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Abstract: In hyperspectral imaging (HSI), the spatial contribution to each pixel is non-uniform and
extends past the traditionally square spatial boundaries designated by the pixel resolution, resulting
in sensor-generated blurring effects. The spatial contribution to each pixel can be characterized
by the net point spread function, which is overlooked in many airborne HSI applications. The
objective of this study was to characterize and mitigate sensor blurring effects in airborne HSI data
with simple tools, emphasizing the importance of point spread functions. Two algorithms were
developed to (1) quantify spatial correlations and (2) use a theoretically derived point spread function
to perform deconvolution. Both algorithms were used to characterize and mitigate sensor blurring
effects on a simulated scene with known spectral and spatial variability. The first algorithm showed
that sensor blurring modified the spatial correlation structure in the simulated scene, removing
54.0%–75.4% of the known spatial variability. Sensor blurring effects were also shown to remove
31.1%–38.9% of the known spectral variability. The second algorithm mitigated sensor-generated
spatial correlations. After deconvolution, the spatial variability of the image was within 23.3% of the
known value. Similarly, the deconvolved image was within 6.8% of the known spectral variability.
When tested on real-world HSI data, the algorithms sharpened the imagery while characterizing the
spatial correlation structure of the dataset, showing the implications of sensor blurring. This study
substantiates the importance of point spread functions in the assessment and application of airborne
HSI data, providing simple tools that are approachable for all end-users.
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1. Introduction

Hyperspectral remote sensing has received considerable attention over the past three decades
since the development of high-altitude airborne [1–3] and spaceborne platforms [4], leading to a
paradigm-shifting approach to Earth observation. In hyperspectral remote sensing, contiguous
narrow-band spectral information is acquired for each spatial pixel of an image collected over the
Earth’s surface [5]. The spectral information typically quantifies the absorbance and reflectance of the
materials within each spatial pixel, as well as the interactions that have occurred with light as it passed
through the atmospheric column. The reflectance and absorbance of materials are representative of
their chemical and physical properties [6]. Assuming the atmospheric interactions (absorption and
scattering) can be reasonably well modelled and removed from the signal of each pixel [7], the spectral
information from hyperspectral remote sensing data can be used to identify and characterize materials
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over large spatial extents. Hyperspectral remote sensing is commonly known by its imaging modality
term hyperspectral imaging (HSI) [5] and has prominent applications in fields such as geology [8–10],
agriculture [11–13], forestry [14–16], oceanography [17–19], forensics [20–22], and ecology [23–25].

In HSI, many applications implicitly rely on the assumption that the spatial contribution to the
spectrum from each pixel is uniform across the boundaries defined by the spatial resolution of the
final geocorrected data product. This assumption does not hold for real imaging data [26]. Due to
technological limitations in spectrographic imagers in general, the spatial contribution to each pixel
is non-uniform, extending past the traditionally square spatial boundaries designated by the pixel
resolution. Consequently, the spectrum from each pixel has contributions from the materials within
the spatial boundaries of neighbouring pixels. Practically, this phenomenon is observed as a sensor
induced blurring effect within the imagery [27].

The sensor induced blurring effect of an imaging system can be described by the net point spread
function (PSFnet), or alternatively by its normalized Fourier transform, the modulation transfer function.
Formally, the PSFnet gives the relative response of an imaging system to a point source, characterizing
the spatial contribution to the spectrum from a single pixel. The PSFnet is typically a two-dimensional
function that depends on the position of the point source in the across track and along track directions
within the sensor’s field of view. In most spectrographic imagers, blurring effects are induced by
sensor optics, detectors, motion, and electronics [27,28]. The sensor blurring associated with each of
these components can be modelled independently.

The optical blurring effect occurs as the imaging system spreads the energy from a single point
over a very small area in the focal plane. If the optics of a sensor are only affected by optical diffraction, a
2–D, wavelength-dependent Airy function can be used to describe the point spread function associated
with the optical blurring effect (PSFopt). In practice, this is rarely the case as the optics are often affected
by aberrations and mechanical assembly quality [27]. As a result, a 2–D, wavelength-independent
Gaussian function is commonly used as an approximation to the PSFopt [27]:

PSFopt(x, y) =
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where x and y represent the disposition of the point source from the center of the pixel in the across
track and along track directions while σx and σy represent the standard deviation, controlling the width
of the function in the across track and along track directions, respectively.

The detector blurring is caused by the non-zero spatial area of each detector in the sensor. This
blurring is typically characterized by a uniform rectangular pulse detector point spread function
(PSFdet) with a width equal to the ground instantaneous field of view (GIFOV) [27,28]:
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The motion blurring is caused by the motion of the sensor while the shutter is open and the signal
from each pixel is being integrated over time. For pushbroom sensors, the blurring is observed in the
along track direction (assuming a constant heading) and can be described by a uniform rectangular
pulse motion point spread function (PSFmot) with a width equal to the speed of the sensor (v) multiplied
by the integration time (IT) [27,28]:
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1, if

∣∣∣y∣∣∣ < IT×v
2

1
2 , if

∣∣∣y∣∣∣ = IT×v
2

0, if
∣∣∣y∣∣∣ > IT×v

2

. (3)



Remote Sens. 2020, 12, 641 3 of 27

For whiskbroom sensors, the PSFmot can be modelled by a uniform rectangular pulse with a width
equal to the scan velocity (s) multiplied by IT [28]:

PSFmot(x, y) =


1, if |x| < IT ×s

2
1
2 , if |x| = IT×s

2
0, if |x| > IT×s

2

. (4)

An example of Equations (1–4) is given in Section 2.2.
Practically, the blurring effect of sensor motion and detectors are often characterized simultaneously

as the scan point spread function (PSFscan) [27]:

PSFscan = PSFdet ∗ PSFmot . (5)

The electronic blurring effect occurs in sensors that electronically filter the data to reduce noise.
The electronic filtering operates in the time domain as spectral information is collected during each
integration period. Due to the movement of the aircraft, this time dependency has an equivalent spatial
dependency. As such, the data are blurred due to electronic filtering in accordance with this spatial
dependency. The form of the electronic point spread function (PSFelectronic) is dependent on the nature
of the filter itself [27].

The PSFnet can be written as the convolution of the four independent point spread functions that
describe each of the sensor induced blurring effects [27,28]:

PSFnet(x, y) = PSFopt(x, y) ∗ PSFdet(x, y) ∗ PSFmot(x, y) ∗ PSFelectronic(x, y) . (6)

The dynamics of the PSFnet in many of the popular imaging designs (i.e., pushbroom and
whiskbroom) can be quite distinct between the across track and along track directions [28]. For instance,
the raw pixel resolution of a pushbroom imaging system is typically defined by the full-width at
half-maximum of the PSFmot in the along track and the PSFdet in the across-track. As such, imaging
systems are often characterized by different raw spatial resolutions in the across track and along
track directions.

Traditionally, the PSFopt of a sensor is measured in a controlled laboratory environment. In
the laboratory characterization, the sensor is used to image a well-characterized point source target
to obtain the PSFopt in two dimensions [27]. With the measured PSFopt, the PSFnet of an imaging
system during data acquisition can be approximated with equations (1–6). The PSFnet can also be
measured from operational imagery over manmade objects that represent point sources (e.g., mirrors
and geometric patterns) or targets of opportunity (e.g., bridges and coastlines) [27,29,30].

Generally, HSI system manufacturers have an understanding of the sensor induced blurring
effects that their instruments induce, and the point spread functions that describe them. However,
in some cases, this information is not directly shared with end-users. This is problematic, given the
effects of sensor blurring on HSI data.

