However, in our study area, uplands usually include some 
green vegetation even in the leaf-off season, specifically patches of evergreen tree species. Evergreen 
tree species and water inundation have different, but similar, effects on the lidar intensity, resulting 
in the same dark appearance on lidar intensity images for the ground returns. Thus, we used a 
normalization approach [36] based on the first and the last return lidar intensity to exclude the effect 
of evergreen forests on inundation. Appropriate threshold values to binarize the inundation from 
non-inundation were determined [36]. In addition, roads, ditches, or dark pavements in urban build-
up areas that also mixed with inundation were manually excluded based on the WV3 imagery to 
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intensity-derived inundation labels against field polygons in Section 2.5. 

Figure 2. Workflow of wetland inundation mapping in this study. DEM: Digital Elevation Model, TWI:
Topographic Wetness Index, NWI: National Wetland Inventory.

We used a 2-m resolution lidar DEM collected over the upper Choptank River watershed, which
was generated from three separate lidar collections (April–June 2003 and March-April 2006 for Maryland
at 1-m resolution, and April 2007 for Delaware at 3-m resolution) [33] (Figure 1b, Table 1). The 1-m
and 3-m resolution DEMs were resampled to 2-m resolution using cubic convolution to match the
WV3 data. This lidar DEM collected in the spring also represented a near normal or average wetness
condition. More data information is provided in Vanderhoof et al. [12] and Lang et al. [33]. We applied
a low-pass filter with a kernel size of 3 × 3 twice to the 2-m DEM in ArcGIS 10.6 to suppress the
abnormal values in DEM that may result from noise. We further generated the TWI based on the
filtered DEM using the System for Automated Geoscientific Analysis (SAGA) v. 7.3.0 (Figure 1c).
The TWI is defined as a function of local upslope contributing area and slope, and is commonly used in
other studies to quantify the local topographic control on hydrological processes [34,35] and wetland
inundation [12,14].

To validate our classification results against field data, we used 73 inundated polygons and 34
upland polygons with a total area of ~17 ha, which were collected between 16 March and 9 April 2015,
in two Nature Conservancy properties in the head-water region of the Choptank River (Figure 1a,
Table 1). These polygons were collected by technicians walking in a random manner through a forested
area and recording homogenous inundated and upland polygons using a GPS. The field data were
also used to validate previous efforts to classify inundation from WV3 imagery [12].

To further evaluate our results, we compared our outputs to the NWI geospatial dataset and a
high-resolution wetland inundation map from a random forest model produced by Vanderhoof et
al. [12] (Table 1). We downloaded the NWI wetland shapefile through https://www.fws.gov/wetlands/
Data/Mapper.html. These NWI data were created using 2013 NAIP imagery for the Chesapeake Bay

https://www.fws.gov/wetlands/Data/Mapper.html
https://www.fws.gov/wetlands/Data/Mapper.html
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and 2007 NAIP imagery for Sussex County. The wetland inundation map from Vanderhoof et al. [12]
was classified using a random forest algorithm and the same WV3 data as described above.

2.3. Deriving Wetland Inundation Labels from Lidar Intensity

In this study, we chose a subset of the upper Choptank River watershed where the 2007 lidar
intensity data were available for model training and validation. Lidar intensity data have been
demonstrated to be effective at identifying water extent below deciduous forests due to the strong
absorption of incident near-infrared energy by water relative to dry uplands, and the ability to isolate
bare-earth returns from multiple returns. However, in our study area, uplands usually include some
green vegetation even in the leaf-off season, specifically patches of evergreen tree species. Evergreen
tree species and water inundation have different, but similar, effects on the lidar intensity, resulting
in the same dark appearance on lidar intensity images for the ground returns. Thus, we used a
normalization approach [36] based on the first and the last return lidar intensity to exclude the
effect of evergreen forests on inundation. Appropriate threshold values to binarize the inundation
from non-inundation were determined [36]. In addition, roads, ditches, or dark pavements in urban
build-up areas that also mixed with inundation were manually excluded based on the WV3 imagery to
generate clear wetland inundation labels (Figure 3). We quantitatively evaluated the accuracy of lidar
intensity-derived inundation labels against field polygons in Section 2.5.