Sensor blurring effects attenuate high-frequency components and modify the spatial frequency
structure of HSI data [31]. Given the relationship between frequency content and correlation, sensor
induced blurring effects should theoretically introduce sensor-generated spatial correlations. Hu et al.
(2012) [32], showed that the spatial correlation structure of a clean monochromatic image was modified
after introducing a sensor-generated blurring effect. Based on these results, sensor induced blurring
should also systematically introduce spatial correlations in both satellite and airborne imagery.

The impacts of sensor induced blurring effects have been thoroughly analyzed for spaceborne
multispectral sensors (e.g., [33–35]). Huang et al. (2002) [26] determined that sensor-generated blurring
effects reduce the natural variability of various scenes imaged by satellite spectrographic imagers. The
nature of this effect was found to be dependent on the imaged area, with the most information being
lost from heterogeneous scenes characterized by high levels of spatial variability. Sensor induced
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blurring effects have been found to impede basic remote sensing tasks such as classification [26],
sub-pixel feature detection [35], and spectral unmixing [36]. Furthermore, in [37], the performances
of onboard lossless compression of hyperspectral raw data are analyzed considering the blurring
effects. In the literature, many studies acknowledge the potential for error due to sensor induced
spatial blurring effects (e.g., [38–42]) but do not characterize the implications.

To a lesser degree, sensor induced blurring effects have also been analyzed at the airborne level
for HSI platforms. For example, Schläpfer et al. (2007) [43] rigorously analyzed the implications
of sensor blurring by convolving real-world airborne HSI data collected by the Airborne Visible /

Infrared Imaging Spectrometer (AVIRIS) sensor at high (5 m) and low (28.3 m) spatial resolutions
with numerous point spread functions that varied in full-width at half-maximum. Sensor induced
blurring was found to modify the high spatial resolution imaging data to a greater degree than the low
spatial resolution imaging data. Since the low spatial resolution imagery was on the same scale as
data products collected by satellite sensors, these results suggest that sensor blurring may be more
prominent for airborne sensors due to their high spatial resolution [43]. Although there are reports
that acknowledge the implications of sensor induced blurring at the airborne level, many studies do
not attempt to characterize or mitigate their impact.

Sensor induced blurring effects can be mitigated through means of image deconvolution. However,
it is important to recognize that deconvolution is an ill-posed problem; due to the information loss
associated with sensor blurring, a unique solution is often unobtainable even in the absence of noise [31].
In remote sensing, many deconvolution algorithms have been developed to mitigate the effects of sensor
induced blurring [44–46]. Although these methods are effective, they can be difficult to implement due
to the mathematical complexity of the algorithms and the computational expense. This combination
of factors presents difficulties to end-users of HSI data who may lack the information or expertise to
accurately apply these methods.

The PSFnet of most HSI systems are characterized to some degree by sensor manufacturers. Despite
this, sensor point spread functions are often ignored by end users in favour of parameters such as
ground sampling distance, pixel resolution and geometric accuracy. Although such parameters are
extremely important, they do not accurately describe the spatial contribution to the signal from each
pixel or the sensor blurring caused by the overlap in the field of view between neighbouring pixels.
This could be problematic for many remote sensing applications given the implications of sensor
induced blurring effects.

The objective of this study was to characterize and mitigate sensor-generated blurring effects
in airborne HSI data with simple and intuitive tools, emphasizing the importance of point spread
functions. Two algorithms are presented. The first strategically applies a simple correlation metric,
modifying the traditional spatial autocorrelation function, to observe and quantify spatial correlations.
The second uses a theoretically derived PSFnet to mitigate sensor-generated spatial correlations in HSI
data. The two algorithms were used to characterize and mitigate the implications of sensor induced
blurring on simulated HSI data, before and after introducing realistic sensor blurring. The algorithms
were then applied to real-world HSI data.

2. Materials and Methods

2.1. Airborne HSI Data

Airborne HSI data were acquired on 24 June 2016 aboard a Twin Otter fixed-wing aircraft with
the Compact Airborne Spectrographic Imager 1500 (CASI) (ITRES, Calgary, Canada). The imagery was
collected over two study areas: the Mer Bleue peatland (Latitude: 45.409270◦, Longitude: −75.518675◦)
and the Macdonald-Cartier International Airport (Latitude: 45.325200◦, Longitude: −75.664642◦), near
Ottawa, Ontario, Canada. The CASI acquires data over 288 spectral bands within a 366–1053 nm range.
The CASI is a variable frame rate, grating-based, pushbroom imager with a 39.8◦ field of view across
1498 spatial pixels. The device has a 0.484 mrad instantaneous field of view at nadir with a variable
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f-number aperture that is configurable between 3.5 and 18.0 [47]. Table 1 records the parameters
(heading, speed, altitude, integration time, frame time, time and date) associated with the flight lines.

Table 1. Flight parameters for the hyperspectral data acquired over the Mer Bleue Peatland and the
Macdonald-Cartier International Airport.

Parameter Mer Bleue Peatland Macdonald-Cartier
International Airport

Time (hh:mm:ss GMT) 16:31:15 17:42:05
Date (dd/mm/yyyy) 24/06/2016 24/06/2016

Latitude of Flight Line Centre (DD) 45.399499 45.323259
Longitude of Flight Line Centre (DD) −75.514790 −75.660129

Nominal Heading (◦TN) 338.0 309.5
Nominal Altitude (m) 1142 1118
Nominal Speed (m/s) 41.5 41.6
Integration Time (ms) 48 48

Frame Time (ms) 48 48

The two studied sites are spectrally and spatially distinct. The Mer Bleue peatland is a ~8500
year-old ombrotrophic bog [48] that is recognized as a Wetland of International Importance under
the Ramsar Convention on Wetlands, a Provincially significant Wetland, a Provincially Significant
Life and Earth Science Area of Natural and Scientific Interest, and a Committee for Earth Observation
Satellites Land Product Validation supersite. In the peatland, there are evident micro-spatial patterns
in vegetation that correspond to a hummock-hollow microtopography (Figure 1). A hummock
microtopography is a drier elevated mound with a dense cover of vascular plants while a hollow
microtopography is a lower-laying depression that is wetter and dominated by mosses such as
Sphagnum spp. [49,50]. Adjacent hummocks and hollows can differ in absolute elevation by as
much as 0.30 m and are separated by an approximate horizontal distance of 1–2 m [51–53]. Given
that the overlying vegetation, and their associated reflective properties, covary with the patterns in
microtopography [24,25,54], the Mer Bleue HSI data is likely characterized by a sinusoidal spatial
correlation structure with a period on the scale of 2–4 m. There are very few large high contrast targets
in the Mer Bleue Peatland. Grey and black calibration tarps were laid out and captured in the imagery
to provide high contrast edges. This Mer Bleue site provides a complex natural scene with which to
test the algorithms.
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Figure 1. Unmanned aerial vehicle photograph of the Mer Bleue Peatland in Ottawa, Ontario,
Canada. There are evident micro-spatial patterns in vegetation that correspond to the hummock-hollow
microtopography. A hummock microtopography is a drier elevated mound with a dense cover of
vascular plants while a hollow microtopography is a lower-laying depression that is wetter and
dominated by mosses such as Sphagnum spp. Adjacent hummocks and hollows can differ in absolute
elevation by as much as 0.30 m over a horizontal distance of 1–2 m.

The Macdonald-Cartier airport and the surrounding area is primarily composed of man-made
materials that have defined edges between spectrally homogenous matter such as asphalt and
concrete [47,55]. The area surrounding the Macdonald-Cartier airport contains the Flight Research
Laboratory’s calibration site, which is composed of asphalt and concrete that have been spectrally
monitored over the past decade. This site provides a scene to test the algorithms that are nearly
piece-wise smooth in the spatial domain.