2.4. Deep Learning Network Training and Classification

In this study, we built a novel deep learning network based on the U-Net architecture [21] to classify
forested wetland inundation. Our network combined the most recent components that maximize
the performance of per-pixel classification including 1) a U-Net backbone architecture, and 2) use of
modified residual blocks of convolutional layers in architecture, which is also utilized by Diakogiannis,
et al. [37] (Figure 4). We employed a hybrid Dice and Focal loss for our segmentation network to
facilitate the training of the neural model [38]. Specifically, our deep learning network was trained using
the Python fast.ai library, which is based on the PyTorch framework. Model training was carried out
on a computer with Intel(R) Xeon(R) Gold 6136 CPU @ 3.00GHz (48 CPUs) and NVIDIA Quadro P6000
GPU. Similar to traditional classification methods, our approach included three stages: model training,
image classification and accuracy assessment (Figure 2). The lidar intensity-derived inundation labels
generated in Section 2.3 were used to train the deep learning network. We tested different combinations
of datasets for deep leaning model input (i.e., WV3, WV3 + DEM, WV3 + TWI and WV3 + DEM + TWI)
to explore the contribution of topographic information on wetland inundation classification.

At the model training stage, we first split the lidar intensity-derived inundation labels, WV3 and
the corresponding topographic datasets into small image patches, as it is very computationally intensive
to train a whole remote sensing image in a deep learning model. Due to the very limited coverage
of the lidar intensity-derived inundation labels in the study region for model training, we used an
overlapped moving window (256 × 256 pixel) to sample image patches from the first pixel to the last
pixel in the training area (Figure 5). Moreover, four types of data augmentation (rotate 90◦, rotate
180◦, rotate 270◦, and flip) were applied to the split patches to further enlarge the training dataset.
In total, we sampled 635 image patches that have wetland inundation labels, and 64 out of the 635
image patches were intersected with field polygons. We thus left out the 64 image patches (~10%) with
field polygons in model training for further model validation (see Section 2.5) and used the remaining
571 image patches (~90%) as a training dataset.
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At the classification stage, the trained network was used to predict wetland inundation at the
watershed scale by use of corresponding combinations of datasets as model input. Due to the large
coverage of the study area, we also split the input imagery at the watershed scale into small image
patches using the same overlapped moving window approach. After prediction, we combined all those
predicted small image patches in order and generated a continuous deep learning inundation map.
For the overlapped part of those patches, we averaged the multiple predictions to get an averaged
classification for each pixel.Remote Sens. 2020, 12, x FOR PEER REVIEW 9 of 22 
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chose two image patches (a,b) from the training dataset. RGB: Red, Green, Blue, IR: infrared, DEM:
Digital Elevation Model, TWI: Topographic Wetness Index.

2.5. Classification Assessment

Two evaluation methods were used for the classification accuracy assessment. We first evaluated
the accuracy of deep learning inundation maps at the pixel level using a group of randomly sampled
points from field polygons. The overall accuracy and other related accuracy metrics were calculated
using the confusion matrix approach, which is also widely used in traditional classification methods.
Moreover, to evaluate the accuracy of inundation labels derived from lidar intensity, we also sampled
the same number of field points for confusion matrix analysis. Second, we evaluated the accuracy of our
deep learning inundation maps at an object level using the withheld lidar intensity-derived inundation
labels (i.e., 64 image patches in Section 2.4) as our reference. We also quantitatively evaluated the
performance of the random forest output from Vanderhoof et al. [12] using these two evaluation
methods, and visually compared the results with the NWI wetland map.