The raw data acquired over the two sites underwent four processing steps. The first three steps
were implemented with proprietary software developed by the sensor manufacturer. The first step
modified the radiometric sensor calibration (traceable to the National Institute of Standards and
Technology) to account for the effects of small, but measurable pressure and temperature-induced
shifts in the spatial-spectral sensor alignment during data acquisition. The second step applied the
modified sensor calibration, converting the raw digital numbers recorded by each spatial pixel and
spectral band of the sensor into units of spectral radiance (uW·cm−2

·sr−1
·nm−1). The third step removed

the laboratory-measured spectral smile by resampling the data from each spatial pixel to a uniform
wavelength array. In the final processing stage, the imaging data were atmospherically corrected with
ATCOR4 (ReSe, Wil, Switzerland), converting the measured radiance to units of surface reflectance
(%) [47]. To preserve the original sensor geometry, the images were not geocorrected.
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2.2. Deriving the Theoretical Point Spread Function for each CASI Pixel

The theoretical PSFnet was calculated separately in the across track and along track directions.
The derivation relied on 2 assumptions: (1) the aircraft was flying at a constant altitude, speed and
heading with 0 roll and pitch; (2) the aircraft flight line was perpendicular to the detector array. With
the sensor properties and the flight parameters of the Mer Bleue imagery (Table 1), the GIFOV of the
CASI was calculated to be 0.55 m in both the along track and the across track directions. The PSFopt

was derived from a Gaussian function with a full-width at half-maximum of 1.1 detector array pixels
(value provided by sensor manufacturer) in both the across track and along track directions. The
PSFnet in the across track direction was derived by convolving the PSFopt with the PSFdet, which was a
rectangular pulse function with a width equal to the GIFOV (Figure 2A). The PSFnet in the along track
direction was calculated based on the same optical and detector point spread function as in the across
track direction. The PSFmot in the along track was approximated by a rectangular pulse function with a
width equal to the along track pixel spacing or, equivalently, the nominal ground speed of the sensor
(41.5 m/s) multiplied by the integration time (48 ms) for each line. No electronic filters were applied to
the CASI data during data acquisition and thus the dynamics of the PSFelectronic were not considered.
The PSFnet in the along track was calculated by convolving the detector, optical, and motion point
spread functions (Figure 2B). The total PSFnet was derived by multiplying the PSFnet in the across track
and along track directions (Figure 3). Based on this derivation, the pixel resolution of the CASI imagery
was approximately 0.55 m and 1.99 m in the across track and along track directions, respectively.
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Figure 2. The relative spatial contribution to a single Compact Airborne Spectrographic Imager 1500
(CASI) image pixel as a function of across track (plot A) and along track (plot B) displacement from the
center of the pixel. The optical, detector, motion, and net point spread function (PSF) are displayed
separately. The width of the detector point spread function represents the raw spatial resolution in the
across track direction. The width of the motion point spread function represents the raw spatial pixel
resolution in the along track direction. A substantial portion of the net PSF lies outside the traditional
pixel boundaries defined by the raw resolution of 0.55 m in the across track direction. As such, the
spectrum from each pixel has sizeable contributions from the materials within the spatial boundaries of
neighbouring pixels in the across-track. A substantial portion of the net PSF lies outside the traditional
pixel boundaries defined by the raw resolution of 1.99 m in the along track direction as well. These
contributions are not as significant as they are in the across-track, however, there are still notable
contributions from materials within the spatial boundaries of neighbouring along track pixels.
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Figure 3. The relative spatial contribution to a single Compact Airborne Spectrographic Imager 1500
(CASI) image pixel as a function of across track and along track displacement from the center of the
pixel. The grid in the x–y plane corresponds with the actual pixel sizes (0.55 m in the across track
direction and 1.99 m in the along track direction). As such, each square within the grid corresponds to
the traditional spatial boundary of a single pixel. Most of the signal originates from materials within
the spatial boundary of the center pixel. It is important to note that there is a substantial contribution
from materials within the spatial boundaries of neighbouring pixels.

2.3. Simulated HSI Data

To investigate the implication of sensor induced blurring, the study simulated two hyperspectral
images at the same approximate spatial resolution of the Mer Bleue CASI dataset (0.55 m in the across
track and 1.99 m in the along track). The two artificial images were only distinguished by the simulated
sensor blurring. The first image (referred to as the ideal image) represented an ideal scenario where
the PSFnet was uniform across the spatial boundaries of each pixel. The PSFnet of the second image
(referred to as the non-ideal image) was modelled after the derived spatial response of the CASI.

Both datasets were derived from an image that was designed to represent a vegetation plot within
the Mer Bleue Peatland at a spatial resolution 50 times finer than that of the real-world CASI data. The
value for each spectral band and spatial pixel in the high spatial resolution imagery was randomly
generated from a normal distribution. The mean and standard deviation of the normal distribution for
each band were derived from the basic statistics of a 3660–pixel vegetation region of interest (Figure 4)
from the original Mer Bleu CASI imagery. All the pixels within the region of interest were examined
to ensure that vegetation was not contaminated by any man-made structures or objects. The mean
value of each spectral band from the vegetation region of interest in the Mer Bleue CASI imagery was
used as the mean value of the normal distribution for each band. Due to the change in scale between
the pixels within the high spatial resolution imagery and the real-world CASI imagery, the calculated
standard deviation needed to be scaled up by a factor of 50 before it could be used as the standard
deviation in the normal distribution.
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Figure 4. The vegetation region of interest selected from the Mer Bleue Peatland. The region of interest
is characterized by a hummock-hollow microtopography that corresponds to small scale patterns
(2–4 m) in surface vegetation and surface reflectance. Hummocks are elevated mounds of dense
vascular cover while hollows are the lower-lying areas composed primarily of Sphagnum spp. mosses.
The orthophoto (0.2 m spatial resolution) was collected for the National Capital Commission of Canada
(Source: Ottawa Orthophotos, 2011).

To simulate the ideal and non-ideal images from the generated high spatial resolution imagery,
the derived PSFnet function (Section 2.2 of the Methodology) was convolved with the high spatial
resolution imagery and spatially resampled to the native resolution of the CASI imagery using a
nearest-neighbour resampling approach. The nearest neighbour resampling approach was equivalent
to directly downsampling the convolved data by a factor of 50 to the native resolution of the CASI
imagery. Given the described simulation process, 100% of the information content was known for
both the ideal and non-ideal datasets and the environment that they represented. The mean and
standard deviation for each spectral band within the two simulated images were calculated to assess
the implication of sensor induced blurring effects on the global statistics of the simulated HSI data.
When comparing the mean of the spectra from two different images, a t-test with unequal variances
was applied separately for each spectral band. The mean spectra from the two compared images at a
particular band were deemed significantly different if the p-value was less than 0.05. When comparing
the standard deviation (and, in extension, variance) in the spectra from two different images, an F-test
for equal variances was applied separately for each spectral band. The standard deviation in the
spectra from the compared images at a particular band were deemed significantly different if the
p-value was less than 0.05.

2.4. Visualizing and Quantifying Spatial Correlations

For an ideal sensor, the spatial correlations within HSI data are piece-wise smooth, meaning
that neighbouring pixels are highly correlated [5]. This correlation structure can be leveraged to
quantify sensor-generated spatial correlations with a correlation metric. The Pearson product-moment
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correlation coefficient (CC) has been shown as a strong tool in the analysis of HSI data [56]. The CC
is a measure of linear association between two variables. It is formally given [57] by the following
equation:

CC =

∑(
Ai −A

)(
Bi − B

)
√∑(

Ai −A
)2 ∑(

Bi − B
)2

, (7)

where Ai, Bi, A, B represent the two variables of interest and their means, respectively.
The CC was implemented to characterize the spatial structure of correlations in the HSI data. In

particular, the correlation coefficient was calculated between the spectra of adjacent pixels in both the
across track and along track directions. This process was repeated for distant neighbors. The calculated
correlation coefficients were grouped by pixel displacement separately in the across track and along
track. The mean and standard deviation of each group was calculated to quantify the strength and
variability of the spatial correlations within each image as a function of pixel displacement. This
algorithm fundamentally represents the horizontal and vertical cross-section of an autocorrelation
function with characterized variability.

2.5. Mitigating Sensor Generated Spatial Correlations Using the PSFnet

A simple deconvolution algorithm was developed to mitigate sensor-generated blurring effects
in HSI data. The approach utilizes the theoretically derived PSFnet to mitigate contributions from
the materials within the spatial boundaries of neighbouring pixels. Let S0,0 represent the reflectance
spectrum of any given pixel in an ungeocorrected HSI dataset that is contaminated by sensor-generated
blurring effects. Let Si,j represent the spectrum from the pixel displaced by i rows and j columns
from the pixel of interest. Let ai,j represent the weighted contribution of Si,j to S0,0, as calculated
by integrating the PSFnet over the spatial boundaries of the pixel from which Si,j originated. By
removing the relative contribution of all neighbouring pixels from S0,0, it is possible to generate a new
approximation, Ŝ0,0, in which sensor-generated blurring effects have been mitigated:

Ŝ0,0 =
S0,0 −

∑
i∈Z/i,0

∑
j∈Z/ j,0 ai, jSi, j

a0,0
(8)

The algorithm assumes sub-pixel materials are homogenous. Furthermore, neighbouring pixels
are assumed to be unaffected by sensor blurring effects. Similar assumptions have been made in other
deconvolution studies (e.g., [26,58]). Although these assumptions may not be realistic for real-world
spectral imagery, they are reasonable to simplify the system as the spatial variability within each pixel
is often non-constant and unknown.

2.6. Algorithm Application to Simulated HSI Data

The developed algorithms were applied to the simulated datasets. In particular, the spatial
correlation structure of the two simulated images were characterized by the CC based algorithm. The
algorithm was assessed based on its ability to detect discrepancies in the spatial correlation structure.
The deconvolution algorithm was implemented by applying Equation (8) to the simulated dataset
with a non-ideal PSFnet. The deconvolved dataset was referred to as the corrected non-ideal image.
The deconvolution algorithm was assessed based on its ability to recover the global statistics of the
ideal imagery from the non-ideal imagery. The deconvolution algorithm was also evaluated based
on its ability to restore the spatial correlation structure observed in the ideal image by the CC based
algorithm. The study used the same statistical tests as in Section 2.3 (t-test with unequal variances and
f-test for equal variances) when comparing the mean and standard deviation of the spectra between
the two images within the vegetation region of interest. To ensure that the observed trends in global
statistics were actually linked to a decrease of difference between the ideal and non-ideal image after
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the application of the deconvolution algorithm, Euclidean distance was calculated on a pixel-by-pixel
basis between the ideal imagery and both the non-ideal and corrected non-ideal images.

2.7. Algorithm Application to Real-World HSI Data

The developed algorithms were applied to the collected HSI data at the Mer Bleue peatland
and the calibration site at the airport with a primary focus on the deconvolution algorithm. Image
sharpness was assessed by calculating the slope of a horizonal profile across image structures with
sharp edges that separated two materials with distinct spectral signatures. In the Mer Bleue image, the
edge of the grey calibration tarp was analyzed. In the airport imagery, the edge along the border of a
concrete-asphalt transition was used. The CC based algorithm was then applied to vegetation within
the Mer Bleue image to assess the correlation structure of the images before and after the application
of the deconvolution algorithm. The mean and standard deviation in each spectral band of the Mer
Bleue imagery within the vegetation region of interest was calculated before and after the application
of the deconvolution algorithm. The study used the same statistical tests as in Section 2.3 (t-test with
unequal variances and f-test for equal variances) when comparing the mean and standard deviation of
the spectra between the two images within the vegetation region of interest.

3. Results

3.1. Theoretical Point Spread Function for Each CASI Pixel

The total PSFnet was Gaussian in nature, with a maximum value at the origin, dropping off rapidly
to approximately zero past a distance of 2 m (~1 pixel) in the along track and 1 m in the across track
(~2 pixels) directions. Figure 5 displays the relative contribution to the spectrum from a single pixel.
Only 55.5% of the signal from each pixel originated from the materials within its spatial boundaries.
Neighbouring contributions in the across track were larger than in the along track.
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Figure 5. The spatial contribution to the spectrum of the center Compact Airborne Spectrographic
Imager 1500 (CASI) pixel from materials within the boundaries of neighbouring pixels. The red square
represents the spatial boundaries of the center pixel, as determined by the raw pixel resolution. The
black squares represent the spatial boundaries of neighbouring pixels. Only 55.5% of the spectral signal
originates from materials within the spatial boundaries of the center pixel. The remaining 44.5% of
the signal comes from the materials within the spatial boundaries of the neighbouring pixels. The
underlying scene in the figure is a photograph of the Mer Bleue Peatland collected from an unmanned
aerial vehicle.

3.2. Simulated HSI Data

Panels A and B in Figure 6 display the ideal and non-ideal simulated hyperspectral images,
respectively. The mean and standard deviation of each spectral band from the ideal and non-ideal
images are shown in Figure 7. The mean values for each spectral band between the two simulated
datasets were not significantly different (two-sample t-test with unequal variances applied separately
for each spectral band; p-values > 0.792). In fact, the mean spectra were essentially identical, with an
extremely small root-mean-square deviation (0.004%) relative to the range of the data (28.2%). The
variances between the two simulated datasets for each spectral band were significantly different (F-test
for equal variances applied separately for each spectral band; p-values < 1.29E–26). The standard
deviation in each spectral band of the non-ideal simulated dataset were 31.1%–38.9% smaller when
compared to the ideal imagery.
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the non-ideal imagery after using the developed deconvolution algorithm (referred to as the 

corrected non-ideal image). The corrected non-ideal image can be seen in panel C of Figure 6. In the 

ideal simulated imagery, the mean of each group was relatively constant at a value of ~0.982 for all 

pixel displacements in both the across track and along track directions. Similarly, the standard 

deviation around the mean was also constant at a value of ~0.002. For pixel displacements >1, the 

mean and standard deviation of each CC group in the non-ideal imagery was relatively constant at a 

value of 0.992 and 0.001, respectively. This trend held for both the across track and along track 

Figure 6. Simulated hyperspectral imaging data representative of the Mer Bleue Peatland. The images
are displayed in true colour (Red = 639.5 nm ± 1.2, Green = 551.0 nm ± 1.2, Blue = 460.1 nm ± 1.2). In
the display, all three bands are linearly stretched between 0% and 12%. (A) The ideal simulated image
that was derived with a uniform point spread function. (B) The non-ideal simulated image that was
derived with the Compact Airborne Spectrographic Imager 1500 (CASI) point spread function. (C)
The corrected non-ideal simulated image that was derived by applying the developed deconvolution
algorithm to the non-ideal simulated image. All images were simulated at the same spatial resolution
as the real-world CASI imagery (across track = 0.55 m, along track = 1.99 m). The simulated datasets
were used to characterize the implications of sensor-generated spatial correlations while testing the
developed algorithms.

Remote Sens. 2020, 12, x FOR PEER REVIEW 13 of 28 

 

(A) (B) (C) 
 

 

Figure 6. Simulated hyperspectral imaging data representative of the Mer Bleue Peatland. The images 

are displayed in true colour (Red = 639.5 nm ± 1.2, Green = 551.0 nm ± 1.2, Blue = 460.1 nm ± 1.2). In 

the display, all three bands are linearly stretched between 0% and 12%. (A) The ideal simulated image 

that was derived with a uniform point spread function. (B) The non-ideal simulated image that was 

derived with the Compact Airborne Spectrographic Imager 1500 (CASI) point spread function. (C) 

The corrected non-ideal simulated image that was derived by applying the developed deconvolution 

algorithm to the non-ideal simulated image. All images were simulated at the same spatial resolution 

as the real-world CASI imagery (across track = 0.55 m, along track = 1.99 m). The simulated datasets 

were used to characterize the implications of sensor-generated spatial correlations while testing the 

developed algorithms. 