2.5.1. Pixel-Level Assessment against Field Data

To evaluate the accuracy our deep learning inundation maps at the pixel level, we randomly
sampled 1000 points within the inundated polygons and 1000 points within the upland polygons to
generate a confusion matrix. We further calculated the overall accuracy (OA), positive predictive value
(precision), true positive rate (recall), F1 score and Cohen’s Kappa coefficient based on the confusion
matrix. To evaluate the accuracy of the lidar intensity-derived inundation labels against the field
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data, we calculated the OA, precision and recall by sampling another 1000 upland points and 1000
inundated points which were independent from the field points used for the pixel-level validation of
deep learning inundation maps.

The overall accuracy represents the overall proportion of pixels that are correctly classified as
inundation or non-inundation, and is calculated as

OA =
TP + TN

N
× 100 (1)

where TP is the number of true positives (i.e., inundation), and TN is the number of true negatives (i.e.,
non-inundation). N is the total number of pixels (i.e., 2000) used in the confusion matrix. Precision is
calculated as the ratio of TP to the number of all positives classified (Equation 2). Recall is calculated
as the ratio of TP to all relevant positives in classification and ground reference (Equation 3).

Precision =
TP

TP + FP
× 100 (2)

Recall =
TP

TP + FN
∗ 100 (3)

where FP is the number of false positives (i.e., non-inundation in ground truth classified as inundation
in our results), and FN is the number of false negatives (i.e., inundation in ground truth not classified
in our results). F1-Score represents the weighted average of the precision and recall (Equation 4). The
Kappa coefficient measures the consistency of the predicted classes with the ground truth, which is
formulated as Equation (5).

F1score = 2×
Precision×Recall
Precision + Recall

(4)

Kappa =
OA− pe

1− pe
(5)

where pe is the hypothetical probability of chance agreement calculated as

pe =
(TP + FP) × (TP + FN) + (TN + FN) × (TN + FP)

N2 (6)

2.5.2. Object-Level Assessment against Lidar Intensity-Derived Inundation Labels

To evaluate the accuracy of deep learning inundation maps at the object level, we compared our
deep learning inundation maps against lidar intensity-derived inundation labels in 64 image patches
that overlapped with field polygons and were not used in model training. Meanwhile, the wetland
inundation maps produced by Vanderhoof et al. [12] were also split to the 256*256 pixel size using the
moving window approach in this study to coordinate with our validation analysis.

We first quantified the relationships between the wetland inundation area estimated from different
results and the lidar intensity-derived inundation labels in the 64 validation image patches. In our
study, the wetland inundation area was calculated by counting the total number of inundated pixels
in each image patch. We employed the r-squared (R2) and root-mean-square error (RMSE) for the
quantitative comparison of the relationships.

Moreover, to further quantify the overlap ratio of wetland inundation objects predicted in different
results against the lidar intensity-derived inundation labels, we adopted a metric based on the
intersection over union (IoU), also known as the Jaccard index, which measures the overlap between
two objects by dividing the area intersected by the area of union (Equation (6)) [39]. The value of IoU
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ranges from 0 to 1. If measured IoU is 0.5 or above, it is usually considered as a true positive, otherwise,
it is considered as a false positive.

IoU(A, B) =
Area(A∩ B)
Area(A∪ B)

(7)

where A and B correspond to wetland inundation objects predicted in different results and lidar
intensity-derived inundation labels, respectively, in this study.

3. Results

3.1. Classification Accuracy at the Pixel Level

The spatial distribution of forested wetland inundation over the entire upper Choptank River
watershed was predicted by deep learning algorithms based on the U-Net network using 2015 WV3
imagery and different combinations of topographic information (i.e., DEM, TWI and DEM + TWI).
Figure 6 shows the deep learning inundation map at the watershed scale using WV3 and TWI as model
inputs. In our study, we used the false-color-composited WV3 imagery with the Near-IR2, Red Edge
and Yellow bands, respectively, in red, green and blue channels for a better visual display of wetland
inundation, because the combination of these three bands contains a larger amount of information
than other combinations [40].