(A) (B) 

  

Figure 7. The mean (plot A) and standard deviation (plot B) for each spectral band of the ideal 

(uniform point spread function) and non-ideal (Compact Airborne Spectrographic Imager 1500 point 

spread function) simulated images. There were no observable differences in the mean spectrum from 

each image. The attenuation in standard deviation suggests that sensor blurring eliminated some of 

the natural variability observed in the ideal image. This is problematic given the importance of 

second-order statistics in the analysis of high dimensional data. 

3.3. Algorithm Application to Simulated HSI Data 

The results of the CC based method when applied to the ideal and non-ideal imagery are 

displayed in Figure 8. The figures also display the results of the CC based method when applied to 

the non-ideal imagery after using the developed deconvolution algorithm (referred to as the 

corrected non-ideal image). The corrected non-ideal image can be seen in panel C of Figure 6. In the 

ideal simulated imagery, the mean of each group was relatively constant at a value of ~0.982 for all 

pixel displacements in both the across track and along track directions. Similarly, the standard 

deviation around the mean was also constant at a value of ~0.002. For pixel displacements >1, the 

mean and standard deviation of each CC group in the non-ideal imagery was relatively constant at a 

value of 0.992 and 0.001, respectively. This trend held for both the across track and along track 

Figure 7. The mean (plot A) and standard deviation (plot B) for each spectral band of the ideal
(uniform point spread function) and non-ideal (Compact Airborne Spectrographic Imager 1500 point
spread function) simulated images. There were no observable differences in the mean spectrum from
each image. The attenuation in standard deviation suggests that sensor blurring eliminated some
of the natural variability observed in the ideal image. This is problematic given the importance of
second-order statistics in the analysis of high dimensional data.

3.3. Algorithm Application to Simulated HSI Data

The results of the CC based method when applied to the ideal and non-ideal imagery are displayed
in Figure 8. The figures also display the results of the CC based method when applied to the non-ideal
imagery after using the developed deconvolution algorithm (referred to as the corrected non-ideal
image). The corrected non-ideal image can be seen in panel C of Figure 6. In the ideal simulated
imagery, the mean of each group was relatively constant at a value of ~0.982 for all pixel displacements
in both the across track and along track directions. Similarly, the standard deviation around the
mean was also constant at a value of ~0.002. For pixel displacements >1, the mean and standard
deviation of each CC group in the non-ideal imagery was relatively constant at a value of 0.992 and
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0.001, respectively. This trend held for both the across track and along track directions. For a pixel
displacement value of 1, the mean CC was relatively large, at a value of 0.996 and 0.993 in the across
track and along track directions, respectively. The corresponding standard deviations around these
mean values were relatively small, at 0.0006 and 0.0008. The standard deviation in the calculated CCs
for the non-ideal simulated dataset were 54.0%–75.4% smaller when compared to the ideal imagery.

The mean CC for each group in the corrected non-ideal image were similar in magnitude to the
ideal image. For the corrected image in the along track direction, the mean and standard deviation
of each CC group was relatively constant at values of 0.981 and 0.002, respectively. This trend held
for pixel displacements > 2 in the across-track. The mean CC for pixels displaced by 1 in the across
track direction was relatively large (0.984). The opposite trend was observed for pixel displacements
of 2 in the across-track, with a mean value of 0.978 and a standard deviation of 0.003. The standard
deviation in the CCs of the corrected non-ideal image were within 23.3% of the values calculated for
the ideal image.

The mean and standard deviation of each spectral band in the corrected non-ideal image were
almost identical to those of the ideal image; there was no significant difference in the mean (two-sample
t-test with unequal variances applied separately for each spectral band; p-values > 0.825) or variance
(F-test for equal variances applied separately for each spectral band; p-values > 0.056). The mean
spectra were essentially identical, with an extremely small root-mean-square deviation (0.004%) relative
to the range of the data (28.2%). Similarly, the variability in each spectral band of the ideal and corrected
non-ideal images were essentially identical, given the small root-mean-square deviation (0.03%) in
the standard deviation relative to the range in the data (2.4%) (Figure 9). The standard deviations
in each spectral band of the corrected non-ideal image were within 6.8% of the values calculated for
the ideal image. The Euclidean distance (in units of reflectance) between the ideal imagery and both
the non-ideal and corrected non-ideal images are displayed in Figure 10A,B, respectively. After the
application of the deconvolution algorithm, the Euclidean distance between the ideal and non-ideal
imagery decreased by an average of 1.91%.Remote Sens. 2020, 12, x FOR PEER REVIEW 15 of 28 

 

(A) (B) 

  

Figure 8. The mean correlation coefficient as a function of pixel displacement in the across track (plot 

A) and along track (plot B) directions of the ideal (uniform point spread function), non-ideal (Compact 

Airborne Spectrographic Imager 1500 point spread function), and corrected non-ideal simulated 

images. The bars around each mean give the 1-sigma window. The mean and standard deviation 

quantified the strength and variability of the spatial correlations present within each image. The 

corrected non-ideal image was generated by applying the developed deconvolution algorithm. In the 

ideal image, there was no spatial correlation structure. The Compact Airborne Spectrographic Imager 

1500 point spread function used to simulate the non-ideal image, and the associated image blurring, 

introduced a spatial correlation structure. The spatial correlation structure of the ideal image was 

recovered from the non-ideal image using the developed deconvolution algorithm. 

 

Figure 9. The standard deviation in each spectral band of the ideal (uniform point spread function), 

non-ideal (Compact Airborne Spectrographic Imager 1500 point spread function), and corrected non-

ideal image. The corrected non-ideal image was generated by applying the developed deconvolution 

algorithm. The attenuation in the standard deviation of the non-ideal image suggests that sensor 

blurring eliminated some of the natural variability observed in the ideal image. The natural variability 

Figure 8. The mean correlation coefficient as a function of pixel displacement in the across track (plot
A) and along track (plot B) directions of the ideal (uniform point spread function), non-ideal (Compact
Airborne Spectrographic Imager 1500 point spread function), and corrected non-ideal simulated images.
The bars around each mean give the 1-sigma window. The mean and standard deviation quantified the
strength and variability of the spatial correlations present within each image. The corrected non-ideal
image was generated by applying the developed deconvolution algorithm. In the ideal image, there
was no spatial correlation structure. The Compact Airborne Spectrographic Imager 1500 point spread
function used to simulate the non-ideal image, and the associated image blurring, introduced a spatial
correlation structure. The spatial correlation structure of the ideal image was recovered from the
non-ideal image using the developed deconvolution algorithm.
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Figure 9. The standard deviation in each spectral band of the ideal (uniform point spread
function), non-ideal (Compact Airborne Spectrographic Imager 1500 point spread function), and
corrected non-ideal image. The corrected non-ideal image was generated by applying the developed
deconvolution algorithm. The attenuation in the standard deviation of the non-ideal image suggests
that sensor blurring eliminated some of the natural variability observed in the ideal image. The natural
variability in each spectral band of the ideal image was restored from the non-ideal image by applying
the deconvolution algorithm.
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Figure 10. The Euclidean distance (in units of reflectance) between the ideal imagery and both the
non-ideal (plot A) and corrected non-ideal (plot B) images. The grayscale display is linearly stretched
between 10% and 20%. After the application of the deconvolution algorithm, the Euclidean distance
between the ideal and non-ideal imagery decreased by an average of 1.91%.