Based on the confusion matrix sampled from field polygons, our predictions derived from
deep learning networks showed a consistently higher OA than the random forest output (Table 2).
Specifically, the OA of our prediction using WV3 dataset was 92% with F1 score = 0.91 and Kappa = 0.84.
The OA of the random forest output, which was also based on WV3, was 91% with F1 score = 0.90
and Kappa = 0.81. By including either topographic data (i.e., DEM or TWI) into the deep learning
model, our OA increased to 95% with a higher F1 score (>= 0.94) and Kappa coefficient (>= 0.89)
(Table 2). In our study, the lidar intensity-derived inundation labels also showed a high overall accuracy
(95%) compared to the 2015 field polygons, which was validated by a separate group of field points.
The precision and recall of lidar intensity-derived inundation labels were 100% and 90%, respectively.

Table 2. Accuracy assessments using field data. The variables in the parentheses are the data input
used for our deep learning network or the random forest model. WV3: WorldVview-3, DEM: Digital
Elevation Model, TWI: Topographic Wetness Index.

Prediction
(WV3)

Prediction
(WV3+DEM)

Prediction
(WV3+ TWI)

Prediction
(WV3+DEM+TWI)

Random
Forest (WV3)

Overall
Accuracy (%) 92 95 95 95 91

Precision (%) 99 100 99 99 98
Recall (%) 84 90 91 89 83
F1 score 0.91 0.95 0.95 0.94 0.90
Kappa 0.84 0.90 0.90 0.89 0.81
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Figure 6. Forested wetland inundation map classified using WorldView-3 (WV3) + topographic wetness
index (TWI) using deep learning method. (a,b) are zoom-in WV3 imagery and deep learning inundation
map, respectively in depressional wetlands in box 1. (c,d) are zoom-in WV3 imagery and deep learning
inundation map, respectively in floodplains in box 2. WV3 imageries in (a) and (c) are shown in false
color (Red channel: Near-IR2, Green channel: Red Edge, and Blue channel: Yellow).

3.2. Classification Accuracy at the Object Level

We further compared our deep learning inundation maps with the random forest output, as
well as the NWI wetland dataset at the object level using the lidar intensity-derived inundation
labels (i.e., 64 validation image patches) as a reference. Generally, our deep learning inundation
maps showed a much clearer pattern of wetland inundation than the random forest output (Figure 7).
Each wetland was captured as well as an individual object. By contrast, the random forest output
created a distinct “salt-and-pepper” appearance in the classification, and was easily mixed with ditches
and roads (Figure 7). Additionally, the NWI wetland maps showed a much broader extent than both
our predictions and the random forest inundation output (Figure 7).
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We randomly chose four image patches (a-d) out of 64 validation image patches as examples.
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The WorldView-3 (WV3) imagery in the first column was shown in false color (Red channel:
Near-IR2, Green channel: Red Edge, Blue channel: Yellow). DEM: Digital Elevation Model, TWI:
Topographic Wetness Index, NWI: National Wetlands Inventory

The estimates of wetland inundation areas in our predictions were very close to the 1:1 line
against the estimates of lidar intensity-derived inundation areas with R2

≥ 0.96 and RMSE ≤ 0.59
(p < 0.001) (Figure 8). The inclusion of the DEM or TWI data in the deep learning model slightly
improved the relationship with a higher R2 and lower RMSE (Figure 8). In comparison, the R2 and
RMSE between the random forest inundation areas and lidar intensity-derived inundation areas were
0.85 and 1.25, respectively.
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Figure 8. Comparisons of wetland areas predicted by deep learning algorithms (a–d) in our study and
random forest (e) against the lidar intensity-derived inundation labels. Each black point represents the
estimate of wetland area in each image out of the 64 image patches. The black dashed line is the 1:1
line. The blue line is the linear regression model. The blue shadow shows the 95% confidence interval
of the linear regression model. WV3: WorldView-3, DEM: Digital Elevation Model, TWI: Topographic
Wetness Index, RMSE: Root Mean Square Error.

There was a high degree of overlap between wetland inundation in our predictions and the lidar
intensity-derived inundation labels. The median IoU between our predictions using WV3 and the
lidar inundation labels was 66%, while the median IoU between the random forest output and the
lidar inundation labels was 51% (Figure 9). By integrating the TWI into the deep learning model,
our median IoU increased to 70% (Figure 9).
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the lidar intensity-derived inundation labels. The percentages above each boxplot bar are the median
IoU values. WV3: WorldView-3, DEM: Digital Elevation Model, TWI: Topographic Wetness Index.

4. Discussion

Foundational mapping and timely updates of forested wetland inundation using high-resolution
remote sensing data are essential and remain a challenge due in part to the complexity of wetland
features that are subject to temporal change due to natural and anthropogenic influences. In our study,
we built a state-of-the-art deep learning network based on U-Net architecture to classify wetland
inundation within the upper Choptank River watershed using WorldView 3 imagery and topographic
datasets (i.e., DEM and TWI). Our deep learning network represents a novel fully convolutional
network for semantic segmentation, which integrates both the spatial and spectral information of input
images, and hence is fundamentally different than traditional classification approaches, e.g., random
forest, without considering spatial context feature. To train our deep learning network, we used a
lidar intensity image to derive wetland inundation labels. Our results showed a higher classification
accuracy than the pixel-based random forest output at both the pixel and object level. The overall
accuracy was increased slightly by adding topographic information into the deep learning network.
The effectiveness of using lidar intensity to derive wetland inundation labels for model training and
the efficiency of the deep learning network to classify forested wetland inundation during the leaf-off

season are the primary strengths of this study.
Creating the label data for deep learning models using high-resolution data sources has proven

challenging due to the scarcity of high-resolution references, as well as the complex information
provided by the images. By contrast, traditional machine learning approaches are easier to train using
a small number of training data points [7,12]. However, this study benefited from the effectiveness of
highly accurate inundation labels using lidar intensity. Wetland inundation labels derived from the
2007 lidar intensity matched quite well with inundation extent, as shown in the 2015 WV3 imagery
(Figure 3), and had an overall accuracy of 95% compared to the 2015 field polygons. Given that the
topography remained constant, this indicated a similar climate condition between these two years.
However, compared to the DEM data, lidar intensity data are often less available. In our study, lidar
intensity data collected for model training only covered ~4% of the watershed extent, and was located
in a region dominated by large numbers of geographically isolated wetlands with fewer floodplain
wetlands (Figure 3). Thus, the classification accuracy of the inundation extent along the floodplains
was difficult to evaluate.
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Furthermore, the applicability of our deep learning model to locations far away from the training
area was not evaluated in our study, as previous studies suggested that model degradation might occur
in both traditional approaches or sematic deep learning networks in new geographic locations [41].
Thus, examining the availability and implications of lidar intensity would be valuable for future
wetland inundation mapping. In addition, our method only applies to leaf-off wetlands identification
using lidar intensity-derived inundation labels and high-resolution optical imagery, as the remote
sensing imagery collected in the growing season mostly captures the structure of leaf-on tree canopy.

Our classification accuracy showed a slight increase by the inclusion of topographic datasets
in our deep learning model (Figures 8 and 9), which also supports previous studies showing that
topographic information could contribute to land cover classification [42]. However, since our study
area was in a low relief setting, wetland inundation classification was still primarily driven by the
WV3 data, which documented the critical spectral and spatial contexture properties of water extent
below forest canopy (Table 2, Figures 7–9). Only a small improvement in classification accuracy was
gained by using either the DEM or TWI. However, we found that the inundation extent along the
floodplains using DEM was slightly larger than that using the TWI (results not shown), which needs
further investigation due to the limited training for floodplain wetlands in this study.