3.4. Algorithm Application to Real-World HSI Data

After applying the deconvolution algorithm to the HSI data, both images were qualitatively
sharper (Figures 11 and 12). The spectrum from the 7 adjacent across track pixels for each of the studied
edges in the Mer Bleue and Airport imagery were displayed in Figure 13. Pixel 4 was the closest to the
studied edge. The pixel number represents the order of each adjacent pixel in the across track direction.
In plots A and B, pixels 1–3 represented spectra from the calibration tarp while pixels 5–7 represented
spectra from vegetation at the Mer Bleue Peatland. In plots C and D, pixels 1–3 represented spectra
from the concrete while pixels 5–7 represented spectra from asphalt from the airport. Plots A and C are
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from the original imagery, while plots B and D are from the deconvolved imagery. In both the Mer
Bleue and Airport imagery, the spectra from pixels 3 and 5 were closer to the spectra of their respective
materials after the application of the deconvolution algorithm. In particular, the spectrum from pixel 5
dropped in magnitude, aligning with that of pixels 6 and 7 in both sets of imagery. Quantitatively,
the deconvolution algorithm increased the maximum change in reflectance per pixel across the two
studied edges by a relatively constant factor of 1.4 (Figure 14).Remote Sens. 2020, 12, x FOR PEER REVIEW 17 of 28 
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Figure 11. Hyperspectral imaging data over the Mer Bleue Peatland before and after the application of
the deconvolution algorithm. The images are displayed in true colour (Red = 639.5 nm ± 1.2 Green =

551.0 nm ± 1.2, Blue = 460.1 nm ± 1.2). In the display, all three bands are linearly stretched between 0%
and 12%. Panels (A) and (C) display the original imagery. Panels (B) and (D) represent the same two
scenes after the deconvolution algorithm was applied. Both images were qualitatively sharpened by
the deconvolution algorithm.
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Figure 12. Hyperspectral imaging data over the Macdonald-Cartier International Airport (Ottawa,
Ontario, Canada) before and after the application of the developed deconvolution algorithm. The
images are displayed in true colour (Red = 639.5 nm ± 1.2, Green = 551.0 nm ± 1.196, Blue = 460.1 nm
± 1.2). In the display, all three bands are linearly stretched between 0% and 40%. Panels (A) and (C)
display the original imagery. Panels (B) and (D) represent the same two scenes after the deconvolution
algorithm was applied. Both images were qualitatively sharpened by the deconvolution algorithm.



Remote Sens. 2020, 12, 641 18 of 27

Remote Sens. 2020, 12, x FOR PEER REVIEW 19 of 28 

 

(A) (B) 

  
(C) (D) 

  

Figure 13. (A–B) The 7 adjacent across track pixels to the edge of the calibration tarp in the Mer Bleue 

imagery before (plot A) and after (plot B) the deconvolution algorithm was applied. Pixel 4 was the 

closest to the studied edge. The pixel number represents the order of each adjacent pixel in the across 

track direction. Pixels 1–3 represented spectra from the calibration tarp while pixels 5–7 represented 

spectra from vegetation. (C–D) The 7 adjacent across track pixels to the edge of the concrete-asphalt 

transition at the calibration site within the airport imagery before (plot C) and after (plot D) the 

deconvolution algorithm was applied. Pixel 4 was the closest to the studied edge. Pixels 1–3 

represented spectra from the concrete while pixels 5–7 represented spectra from asphalt. In both the 

Mer Bleue and Airport imagery, the spectra from pixels 3 and 5 were closer to the spectra of their 

respective materials after the application of the deconvolution algorithm. In particular, spectra from 

pixel 5 dropped in magnitude, aligning with that of pixels 6 and 7 in both sets of imagery. This 

suggests that the algorithm mitigated influences from neighbouring pixel materials. 

  

Figure 13. (A–B) The 7 adjacent across track pixels to the edge of the calibration tarp in the Mer
Bleue imagery before (plot A) and after (plot B) the deconvolution algorithm was applied. Pixel 4
was the closest to the studied edge. The pixel number represents the order of each adjacent pixel
in the across track direction. Pixels 1–3 represented spectra from the calibration tarp while pixels
5–7 represented spectra from vegetation. (C–D) The 7 adjacent across track pixels to the edge of the
concrete-asphalt transition at the calibration site within the airport imagery before (plot C) and after
(plot D) the deconvolution algorithm was applied. Pixel 4 was the closest to the studied edge. Pixels
1–3 represented spectra from the concrete while pixels 5–7 represented spectra from asphalt. In both
the Mer Bleue and Airport imagery, the spectra from pixels 3 and 5 were closer to the spectra of their
respective materials after the application of the deconvolution algorithm. In particular, spectra from
pixel 5 dropped in magnitude, aligning with that of pixels 6 and 7 in both sets of imagery. This suggests
that the algorithm mitigated influences from neighbouring pixel materials.
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Figure 15. The mean correlation coefficient as a function of pixel displacement in the across track (plot 

A) and along track (plot B) direction of the vegetation region of interest from the Mer Bleue CASI 

imagery. The bars around each mean give the 1-sigma window. The mean and standard deviation 

quantified the strength and variability of the spatial correlations present within each image. The 

corrected image was generated by applying the developed deconvolution algorithm to the real-world 

Mer Bleue Compact Airborne Spectrographic Imager 1500 (CASI) data. In general, the deconvolution 

algorithm decreased the observed spatial correlations while increasing spatial variability. After 

applying the developed deconvolution algorithm, the micro-spatial patterns of vegetation could be 

Figure 14. (A) The maximum change in reflectance per pixel across the edge of the calibration tarp in
the Mer Bleue imagery. (B) The maximum change in reflectance per pixel across the edge along the
border of the concrete-asphalt transition at the calibration site within the airport imagery. The larger the
number, the sharper the change from the two materials that defined the edge. The corrected image was
generated by applying the developed deconvolution algorithm to the real-world Compact Airborne
Spectrographic Imager 1500 (CASI) data. The corrected imagery was sharper than the original imagery.
The imagery was sharpened by the developed deconvolution algorithm.

When applying the CC based algorithm to the vegetation region of interest from the CASI data,
there were several differences in the correlation structure between the imagery before and after
the application of the deconvolution algorithm (Figure 15). Most notably, the algorithm decreased
correlation levels in both the across track and along track directions from 0.998 to 0.994 while increasing
the standard deviation in the system approximately by a factor of 3. In the along track direction, spatial
correlations decreased marginally along with pixel displacement. This trend held in the across-track,
however, there was also a sinusoidal trend that repeated every four pixels (~2 m). This sinusoidal
feature dampened by a pixel displacement of 5 in the original imagery. In the corrected imagery, this
sinusoidal structure was far more prominent, dampening at a pixel displacement of 12.
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Figure 15. The mean correlation coefficient as a function of pixel displacement in the across track (plot A)
and along track (plot B) direction of the vegetation region of interest from the Mer Bleue CASI imagery.
The bars around each mean give the 1-sigma window. The mean and standard deviation quantified the
strength and variability of the spatial correlations present within each image. The corrected image was
generated by applying the developed deconvolution algorithm to the real-world Mer Bleue Compact
Airborne Spectrographic Imager 1500 (CASI) data. In general, the deconvolution algorithm decreased
the observed spatial correlations while increasing spatial variability. After applying the developed
deconvolution algorithm, the micro-spatial patterns of vegetation could be observed more clearly in the
across track direction. The micro-spatial patterns of vegetation could not be observed in the along track.
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The mean and standard deviation of the vegetation plot in the original and corrected imagery is
displayed in Figure 16. The mean values for each spectral band between the original and corrected
image within the vegetation pixels were not significantly different (two-sample t-test with unequal
variances applied separately for each spectral band; p-values > 0.855). The mean spectra were
essentially identical, with an extremely small root-mean-square deviation (<0.0035%) relative to the
range of the data (31.2%). The variances between the two simulated datasets for each spectral band
were significantly different (F-test for equal variances applied separately for each spectral band;
p-values < 6.143E–37).
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Figure 16. The mean (plot A) and standard deviation (plot B) of the vegetation region of interest from
the Mer Bleue imagery. The corrected image was generated by applying the developed deconvolution
algorithm to the real-world Mer Bleue Compact Airborne Spectrographic Imager 1500 (CASI) data.
The standard deviation valued measured the variability in each spectral band. Although there was no
difference in the mean, the standard deviation increased after applying the deconvolution algorithm.
This increase likely occurred as the deconvolution reintroduced some of the lost natural variations in
each spectral band.