Our results showed a higher accuracy using deep learning models than the traditional random
forest output at both the pixel level and object level (Table 2, Figures 7–9). Our deep learning approach
to classify image pixels with inundation labels is object-oriented, which extracts characteristic features
from wetland objects that exist in input images and assigns a probability of inundation to each pixel.
In contrast, in random forest, the probability of each class per pixel is based on the spectral features
inherent in the image. In high-resolution remote sensing data, pixel-based spectral features contain
less information than object-based spatial features. For example, inundation under the forest canopy
is not only characterized by its spectral features (color of the water or tree canopy), but also by how
these elements are arranged in an image. However, we should note that the 2-m random forest output
obtained in this study was only derived from WV3 datasets. Vanderhoof et al. [12] also maximized the
accuracy of the inundation map by adding RADARSAT-2 data within a random forest model, and in
this way increased overall accuracy to 94%. However, the spatial resolution of the derived map was
decreased to 5.6 m due to the coarser resolution of RADARSAT-2.

Comparison of our deep learning inundation maps to the NWI geospatial dataset supports
assessment of deep learning techniques for future integration within operational wetland mapping.
Although this study produced maps of inundation, and not wetlands, it should be noted that a large
portion of wetlands at the study site would be inundated at this time of year. Furthermore, the NWI
dataset includes information on wetland hydroperiod (i.e., water regime), and the deep learning
approach developed as part of this study could be used to refine these water regime codes in the
future, especially if inundation maps can be produced during different times of the year and/or under
multiple weather conditions. The NWI dataset, which was derived primarily through the manual
interpretation of fine spatial resolution optical images (e.g., NAIP), showed a broader wetland extent
in comparison with our deep learning inundation maps and the random forest inundation output
(Figures 7–9), even though our predictions were based on WV3 that were collected at a time of year
when the expression of inundation within wetlands is maximized. It is likely that this difference
was caused by two primary drivers: 1) the presence of saturated wetlands which do not exhibit
inundation, and 2) the NWI dataset’s larger targeted mapping unit (i.e., ~0.20 ha). It is also possible
that some of this disagreement could be caused by substantial errors of omission existing in forested
wetlands in NWI maps and wetland drainage between 2007–2013 (NAIP acquisition date) and 2015
(WV3 acquisition date) [11]. This study demonstrates that deep learning techniques can improve
the quality of inundation maps. Addressing the ability of deep learning to map a wider range of
wetlands, including those with a saturated water regime, and the ability of deep learning techniques to
support mapping over larger areas would greatly enhance the utility of these techniques for supporting
operational wetland mapping, especially at regional and national scales.
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5. Conclusions

Mapping forested wetland inundation is an important first step of understanding the responses of
wetlands to weather variability and climate change. In this study, we demonstrated a novel framework
based on the U-Net architecture to identify forested wetland inundation in the Delmarva Peninsula,
United States. We produced the maps of forested wetland inundation in 2015 using WV3 imagery
and topographic information. Small to large forested wetland inundation was successfully captured
with an overall accuracy of 95%. Wetland inundation patterns classified by the deep learning network
showed higher consistency with lidar intensity-derived inundation labels. Our study demonstrated
the effectiveness of deep learning models for mapping forested wetland inundation at the object level
with high accuracy and less “salt-and-pepper” effects, using high-resolution remote sensing imagery
and lidar intensity data.
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Abbreviations

The following abbreviations are used in this manuscript:

WV3 WorldView-3
Lidar Light Detection and Ranging
DEM Digital Elevation Model
TWI Topographic Wetness Index
NWI National Wetlands Inventory
CONUS Contiguous United States
USDA U.S. Department of Agriculture
NAIP National Agriculture Imagery Program
USFWS U.S. Fish and Wildlife Service
CNN Convolutional Neural Network
SAGA System for Automated Geoscientific Analysis
FLAASH Fast Line-of-sight Atmospheric Analysis of Hypercubes
OA Overall Accuracy
TP Number of True Positives
TN Number of True Negatives
N Total Number of Pixels
FP Number of False Positives
FN Number of False Negatives
F1-Score Weighted Average of the Precision and Recall
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Kappa coefficient Consistency of the Predicted Classes with the Ground Truth
pe Hypothetical Probability of Chance Agreement
IoU Intersection Over Union or Jaccard index
R2 R-squared
RMSE Root Mean Square Error
U-Net Convolutional Network Architecture
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