4. Discussion

The objective of this study was to characterize and mitigate sensor-generated blurring effects
in airborne HSI data with simple and intuitive tools, emphasizing the importance of point spread
functions. By studying the derived CASI PSFnet it was possible to understand the potential implications
of sensor induced blurring effects in general.

The CASI PSFnet was roughly Gaussian in shape, extending two pixels in the across track and one
pixel in the along track before reaching a value of approximately zero. The spread of this function meant
that approximately 45% of the signal in the spectrum from each CASI pixel originated from materials
within the spatial boundaries of neighboring pixels (Figure 5). Although these values may seem quite
large, it is important to recognize that they are not unreasonable for all imaging spectrometers. For
instance, based on the 2D Gaussian PSFnet (full-width at half-maximum of 28 m in the across track and
32 m in the along track [33]) for each Landsat 8 Operational Land Imager pixel (bands 1–7), only 55.5%
of the signal originates from materials within the spatial boundaries of each pixel. This value is almost
identical to that of the CASI.

With the ideal (perfectly uniform PSFnet over pixel boundaries) and non-ideal (CASI PSFnet)
simulated images, the effects of sensor induced blurring could be quantified. From the basic
second-order image statistics, sensor induced blurring reduced the spectral variability, as measured
by the standard deviation, in the simulated scene by 31.1%–38.9% for all spectral bands. Given the
importance of second-order statistics in the analysis of high dimensional data [59], the change in
standard deviation exemplifies the information loss associated with sensor blurring. The CC based
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method further investigated this loss of information, while verifying the detective and corrective
capabilities of the developed algorithms.

The CASI PSFnet modified the spatial correlation structure of the image. In particular, spatial
correlations substantially increased for closely neighbouring pixels displaced by 2 in the across track
and 1 in the along track. These results directly reflect the structure of the CASI PSFnet. Although the
PSFnet did not extend spatially more than 2 pixels, spatial correlations were saturated for all pixel
displacements. These saturated correlations showcase that local sensor blurring can have global
impacts on HSI data.

The standard deviation in the calculated CCs indicated that sensor induced blurring attenuated
the natural spatial variability in the image. Once again, this trend held on a global scale but was
more prominent locally. In fact, sensor induced blurring reduced the variability, as measured by the
standard deviation, in the spatial correlation structure of the imaged scene by 54.0%–75.4% for all pixel
displacements. As expected, these findings suggest that sensor generated spatial correlations act to
mask and distort the spatial dynamics of the imaged scene while removing natural variations.

It is important to note that, despite only observing deviations in the CCs from the 3rd–4th decimal
places, the CC based method was still sensitive to the simulated blurring effects, especially the saturated
correlations and the asymmetry between the across track and along track spatial correlations. With this
in mind, the CC based algorithm can be applied to assess the effectiveness of deconvolution algorithms
that attempt to mitigate sensor-generated spatial correlations. This was exemplified by the developed
deconvolution algorithm.

When applied to the non-ideal dataset, the deconvolution algorithm brought the spectral variability,
as measured by the standard deviation, within 6.8% of the spectral variability in the ideal image. In fact,
there was no significant difference in the spectral variance between the ideal and corrected non-ideal
datasets. This finding suggests that the deconvolution algorithm recovered some of the information
that was attenuated by sensor blurring. A closer examination of the algorithm’s performance with the
CC based method revealed similar conclusions.

In the corrected non-ideal image, the standard deviation values around the calculated mean CCs
were relatively constant, similar in magnitude to those observed in the ideal simulated image. In
fact, the spatial structure in the along track of the ideal image was almost completely recovered from
the non-ideal image. A similar statement can be made in the across track for pixel displacements >

2. Although the algorithm decreased the mean CC for neighbouring pixels separated by < 3 in the
across-track, it did not completely restore the spatial structure. At a pixel displacement of 1, there were
still elevated correlation levels. In addition, the algorithm introduced an artificial decorrelation at a
pixel displacement of 2 in the across-track. This decorrelation was a consequence of the pure pixel
assumption. Although these artifacts may be problematic for some applications, it is important to
recognize that deconvolution is an ill-posed problem; information will always be lost in a blurred image
and thus it is impossible to perfectly eliminate sensor blurring effects, especially at the attenuated high
frequencies [31]. In fact, many algorithms suffer from difficulties in restoring high-frequency spatial
structures in HSI data [45]. Despite introducing this decorrelation, the equalized spatial correlation
levels revealed that the algorithm restored the spatial structure of the dataset to some degree. A similar
conclusion could be drawn from the standard deviation of the calculated CC values. The deconvolution
algorithm brought the variability in the spatial correlation structure of the non-ideal imagery within
23.3% of the spatial variability in the ideal imagery.

To ensure that the increase of spatial and spectral variability was linked to a decrease of difference
between the ideal and non-ideal simulated images, Euclidean distance metrics were calculated. As
shown in Figure 10, the Euclidean distance between the ideal and non-ideal imagery decreased by an
average of 1.91% after the application of the deconvolution algorithm. Along with these findings, the
increased spectral and spatial variability continue to suggest that the simple deconvolution algorithm
is restoring some of the information that was lost to sensor blurring.
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To assess the deconvolution algorithm further, it was applied to real-world HSI data. When
applied to both real-world HSI datasets, there was a qualitative increase in image sharpness (Figures 11
and 12). In the airport imagery, this was evident from the abundant high contrast edges produced by
man-made structures like roads, buildings, cars, and parking lots. Although there were fewer high
contrast materials in the Mer Bleue imagery, the calibration tarps and tree crowns clearly showcased the
sharpening effect of the deconvolution algorithm. These observations were supported quantitatively
by analyzing the edge of a calibration tarp in the Mer Bleue imagery and the edges of the calibration
site in the airport imagery. In Figure 13, the spectra of the adjacent 7 pixels to each of the studied
edges were displayed. In both the Mer Bleue and Airport imagery, the spectra from the pixels
immediately neighbouring the edge pixel were closer to the spectra of their respective materials after
the application of the deconvolution algorithm, indicating that the imagery had been sharpened. This
finding was supported by Figure 14, where the horizontal profile across the two edges increased in
slope (an in extension image sharpness) by an approximate factor of 1.4 after the application of the
deconvolution algorithm.

To showcase an application of the developed algorithms, the CC based method was applied to
the vegetation region of interest (Figure 4) in the Mer Bleue image to analyze the spatial correlation
structure of the plot before and after the deconvolution was applied. In the original imagery, spatial
correlations decreased marginally over space in both the across track and along track. This decrease
likely corresponded with changes in the peatland over large spatial scales. With a priori knowledge of
the micro spatial patterns in the vegetation and surface elevation (Figure 1) [24,49,50,54], it was possible
to observe a subtle sinusoidal structure in the correlation plots that repeated every 4 pixels (2 m) in
the across-track. The period of this sinusoidal structure agreed with the spatial scale of the patterns
in surface vegetation and microtopography (2–4m) [51–53]. These trends were not apparent in the
along track. However, this was to be expected based on the Nyquist sampling theorem; the sampling
frequency in the along track direction (0.5 cycles per m) was less than the frequency of the patterns in
surface vegetation and microtopography (0.25–0.5 cycles per m) multiplied by 2 and thus undetectable.
After applying the deconvolution algorithm, there was an overall decrease in the spatial correlations.
The simulation results suggested that this decrease was due to the attenuation of sensor induced
correlations. The sinusoidal structure in the across track was more prominent after the deconvolution
algorithm was applied. These results suggest that the deconvolution algorithm highlighted the patterns
in microtopography and, in extension, vegetation composition. In this particular ecosystem, the
microtopography is important as it covaries with surface vegetation, water table position, and carbon
uptake from the atmosphere [52].

Although more sophisticated deconvolution algorithms exist [31,44–46], they may rely on a
higher level of mathematical understanding to implement. Without a fundamental understanding
of a method, its implementation can lead to inaccurate interpretations. This may be problematic for
end-users, who often do not have the appropriate information to implement these methodologies
effectively. The presented method is intuitive; the algorithm is based on the principles of the classical
linear spectral unmixing model and is thus simple to understand and implement. Despite using a
wavelength-independent PSFopt that was derived based on a theoretical calculation as opposed to
an empirical estimation, the algorithm was capable of sharping real-world HSI data. With a more
rigorous characterization of the optical blurring that accounts for the wavelength dependence of the
point spread function, the performance of the deconvolution algorithm could be improved, resulting
in sharper imagery and a spatial correlation structure more representative of the imaged scene.

Before applying the developed deconvolution algorithm, it is critical to consider the implications
and validity of the pure pixel assumption made in Equation 8. Given that HSI may be characterized
by sensor blurring and noise that varies as a function of wavelength, these assumptions may not
be realistic for real-world spectral imagery. They are, however, reasonable to simplify the system
since the spatial variability within each pixel is often non-constant and unknown. Similar pure pixel
assumptions have been made in other deconvolution studies (e.g., [26,58]) at the satellite level. This is
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encouraging since the pure pixel assumption is more likely to hold for airborne systems that collect
data at higher spatial resolution (<3 m). That being said, end-users must be aware that the assumption
may lead to anomalies in the deconvolved data.

As previously mentioned, the pure pixel assumption resulted in artificial decorrelations at pixel
displacements from 1–2 pixels in the across-track. Such artifacts are potentially problematic for certain
applications, likely showing overestimated contrast along edges. Despite this, the real-world imagery
was sharpened with promising results. When analyzing the sharpening effects on a pixel-by-pixel basis
(Figure 13), there was little evidence that showed any overestimated contrast in the imagery. That being
said, given the construction of the algorithm, overestimated contrast is possible. Furthermore, this
algorithm has no constraints on the positivity of the deconvolved imagery. Since negative reflectance
has no real-world significance, edges between extremely high reflectance and low reflectance materials
may need to be checked for non-positive anomalies. Furthermore, low signal and excessive noise in
the data may negatively affect the performance of the algorithm, also resulting in negative values. As
such, the application of this algorithm may not be ideal for low signal to noise ratio bands.

This work focused on developing a simplistic approach to deconvolution, which is a complex
and ill-posed problem. To satisfy this objective, the pure pixel assumption was necessary, despite the
potential for introducing data anomalies. In this study, there is ample evidence to suggest that the
algorithm is effective at mitigating sensor-generated blurring effects within the data. With this in mind,
if sensor blurring is the major obstacle for a particular application, the developed methodologies should
be sufficient to observe noticeable improvements. From that point, more complex deconvolution
algorithms (e.g., [31,44–46]) can be implemented if the developed algorithm is introducing too many
artifacts in the HSI data.

From both the simulated and real-world HSI data, sensor induced blurring effects were found
to mask and distort the natural spatial dynamics of the imaged scene. These blurring effects directly
corresponded with the structure of the PSFnet. From this work, it is clear that sensor induced blurring
effects are not always identical in the across track and along track directions. The same can be said
for the raw pixel sizes. In fact, for pushbroom sensors, pixels are inherently more rectangular than
square. Although it is possible to obtain nearly identical pixel resolutions in the across track and
along track directions, technical restraints may make it difficult. For instance, the resolution in the
along track is determined by the integration time and platform speed, both of which have impacts on
other aspects of the data (signal to noise ratio, positional accuracy, etc.), especially for low altitude
platforms such as unmanned aerial systems [60]. This implies that HSI data characterize the scene
on a slightly different scale in the across track than the along track directions, with different blurring
levels. Given the scale-dependent nature of many natural phenomena, patterns could be observable in
one spatial dimension, but not the other. This was exemplified by the Mer Bleue imagery, in which
the micro-spatial patterns in surface vegetation could be detected in the across-track, but not the
along track. Without considering the PSFnet and the heading of the data acquisition flight, sensor
induced blurring effects could be mistaken for directional trends in the data. Similarly, scale-dependent
phenomena observable in either the across track or along track directions could lead to assumptions of
directionality to a trend where none exists.

Given the importance of sensor point spread functions, when applying HSI data, it may be
critical to analyze the imagery in its original sensor geometry, pre-geocorrection. Many geocorrective
methods operate by resampling the raw HSI data on a linear grid with a nearest neighbour resampling
technique [61]. As such, the location of each point in the raw imagery is shifted and the original sensor
geometry is lost to some degree. Consequently, the natural spatial correlations of a scene are likely to
be distorted even further as sensor-generated spatial correlations are shifted to fit the pre-specified
linear grid. Further research into the spatial correlation structure of HSI data post geocorrection would
give insight into the cumulative effects of sensor-generated spatial correlations.
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Overall, the described methodology provides a framework to characterize and mitigate the
implications of sensor induced blurring; by generating a simulated dataset with known blurring, it
is possible to understand the degree to which sensor blurring (and the associated artificial spatial
correlations) will affect real-world HSI data. At the satellite level, there exists a rich body of literature
that characterizes and discusses the implications of sensor point spread functions on a wide array
of remote sensing tasks such as classification [26], sub-pixel feature detection [35], and spectral
unmixing [36]. Unfortunately, the implications of sensor point spread functions have yet to be fully
investigated to the same degree at the airborne level. This may be problematic as sensor-generated
blurring effects may be more prominent for airborne platforms [43].

5. Conclusions

The presented work developed two simple and intuitive algorithms to characterize and mitigate
sensor-generated spatial correlations while emphasizing the implications of sensor point spread
functions. The first algorithm applied the CC to observe and quantify spatial correlations. The
algorithm was able to characterize the structure of spatial correlations. Sensor blurring was found to
increase spatial correlations and decrease the variance in the system. The second algorithm developed
in the study used a theoretically derived PSFnet to mitigate sensor-generated spatial correlations in
HSI data. The CC-based algorithm showed that sensor blurring generated spatial correlations that
removed 54.0%–75.4% of the natural variability in the spatial correlation structure of the simulated
HSI data. Sensor blurring effects were also shown to remove 31.1%–38.9% of the spectral variability.
The deconvolution algorithm mitigated the observed sensor-generated spatial correlations while
restoring a large portion of the natural spectral and spatial variability of the scene. In the real-world I
data, the deconvolution algorithm quantitatively and qualitatively sharpened the imagery, decreasing
levels of spatial correlation within the imagery that were likely caused by sensor induced blurring
effects. As a result of this effect, the natural spatial correlations within the imagery were enhanced.
The presented work substantiates the implications of sensor-generated spatial correlations while
providing a framework to analyze the implications of sensor blurring for specific applications. Point
spread functions are shown to be crucial variables to complement traditional parameters such as pixel
resolution and geometric accuracy. The developed tools are simple and intuitive. As a result, they
can be readily applied by end-users of all expertise levels to consider the impact of sensor-generated
blurring, and by extension, spatial correlations, HSI applications.
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